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SUMMARY

In recent years, the biological underpinnings of adaptive learning have been
modeled, leading to faster model convergence and various behavioral benefits
in tasks including spatial navigation and cue-reward association. Furthermore,
studies have investigated how the neuromodulatory system, a major driver of
synaptic plasticity and state-dependent changes in the brain neuronal activities,
plays a role in training deep neural networks (DNNs). In this study, we extended
previous studies on neuromodulation-inspired DNNs and explored the effects of
neuromodulatory components on learning and single unit activities in a spatial
learning task. Under the multiscale neuromodulatory framework, plastic compo-
nents, dropout probability modulation, and learning rate decay were added to
the single unit, layer, and whole network levels of DNN models, respectively.
We observed behavioral benefits including faster learning and smaller error of
ambulation. We then concluded that neuromodulatory components can affect
learning trajectories, outcomes, and single unit activities, in a component- and
hyperparameter-dependent manner.

INTRODUCTION

In the past decades, the field of artificial intelligence has significantly advanced, showing promising results in

pattern recognition, image restoration and reconstruction, and medical imaging analysis thanks to the fast

development of deep neural networks (DNNs), availability of large datasets, and increasing computing power.

DNNs are loosely inspired by the biological nervous system, and are composed of multiple hidden layers, al-

lowing for tuning of the weights to minimize the differences between the predicted and actual outcomes.

To further understand how biologically plausible mechanisms may shed light on DNNs and optimization

methods, implementations at the dendritic, single-neuron, or microcircuitry levels have been increasingly

realized.1–5 Thus far, deep learning and neurorobotics studies6–13 have examined whether biological neu-

romodulation may lead to behavioral benefits. In these studies, neuromodulation was commonly defined

as a mechanism that self-reconfigures network hyperparameters and connectivity based on environmental

or/and behavioral states of the neural network (Table 1).

More recently, neuromodulation-inspired learning rules have been employed in DNNs.6–9 The neuromodu-

latory system consists of the serotonergic (5-HT), dopaminergic (DA), noradrenergic (NA), and cholinergic

systems (ACh), whichmodulate a spectrum of physiological and cognitive processes through highly region-

and target-specific projections originating frommidbrain, hindbrain, or forebrain areas.3,10 Through neuro-

modulation-inspired learning, DNNs that employ adaptive learning rules including synaptic plasticity and

feedback-based hyperparameter tuningwere validated in tasks including spatial learning, cue-reward asso-

ciation, and image classification and recognition (Table 1). As an example,9 Vecoven et al. implemented and

tested a DNN that allowed for the use of contextual information about the current task and environment by

adjusting the slope and bias of the activation functions in the DNN (Table 1). Others have proposed to

modulate synaptic plasticity to overcome catastrophic forgetting, or introduce neuromodulatory neurons

and network-computed modulatory signals to achieve more efficient learning (Table 1).7,8

In contrast to the field of deep learning, application of neuromodulation-inspired learning in neurorobotics

followed a more modular approach. That is, systems-level properties of neuromodulators are individually
iScience 26, 106026, February 17, 2023 ª 2023 The Authors.
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Table 1. An overview of deep learning studies that applied neuromodulation-inspired mechanisms to DNNs

Hypothesis Task Neural network

Artificial neuromodulatory

mechanism Findings Study

Modularity in neural networks

alleviates catastrophic

forgetting and improves

skill learning.

In an environment,

to eat all nutritious

food while avoiding

poisonous food to

achieve maximum

fitness.

A 5-layer, feedforward

neural network with 10

input neurons. The three

hidden layers have 10, 4,

and 2 neurons, respectively.

Both non-modulatory and

modulatory neurons were used.

Inputs to each neuron consist of

modulatory and non-modulatory

connections. The sum of

modulatory inputs to downstream

neurons determines weight

modifications of non-modulatory

connections, and weight change

is governed by a regular Hebbian

learning term.

Neuromodulation

leads to greater

improvement in

model performance

in a neural network

of higher modularity,

and promotes evolution

of the neural network

against catastrophic

forgetting.

Ellefsen et al.7

Deep neural network

architectures inspired by

cellular neuromodulation

learn adaptive behaviors.

Navigating toward one

(navigation problem 1)

or two targets (navigation

problem 2) in a 2D space

with noisy movements.

A 6-layer feedforward RNN

of 100, 75, 45, 30, 10, and 1

unit(s) in each layer,

respectively.

Introduction of a neuromodulatory

network that tunes the slope and

bias of activation functions of the

main network, then replacing

activation functions in the main

network with the neuromodulatory

capable version.

The neuromodulated

neural network learns

faster (as quantified

through the number

of episodes), and

obtains higher

rewards. It also

demonstrates adaptation

abilities, and greater

robustness against random

seeds and network

architectures.

Vecoven et al.9

Neuromodulated plasticity

improves model performance

in different tasks, e.g.,

reinforcement learning and

supervised learning.

A cue-reward association

task (task 1), a maze

navigation task (task 2),

and a language modeling

task (task 3).

Task 1: An RNN with 200

neurons in the hidden layer.

Task 2: An RNN with 100

neurons in the hidden layer.

Task 3: Two LSTM models

with 4.8 and 24.2 million

parameters, respectively.

Use of (1) a Hebbian plastic

component in addition to a

fixed weight in each connection,

(2) a network-computed, time-

varying neuromodulatory signal,

and (3) a dopamine activity-inspired

eligibility trace.

Neuromodulated plasticity

improves performance in three

tasks of different nature, as

indicated by higher rewards

(tasks 1 and 2), or lower test

perplexity (task 3). Lower test

perplexity is observed in

both LSTM models in task 3.

Miconi et al.8

Within local regions of a neural

network, neuromodulators act

as synaptic amplifiers or

dampeners and support

different, state-dependent

behaviors.

Modified Go-NoGo tasks,

where the agent is trained

to give zero output (‘‘NoGo’’)

for the positive stimulus and

negative output (‘‘AntiGo’’)

for the null stimulus, in addition

to behavior sets in the classic

Go-NoGo task.

An RNN with 200 neurons,

80% excitatory and 20%

inhibitory. Each neuron

can be connected to any

other neuron with a certain

probability (initialized at 0.8).

Scaling of weights of target neurons

through a neuromodulatory factor for

the whole network (whole network

neuromodulation, i.e., applying to

all neurons) and subpopulation

neuromodulation (i.e., applying to

randomly chosen, selected,

overlapping or non-overlapping

neuronal subpopulations).

Through modulation of

synaptic weights,

neuromodulators can

enable distinct synaptic

memory regions within a

single neural network, and

effects could be observed

at single neuron, cluster,

and global network activity

levels.

Tsuda et al.14

ll
O
P
E
N

A
C
C
E
S
S

2
iS
cie

n
ce

2
6
,
1
0
6
0
2
6
,
F
e
b
ru
ary

1
7
,
2
0
2
3

iS
cience
A
rticle



Table 2. Loss before and after training, lowest loss during training, and change in loss over 1,000 epochs in TensorFlow models

Training loss,

epoch 0

Test loss,

epoch 0

Training loss,

epoch 1,000

Test loss,

epoch 1,000

Training

loss,

lowest

Test loss,

lowest

Losst = 1000 � Losst = 0,

training

Lossl = 1000 � Lossl = 0,

test

Base_m1 8.052 (0.015) 8.053 (0.016) 3.606 (0.028) 3.608 (0.039) 3.606 3.608 4.446 4.445

Base_m2 8.034 (0.006) 8.036 (0.005) 3.631 (0.023) 3.655 (0.014) 3.628 3.646 4.403 4.381

Plast_m 8.038 (0.010) 8.025 (0.006) 3.512 (0.043) 3.527 (0.046) 3.512 3.527 4.526 4.498

Plast

Drop_m

8.029 (0.003) 8.034 (0.005) 3.416 (0.036) 3.494 (0.033) 3.416 3.494 4.613 4.540

Plast

DropLr_

m1

8.029 (0.005) 8.029 (0.009) 3.355 (0.021) 3.417 (0.023) 3.355 3.417 4.674 4.612

Plast

DropLr_

m2

8.037 (0.010) 8.032 (0.009) 2.911 (0.010) 3.085 (0.016) 2.911 3.085 5.126 4.947

Data are presented as mean (SD).
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modeled based on experimental findings to enable high-level behavioral and cognitive effects, such as

attention to salient objects, harm aversion, and risk taking.11–13,15,16 For example, detection of objects trig-

gers DA or 5-HT neurons, depending on the level of novelty or danger embodied.11,17 In other studies, ACh

and NA were modeled as filters that gate attention and distills events by adjusting weights from neurons

that correspond to sensory events from ACh or NA neurons.11,12

In studies using neuromodulation-inspired DNNs, behavioral benefits were observed at multiple spatio-

temporal levels, which could be attributed to the emergence of intrinsic neuronal properties under varying

intensity of neuromodulation.18 Despite the recent effort to introduce adaptive learning inspired by neuro-

modulators, the effects of modulatory processes at multiple spatial scales on model learning, as well as the

interactions between neuromodulatory components and model hyperparameters, remain largely unex-

plored. To further previous lines of research, instead of one neuromodulatory component that governs

the properties of DNN by adaptively adjusting connectivity or hyperparameters, we propose a multiscale

framework, where neuromodulatory processes are realized at various spatial scales, including the whole

network, single layer, and single units (Figure 12). This way, we individually add neuromodulatory compo-

nents and investigate how each alters the dynamics, learning trajectory, and single unit activities of the

DNN. In addition, we may study interactions across these components, for example, how effects induced

by neuromodulatory components may only be observed when certain hyperparameter values are used.

To sum up, in the present study, we investigate and report how multiscale neuromodulation of (1) connec-

tivity (e.g., plastic components for weight updates), (2) layer-specific properties (e.g., modulation of

dropout probability), and (3) neural network hyperparameters (e.g., learning rate scheduling) may affect

the learning trajectories, learning outcomes, and unit activity patterns of a DNN in an open field spatial

learning task. Moreover, we highlight improvements in model convergence and learning efficiency, as

well as variant-specific single unit activity patterns, when neuromodulatory components were added to

the DNN. Finally, we summarize findings and limitations, discuss future research directions, and highlight

how the neuromodulation-inspired framework could be further validated in DNNs to improve adaptive

behavior and learning.

RESULTS

TensorFlow implementation

Spatial learning in non-neuromodulated and neuromodulated DNNs

Custom model loss. Prior to model training, both training and test loss were in the range of 8.025–8.053

and were comparable (Table 2). After 1,000 epochs, the training and test loss of Base_m1 was 3.606 and

3.608, respectively (Table 2). Furthermore, adding plastic components to Base_m1 marginally improved

model convergence as indicated by a greater decrease in custom loss during training within the same num-

ber of epochs (Figure 1A), leading to a final training loss of 3.512 and test loss of 3.527 (Plast_m; Table 2).
iScience 26, 106026, February 17, 2023 3
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Figure 1. Performance of TensorFlow models

(A) custom model loss, (B) error of ambulation. Results shown were obtained from the test set and were the average of 5

trials. Data are presented as mean (SD).
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Instead of a static dropout probability of 0.5 (as in Base_m1 and Plast_m), introducing a modulated

dropout probability to the model speeded up model convergence, resulting in a training custom loss of

3.416 and a test loss of 3.494 after 1,000 epochs (PlastDrop_m; Table 2). Finally, compared to a static

learning rate, a lower test loss was observed when learning rate decay was applied (PlastDrop_m vs Plast-

DropLr_m1: 3.494 vs 3.417).

For a base model with a learning rate of 1e-4, neuromodulation-inspired mechanisms delayed the early

saturation in custom model loss and decreased test loss from 3.655 to 3.085 after 1,000 epochs (Base_m2

vs PlastDropLr_m2).

Error of ambulation. Error of ambulation of both training and test sets before and after training was sum-

marized in Table 3. In the base model Base_m1 and all its variants, errors of ambulation obtained from

training sets were comparable to those obtained from test sets (Table 3). In Base_m1, before training, error

of ambulation of the test set was 1.108m, which decreased to 0.137m after 1,000 epochs (Table 3; Figure 1B).

When a plastic component was added to Base_m1, error of ambulation of the test set was 1.119 and 0.128m

before and after training, respectively (Plast_m). Despite the lack of behavioral improvement when only

dropout probability modulation was added to Plast_m (pre- and post-training error of ambulation of Plast-

Drop_m: 1.150 and 0.129m), enabling learning rate decay during model training, as in PlastDropLr_m1,

decreased the error of ambulation to 0.120m after 1,000 epochs.
Table 3. Error of ambulation before and after training, lowest error of ambulation, and change in error of ambulation over 1,000 epochs in

TensorFlow models

Training error

of ambulation

(m), epoch 0

Test error

of ambulation

(m), epoch 0

Training error

of ambulation

(m), epoch

1,000

Test error of

ambulation

(m), epoch

1,000

Training error

of ambulation

(m), lowest

Test error of

ambulation

(m), lowest

εl = 1000 � εl = 0,

training

εl = 1000 � εl = 0,

test

Base_m1 1.135 (0.027) 1.108 (0.033) 0.135 (0.005) 0.137 (0.005) 0.133 0.133 1 0.971

Base_m2 1.128 (0.030) 1.120 (0.036) 0.126 (0.007) 0.122 (0.006) 0.120 0.109 1.002 0.998

Plast_m 1.143 (0.050) 1.119 (0.052) 0.131 (0.008) 0.128 (0.009) 0.126 0.124 1.012 0.991

Plast

Drop_m

1.130 (0.045) 1.150 (0.044) 0.126 (0.010) 0.129 (0.007) 0.125 0.121 1.004 1.021

Plast

DropLr_m1

1.160 (0.048) 1.153 (0.033) 0.127 (0.009) 0.120 (0.012) 0.124 0.119 1.033 1.033

Plast

DropLr_m2

1.152 (0.078) 1.171 (0.044) 0.098 (0.005) 0.101 (0.010) 0.098 0.099 1.054 1.07

Data are presented as mean (SD).

4 iScience 26, 106026, February 17, 2023



Figure 2. Unit activity patterns and autocorrelograms of fully connected layer units in DNNs implemented using

TensorFlow, at 1,000 epochs

HD, head direction cell-like units; PC, place cell-like units; GC, grid cells-like units; BC, border cell-like units; CC,

conjunctive cell-like units; SC, stripe cell-like units. Upper rows represent unit activity maps and lower rows represent

corresponding autocorrelograms.
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Moreover, adding neuromodulation-inspired components to a model with a fixed learning rate of 1e-4

(Base_m2) led to a reduced error of ambulation at 1,000 epochs (Base_m2 vs PlastDropLr_m2: 0.122

and 0.101m).

Effects of neuromodulatory components on grid cell-like cell activity patterns in the fully connected
layer. Biologically plausible activity patterns were observed in the fully connected layer in all model var-

iants (Figure 2). In accordance with the drastic decrease in model loss shortly after the start of model

training, biologically plausible unit activity patterns developed significantly during the first 200 epochs (Fig-

ure S1). Specifically, in all models, we were able to identify place cell-like, grid cell-like, head direction cell-

like, conjunctive cell-like, stripe cell-like, and border cell-like units (Figure 2). However, in Base_m2, only the

inverse of border cell-like activity patterns present, where increased activity levels were seen across the

whole open arena but the border (Figure 2).

Base model learning rate (Base_m1 vs Base_m2). Increasing the learning rate of the base model from

1e-5 (Base_m1) to 1e-4 (Base_m2) led to an increase in the number of grid cell-like units (28.2 (4.6) vs 37.6
iScience 26, 106026, February 17, 2023 5
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Figure 3. Effects of learning rate and neuromodulatory components on grid cell-like units and their general

properties in TensorFlow models

(A) number of grid cell-like units, (B) number of firing fields in each unit, and (C) inter-field distance. *: p < 0.05, **: p < 0.01,

****: p < 0.0001. Data are presented as mean (SD).
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(6.9); p = 0.0109; Figure 3A) and the number of firing fields per unit (5.9 (1.4) vs 8.0 (1.3); p < 0.0001; Fig-

ure 3B), as well as a decrease in the inter-field distance (10.1 (1.8) vs 8.3 (0.9); p < 0.0001; Figure 3C).

Increased base model learning rate is also associated with a decrease in the average size, width, and height

of firing fields (13.8 (4.7) vs 9.5 (2.2), 6.7 (1.4) vs 5.5 (1.0), and 6.6 (1.3) vs 5.4 (1.0), respectively; p < 0.0001;

Figure 4), and the maximum width (11.4 (2.6) vs 10.8 (2.5); p = 0.0429; Figure 4B). In the meantime, the level
6 iScience 26, 106026, February 17, 2023
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Figure 4. Effects of learning rate and neuromodulatory components on the size of grid cell-like unit firing fields in TensorFlow models

(A) average and maximum size of firing fields, (B) average and maximum width of firing fields, and (C) average and maximum height of firing fields.*: p < 0.05,

****: p < 0.0001. Data are presented as mean (SD).
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of firing field activity became significantly lower (avg. level of activity: 84.8 (33.7) vs 20.5 (5.0), max. level of

activity: 141.0 (61.8) vs 40.5 (13.3); p < 0.0001; Figure 5).

Effects of single unit level neuromodulation on unit activities (Base_m1 vs Plast_m). Adding plastic

components to Base_m1 did not alter the number of grid cell-like units (Figure 3A), number of firing fields

per unit (Figure 3B), inter-field distance (Figure 3C), the average and maximum size, width, and height of

firing fields (Figure 4), and the average and maximum levels of firing field activity (Figure 5).

Effects of layer level neuromodulation on unit activities (Plast_m vs PlastDrop_m). Incorporating

dropout probability modulation into Plast_m led to a lower inter-field distance (10.1 (1.7) vs 9.5 (1.4);

p = 0.0036; Figure 3C) and a higher number of firing fields per unit (5.9 (1.3) vs 6.3 (1.3); p = 0.0492; Fig-

ure 3B). The average height of firing fields decreased from 6.7 (1.4) to 6.2 (1.3) (p = 0.0182; Figure 4C).

Moreover, both the average and maximum level of firing field activity decreased when dropout probability

modulation was used (avg. level of activity: 85.1 (26.1) vs 47.4 (21.7), max. level of activity: 131.0 (41.5) vs 78.6

(36.2); p < 0.0001; Figure 5). Nonetheless, no significant change was observed in the number of grid cells

(Figure 3A).

Effects of network level neuromodulation on unit activities (PlastDrop_m vs PlastDropLr_m1).
Applying a learning rate decay to a DNN of a fixed learning rate of 1e-5 increased the number of grid cell-

like units (Figure 3A) as well as the inter-field distance (9.5 (1.4) vs 10.2 (1.9); p = 0.0061; Figure 3C), and

decreased the average and maximum levels of firing field activity (avg. level of activity: 47.4 (21.7) vs 21.6

(16.9), max. level of activity: 78.6 (36.2) vs 39.9 (31.5); p < 0.0001; Figure 5). Using a decaying instead of fixed

learning rate did not affect the number of firing fields (Figure 3B), and the average and maximum size,

width, and height of firing fields (Figure 4).

Learning rate-dependent effects of neuromodulation (Base_m1 – PlastDropLr_m1 vs Base_m2 –
PlastDropLr_m2). Although introducing neuromodulatory components to Base_m1 gave rise to a non-

significant increase in the number of grid cell-like units (Base_m1 vs PlastDropLr_m1: 28.2 (4.6) vs 32.6 (2.3);

p = 0.1769; Figure 3A), a neuromodulated version of Base_m2 yielded a lower number of grid cell-like units

(Base_m2 vs PlastDropLr_m2: 37.6 (6.9) vs 29.8 (2.2); p = 0.0466; Figure 3A). Similar effects were seen in the

number of firing fields, where the neuromodulated version of Base_m1 had a marginally higher number of

firing fields on average than its neuromodulated version (Base_m1 vs PlastDropLr_m1: 5.9 (1.4) vs 6.3 (1.6);

p = 0.1454; Figure 3B), while the neuromodulated version of Base_m2 had fewer firing fields (Base_m2 vs

PlastDropLr_m2: 8.0 (1.3) vs 7.7 (1.4); p = 0.0164; Figure 3B).

Incorporating neuromodulatory components into Base_m1 led to no change in average size or width of

firing fields; however, the neuromodulated version of Base_m2 had firing fields of greater size and width

(Base_m2 vs PlastDropLr_m2: 9.5 (2.2) vs 10.2 (2.5) and 5.5 (1.0) vs 5.8 (1.2), p = 0.0168 and 0.0104,
iScience 26, 106026, February 17, 2023 7
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Figure 5. Effects of learning rate and neuromodulatory components on firing field activities in TensorFlow

models

(A) average level of activity, (B) maximum level of activity. ****: p < 0.0001. Data are presented as mean (SD).
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respectively; Figure 4). While neuromodulatory components did not alter themaximumwidth of firing fields

of grid cell-like units in Base_m1, adding these components to Base_m2 caused an overall increase in the

maximum width (Base_m2 vs PlastDropLr_m2: 10.8 (2.5) vs 11.5 (2.5); p = 0.0112; Figure 4B).

Overall, compared to Base_m1, the neuromodulated version PlastDropLr_m1 had lower levels of activity

(Base_m1 vs PlastDropLr_m1, avg. level of activity: 84.8 (33.7) vs 21.6 (16.9), max. level of activity: 141.0

(61.8) vs 39.9 (31.5); p < 0.0001; Figure 5). On the contrary, a base model of a learning rate of 1e-4 showed

a higher level of activity when neuromodulatory components were incorporated (Base_m2 vs Plast-

DropLr_m2, avg. level of activity: 20.5 (5.0) vs 59.6 (18.4), max. level of activity: 40.5 (13.3) vs 116.0 (43.5);

p < 0.0001; Figure 5).

Overall, we have observed faster model convergence and lower training and test losses when multilevel

neuromodulation-inspired mechanisms were incorporated into the base model. In the meantime, these

mechanisms affected activity patterns of fully connected layer grid cell-like units, as indicated by their firing

field properties.

PyTorch implementation

To replicate all experiments on another framework where platform-dependent implementation and opti-

mization are different, and to compare whether the effects of neuromodulatory components on learning

and unit activities in one platform (TensorFlow) will persist on the other (PyTorch), we evaluated model

learning and unit activity patterns using comparable procedures using PyTorch models.
8 iScience 26, 106026, February 17, 2023



Table 4. Loss before and after training, lowest loss during training, and change in loss over 1,000 epochs in PyTorch models

Training loss,

epoch 0

Test loss,

epoch 0

Training loss,

epoch 1,000

Test loss,

epoch 1,000

Training

loss,

lowest

Test loss,

lowest

Lossl = 1000 � Lossl = 0,

training

Lossl = 1000 � Lossl = 0,

test

Base_m1 8.036 (0.0007) 8.036 (0.0004) 2.069 (0.190) 2.077 (0.192) 2.045 2.050 5.967 5.959

Base_m2 8.029 (0.0007) 8.029 (0.0003) 2.029 (0.021)a 2.037 (0.008)a 1.988 1.998 6 5.992

Plast_m 8.036 (0.001) 8.036 (0.001) 2.069 (0.197) 2.084 (0.197) 2.041 2.048 5.967 5.952

PlastDrop_m 8.035 (0.001) 8.035 (0.000) 2.036 (0.191) 2.012 (0.187) 2.028 2.036 5.999 6.023

PlastDropLr_

m1

8.029 (0.001) 8.029 (0.000) 2.181 (0.227) 2.159 (0.224) 2.203 2.212 5.848 5.87

PlastDropLr_

m2

8.033 (0.000) 8.033 (0.000) 1.852 (0.174) 1.852 (0.173) 1.846 1.861 6.181 6.181

Data are presented as mean (SD)
aTraining and test loss for Base_m2 at epoch 500 are reported.
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Spatial learning in non-neuromodulated and neuromodulated DNNs

Custom model loss. All model variants demonstrated a test loss of approximately 8.0 before training

(Table 4; Figure 6A). Adding Hebbian-based plastic components resulted in a test loss of 2.084 in Plast_m,

comparable to the test loss of 2.077 of the base model (Base_m1). Increasing the learning rate of Base_m1

to 1e-4 (Base_m2) resulted in a diverging loss after around 500 epochs (Figures 6A and S2). The test loss of

Base_m2 at 500 epochs was 2.037, lower than Base_m1 and Plast_m. Modulation of dropout probability in

PlastDrop_m resulted in a lower final test loss of 2.012 compared to Base_m1, Base_m2, and Plast_m.

While scheduling learning rate on log scale from 1e-5 to 1e-6 as in PlastDropLr_m1, the final test loss

was 2.159, higher than all other model variants. Scheduling the learning rate on log scale from 1e-4 to

1e-5 in the PlastDropLr_m2 variant, however, resulted in a final test loss of 1.852, showcasing lowest

loss among all variants (Figure 6A; Table 4).

Error of ambulation. The ambulation error of all model variants was around 1.2m prior to training (Ta-

ble 5; Figure 6B). After training for 1,000 epochs, similar to the TensorFlow version, the ambulation error

obtained from training and test sets was comparable (Table 5). The base model Base_m1 demonstrated

an error of ambulation of 0.102. Adding plastic components as in the Plast_m variant led to an error of

ambulation of 0.103, comparable to Base_m1. As lowering the learning rate of Base_m1 to 1e-4 in the

Base_m2 variant resulted in diverging loss after 500 epochs, the ambulation error of 0.101 at 500 epochs

was considered instead. Compared to Base_m1 and Plast_m, the error of ambulation of Base_m2 was

marginally lower. Dynamically modulating dropout probability in PlastDrop_m resulted in an error of

ambulation of 0.101, comparable to the Base_m2 variant and lower than Base_m1 and Plast_m. Scheduling

learning rate from 1e-5 to 1e-6 on log scale in PlastDropLr_m1 gives rise to an ambulation error of 0.107,

higher than all other PyTorch variants. Scheduling the learning rate from 1e-4 to 1e-5 instead in the Plast-

DropLr_m2 variant, however, resulted in an ambulation error of 0.095, the lowest among all model variants

(Table 5; Figure 6B).

Effects of optimizer, learning rate, and gradient clipping. When using the Stochastic Gradient

Descent (SGD) optimizer, very slow model convergence and decrease in loss were observed when

the learning rate was set to 1e-4 or 1e-5 (Figure S3), resulting in a final test loss of 4.157 (0.009) or

7.754 (0.004). We then increased the learning rate to 1e-3 and obtained a higher final test loss

compared to the base model with the RMSprop optimizer (Base_SGD vs Base_m1: 2.263 vs 2.077). Exper-

imenting with lower learning rates (learning rate = 1e-6, Base_loLR), stricter gradient clipping (gradient

clipping = 1e-6, Base_SGC), or both (Base_loLR_SGC) did not lead to hexagonal grid cell patterns

(Figure 7).

Effects of neuromodulatory components on grid-like cell activity patterns in the fully connected
layer. The PyTorch models rarely had any place cell-like or border cell-like activity patterns (Figure 8).

Place and head direction cell-like unit activities were observed in PlastDropLr_m1, but not other model

variants. Firing fields in units with grid cell-like activities were organized into square-like patterns, and a
iScience 26, 106026, February 17, 2023 9
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Figure 6. Performance of PyTorch models

(A) custom model loss, (B) error of ambulation. Data shown were obtained from the test set. For each model, results were

the average of 5 trials. Data are presented as mean (SD).
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larger number of units with stripe-cell or conjunctive cell-like activity patterns were identified. Head direc-

tion cell-like unit activities were present in the PyTorch implementation (Figure 8). Biologically plausible

unit activity patterns emerged early during model training (Figure S4).

Base model learning rate (Base_m1 vs Base_m2). Changing the learning rate of Base_m1 to 1e-4

caused a significant decrease in the number of grid cells (Base_m1 vs Base_m2, 33.00 (6.245) vs 7.800

(3.962), p < 0.0001; Figure 9A), average level of activity (Base_m1 vs Base_m2, 16.29 (4.344) vs 2.861

(1.004), p < 0.0001; Figure 11A), and maximum level of activity (28.91 (7.662) vs 5.210 (1.735), p < 0.0001;

Figure 11B). No significant change was observed in the number of firing fields per unit (Figure 9B), inter-

field distance (Figure 9C), or size/width/height of firing fields (Figure 10).

Effects of single unit level neuromodulation on unit activities (Base_m1 vs Plast_m). Adding a plastic

component resulted in significant decrease in the number of grid-like cells (Base_m1 vs Plast_m, 33.00

(6.245) vs 29.40 (6.580), p = 0.0118; Figure 9A) and significant increase in the average level of firing field ac-

tivity (16.29 (4.344) vs 18.39 (4.832), p = 0.0147; Figure 11A) metrics. However, it did not cause significant

changes in maximum firing field activity (Figure 11B), number of firing fields per unit (Figure 9B), inter-field

distance (Figure 9C), average and maximum size of firing fields (Figure 10A), or max/average width/height

of firing fields metrics (Figures 10B and 10C).
Table 5. Error of ambulation before and after training, lowest error of ambulation, and change in error of ambulation over 1,000 epochs in PyTorch

models

Training error

of ambulation

(m), epoch 0

Test error of

ambulation

(m), epoch 0

Training error

of ambulation

(m), epoch 1,000

Test error of

ambulation (m),

epoch 1,000

Training error

of ambulation

(m), lowest

Test error of

ambulation

(m), lowest

εl = 1000 � εl = 0,

training

εl = 1000 � εl = 0,

test

Base_m1 1.174 (0.557) 1.175 (0.557) 0.102 (0.059) 0.102 (0.059) 0.101 0.101 1.072 1.073

Base_m2 1.184 (0.560) 1.185 (0.561) 0.101 (0.061)a 0.101 (0.061)a 0.100 0.100 1.083 1.084

Plast_m 1.201 (0.568) 1.202 (0.569) 0.103 (0.060) 0.103 (0.060) 0.101 0.102 1.098 1.099

Plast

Drop_m

1.245 (0.586) 1.244 (0.586) 0.101 (0.059) 0.101 (0.059) 0.101 0.101 1.144 1.143

PlastDrop

Lr_m1

1.213 (0.573) 1.212 (0.573) 0.107 (0.073) 0.107 (0.072) 0.107 0.107 1.106 1.105

PlastDrop

Lr_m2

1.196 (0.564) 1.197 (0.564) 0.095 (0.055) 0.095 (0.056) 0.094 0.095 1.101 1.102

Data are presented as mean (SD)
aTraining and test error of ambulation for Base_m2 at epoch 500 are reported.
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Figure 7. Effects of lower learning rate (Base_loLR), stricter gradient clipping (Base_SGC), or both

(Base_loLR_SGC) on unit activities compared to the base model (Base_m1)

Examples of units exhibiting head direction cell-like (HD), grid cell-like (GC), conjunctive cell-like (CC), and stripe cell-like

(SC) unit activities are presented.
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Effects of layer level neuromodulation on unit activities (Plast_m vs PlastDrop_m). Modulation of

dropout probability in the fully connected layer of the DNN caused significant decrease in the average

and maximum level of firing field activities (18.39 (4.832) vs 13.94 (3.6), p < 0.0001; Figures 11A and 32.08

(8.428) vs 24.83 (6.526), p < 0.0001; Figure 11B respectively). The number of grid-like cells (Figure 9A), num-

ber of firing fields (Figure 9B), inter-field distance Figure 9C), and max/average size/width/height of firing

fields (Figure 10) did not see significant changes.

Effects of network level neuromodulation on unit activities (PlastDrop_m vs PlastDropLR_m1). The

addition of learning rate scheduling resulted in a significant increase in the number of grid cell-like

units (PlastDrop_m vs PlastDropLr_m1, 21.20 (6.611) vs 31.20 (0.8367), p < 0.0430; Figure 9A), inter-field

distance (10.29 (2.027) vs 12.93 (2.030), p < 0.0001; Figure 9C), average size of firing fields (16.80 (5.543) vs

24.21 (7.703), p < 0.0001; Figure 10A), average width of firing fields (4.684 (1.192) vs 5.480 (1.338),

p < 0.0001; Figure 10B), and maximum and average height of firing fields (7.566 (1.966) vs 8.833 (2.146),

p < 0.0001 and 4.419 (1.

090) vs 5.509 (1.361), p < 0.0001 respectively; Figure 10C). The addition of learning rate scheduling also

caused a significant decrease in the number of firing fields (6.019 (1.852) vs 4.179 (1.322), p < 0.0001;

Figure 9B). No significant changes were observed in the average and maximum levels of firing field activity

(Figure 11).

Learning rate-dependent effects of neuromodulation (Base_m1 – PlastDropLr_m1 vs Base_m2 –
PlastDropLr_m2). The addition of neuromodulatory components had differing effects based on the

learning rate employed. While using a learning rate of 1e-5, adding neuromodulatory components

(Base_m1 vs PlastDropLr_m1) resulted in a significant increase in the inter-field distance (10.67 (1.758) vs

12.93 (2.030), p < 0.0001; Figure 9C), average size of firing fields (17.77 (6.005) vs 24.21 (7.703),

p < 0.0001; Figure 10A), maximum size of firing fields (37.33 (11.55) vs 46.99 (14.68), p < 0.0001; Figure 10A),

average width of firing fields (4.865 (1.241) vs 5.480 (1.338), p = 0.0006; Figure 10B), average height of firing
iScience 26, 106026, February 17, 2023 11



Figure 8. Unit activity patterns and autocorrelograms of fully connected layer units in PyTorch models after

training

HD, head direction cell-like units; GC, grid cell-like units; CC, conjunctive cell-like units; SC, stripe cell-like units. Upper

rows represent unit activity maps and lower rows represent corresponding autocorrelograms.
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fields (4.643 (1.155) vs 5.509 (1.361), p < 0.0001; Figure 10C), and maximum height of firing fields

(8.085 (2.117) vs 8.833 (2.146), p = 0.0319; Figure 10C). Additionally, a significant decrease in the

number of firing fields (5.709 (1.711) vs 4.179 (1.322), p < 0.0001; Figure 9B) was observed in this setting.

Adding neuromodulatory components when using a learning rate of 1e-4 (Base_m2 vs PlastDropLr_m2),

however, caused a significant increase in another set of metrics: the average (2.861 (1.004) vs 12.90

(4.204), p < 0.0001; Figure 11A) and maximum (5.210(1.735) vs 24.70(7.962), p < 0.0001; Figure 11B) levels

of activity.

DISCUSSION

In the present study, we introduce a multiscale self-modulated framework to a DNN for a spatial learning

task, where neuromodulation-inspired components were added at the single unit, layer, and network

levels. We used a DNN with path integration abilities thus allowing the DNN to determine and update

its current location without use of landmarks or explicit training signals such as deviations from the actual

trajectory. Instead, the DNN was trained through minimizing the difference between predicted and actual

place and head direction cell activations, that is, spatial learning performance was improved based on ac-

tivities of neurons.

To examine the effects of neuromodulatory mechanisms on spatial learning and fully connected layer unit

activities, and to enable cross-platform comparisons, we implemented a basemodel and five variants using
12 iScience 26, 106026, February 17, 2023
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Figure 9. Effects of learning rate and neuromodulatory components on grid cell-like units and their general

properties in PyTorch models

(A) number of grid cell-like units, (B) number of firing fields in each unit, and (C) inter-field distance. *: p < 0.05, ****:

p < 0.0001. Data are presented as mean (SD).
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both TensorFlow and PyTorch. To our knowledge, the PyTorch models in this study are the first PyTorch

implementation of the TensorFlow models in the study by Banino et al.19 that demonstrate biologically

plausible unit activities. Overall, neuromodulatory components facilitated path integration in an open field

and led to faster model convergence.
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Figure 10. Effects of learning rate and neuromodulatory components on the size of grid cell-like unit firing fields in PyTorch models

(A) average and maximum size of firing fields, (B) average and maximumwidth of firing fields, and (C) average andmaximum height of firing fields. *: p < 0.05,

***: p < 0.001, ****: p < 0.0001. Data are presented as mean (SD).
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More specifically, in the neuromodulatedmodel variants, we observed (1) faster model convergence during

training, (2) lower model loss during and after training, (3) lower error of ambulation during and after

training, (4) changes in fully connected layer grid cell-like unit activity patterns, and (5) hyperparameter-

dependent neuromodulatory effects. Moreover, there were marked differences in unit activity patterns,
A

B

Figure 11. Effects of learning rate and neuromodulatory components on firing field activities in PyTorch models

(A) average level of activity, (B) maximum level of activity. **: p < 0.01, ***: p < 0.001, ****: p < 0.0001. Data are presented

as mean (SD).
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Figure 12. Architecture of the deep neural network with neuromodulation-inspired mechanisms

Red, neuromodulatory components introduced at the single unit (LSTM units of the recurrent layer), layer (adaptive dropout probability of the fully

connected layer), and network levels (learning rate scheduling).
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and in how neuromodulatory components affect unit activities in the TensorFlow and PyTorch implemen-

tations (Table S2). These observations have thus allowed us to conclude that incorporating neuromodula-

tion-inspired mechanisms at different spatial scales may facilitate faster model convergence and smaller

ambulation errors, and in the meantime, the modulatory effects of these mechanisms on single unit activ-

ities can be affected by the platform.

Neuromodulatory components enabled and speeded up model training

In thePyTorchbasemodelwitha learning rateof 1e-4,both trainand test lossdecreased toapproximately 2.0 at

500 epochs and then rebounded to approximately 8.0 (Figure S2). This behavior usually indicates unstable

training due to a learning rate set too high.20 We also hypothesized that the diverging loss was caused by a

low epsilon value in the RMSProp optimizer: In RMSProp, the calculation of effective learning rate includes a

step that divides the scheduled learning rate by the square root of the moving average of squared gradients:

lffiffiffi
v

p
+ ε

Where l is the scheduled learning rate, v is the moving average of gradients, and ε is used to prevent ex-

plosion of effective learning rate when v is too small.

To test this hypothesis, a set of experiments were conducted, with higher epsilon values of 1e-6 and 1e-4

compared to the TensorFlow version’s 1e-10 for the RMSProp optimizer. Nevertheless, models still failed to
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converge (Figure S5). However, when incorporating neuromodulation-inspired mechanisms such as

learning rate decay (PlastDropLr_m2), even with a higher learning rate of 1e-4, the model loss decreased

steadily (Figure 6A), demonstrating the effectiveness of neuromodulatory components in enabling model

training.

Furthermore, neuromodulatedDNNs had faster model convergence and reached comparable loss in fewer

epochs when compared with the base model (Figures 1 and 6). More specifically, neuromodulated model

variants had lower losses at an earlier time point compared to the base model: the loss of Plast_m, Plast-

Drop_m, and PlastDropLr_m1 was 3.582, 3.597, and 3.578 at 800, 700, and 600 epochs, respectively, while

the loss of Base_m1 was 3.608 at 1,000 epochs. Moreover, the model loss of Base_m2 at 1,000 epochs was

3.655, comparable to the model loss of PlastDropLr_m2 at 300 epochs (3.576). Similar trend was seen in

error of ambulation, with the error of ambulation of Base_m1 being 0.137 at 1,000 epochs, while Plast_m,

PlastDrop_m, and PlastDropLr_m1 reached a lower error of ambulation at 700, 700, and 600 epochs (0.136,

0.133, and 0.134). The error of ambulation of Base_m2 at 1,000 epochs was comparable to that of Plast-

DropLr_m2 at 500 epochs (0.122 vs 0.117). PyTorch models also yielded faster convergence, smaller model

loss, and error of ambulation upon incorporating neuromodulation (Figure 6).
Unit activity patterns in TensorFlow and PyTorch models

Different cell types, activity patterns, and firing field properties in TensorFlow and PyTorch models

Despite similar learning trajectories observed in the TensorFlow and PyTorch implementations, the un-

derlying cell types and grid cell-like unit activity patterns were different. In the fully connected layer of

TensorFlow models, we were able to identify grid cell-like units, place cell-like units, head direction

cell-like units, and border cell-like units (Figure 2). However, in the PyTorch implementation, place

cell- and border cell-like activity patterns emerged only in PlastDropLr_m1 (Figure 8). Firing fields of

grid cell-like units in TensorFlow models organized into a hexagonal pattern comparable to biological

grid cells. In contrast, in models implemented using PyTorch, firing fields showed square-like patterns

(Figure 8).

Although firing patterns of head direction cell-like units in the two implementations were comparable,

stripy patterns in grid cell-like units in the PyTorch implementation were more prominent. Interestingly,

consistent with the study by Krupic et al,21 stripy patterns as well as square-like grid cell activities were

observed in square environments. Moreover, grid cell-like units of models implemented on the two

platforms had activity patterns that differed fundamentally: In TensorFlow models, firing fields of grid

cell-like units organized into a hexagonal pattern, while in PyTorch models, square-like patterns were

observed (Figures 2 and 8).

Understanding square-like grid patterns in PyTorch models

To further understand this divergence, we first examined the consistency between hyperparameters, and

model initialization and optimization procedures. Given the identical model hyperparameters used, we

concluded that a possible cause was the implementation of the RMSProp optimizer in PyTorch and

TensorFlow. Therefore, we replaced the RMSProp optimizer of the PyTorch version of the base model

with the SGD optimizer while keeping all other model hyperparameters unchanged. The difference in

unit activity patterns, however, persisted. For experiments with the SGD optimizer, learning rate was set

to 1e-3, in contrast to RMSProp version’s 1e-5. This choice was made due to slow convergence of SGD

variants where learning rate was set to 1e-5 or 1e-4 (Figure S3).

A recent study using the base model in the study by Banino et al.19 reported square-like grid activity when

using TensorFlow.22 It revealed square-like grid activity when a higher learning rate of 1e-3 and loose

gradient clipping of 1 were being employed. However, they observed hexagonal grid activity when

learning rate and gradient clipping were set to 1e-5 as in the study by Banino et al.19 They also reported

lower final loss and faster convergence under a higher learning rate and loose gradient clipping, and

concluded hexagonal grid activity patterns emerge only in low learning rate and strict gradient clipping

settings. To test whether lower learning rate and stricter gradient clipping would lead to hexagonal grid

patterns in the PyTorch version, Base_loLR, Base_SGC, and Base_loLR_SGC variants were implemented

trained. The results, however, contradicted the findings in the study by Songlin et al.22 This supports the

hypothesis that unit activity patterns may depend on the deep learning framework being used.
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Figure 13. Trajectories (left) and firing activity maps (right) of place cells, grid cells, head direction cells, border

cells, conjunctive cells, and stripe cells recorded from rodents or obtained from simulations

Lines, trajectories of ambulation; red dots, superimposed spike locations. Experimental recordings of place cells, head

direction cells, border cells, and conjunctive cells were performed by Long and Zhang.24 For grid cells, ratemaps were

acquired by Gerlei et al.25 Stripe cell activity patterns were originally obtained through simulations in a study by Pilly and

Grossberg.26
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The difference in grid cell-like unit activity patterns arising from the two platforms can also be attributed to

the fact that there were no symmetry-breaking constraints in the bottleneck layers. As suggested by

Sorscher et al.,23 there are multiple solutions to the optimization problem our models were solving. One

possibility can be that the PyTorch and TensorFlow versions converged to different solutions and if an addi-

tional constraint was introduced, they may have converged to the same result, namely the conventional

hexagonal grid firing patterns.

Biological plausibility of fully connected layer unit activity

Biologically plausible activity patterns were observed in the fully connected layer of both TensorFlow and

PyTorch models, resembling head direction cells, place cells, grid cells, border cells, stripe cells, and

conjunctive cells (Figure 13 vs Figures 2 and 13 vs Figure 8). When neuromodulation-inspired mechanisms

were introduced to the base models, these cell types were still identifiable based on their patterns of ac-

tivity. In addition, we were able to characterize an interaction between neuromodulatory components and

grid cell-like unit properties.
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Figure 14. Identification of grid cell-like units and exclusion of non-grid cell-like units

Left: Identifying firing fields and determining the inter-firing field distance of grid cell-like units. An area that has a higher level of activity when compared with

its proximity was defined as a firing field (red circles). The inter-firing field distance represents the average of distances (white lines) from the center of one

firing field (gray dot) to the centers of the 3 closest firing fields (gray crosses). Middle: Units with stripe-like patterns of activities were regarded as non-grid

cell-like units. Per definition, the stripe count of the ratemap is 6. Right: A unit that exhibits conjunctive properties, showing both firing fields and stripes.
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Although activity patterns of some fully connected layer units may not look biologically plausible as they

had non-grid cell-like, stripy, or square-like grid patterns, their activities resemble some of the spatially pe-

riodic cells (SPC) reported in the study by Krupic et al.27 The SPCs observed in the study by Krupic et al.27

had a different number of significant Fourier components between one and four. Grid cells mostly had

three significant Fourier components resulting in hexagonal firing patterns, but while there were grid cells

with two significant components, their firing patterns were not generally square-like as in the PyTorch

model since the significant components were not orthogonal to each other, except very few instances.

Moreover, among non-grid SPCs, there were a significant number of cells with one significant Fourier

component, referred to as cells with a band-like firing pattern by Krupic et al.27 For these cells, there is

also computational evidence suggesting that combining multiple of them can lead to grid-like

activities.26,28,29

Furthermore, a large number of SPCs in the study by Krupic et al.27 seemed to be cells with conjunctive

properties. In alignment with computational and experimental findings,30,31 a significant number of units

in both TensorFlow and PyTorch versions had similar activity patterns to conjunctive cells. Overall, similar

to the population of cells responsible for spatial learning in the brain, ratemaps obtained from models in

this study showcase a diversity of activity patterns.

Limitations of the study

In the present study, classification of grid cell-like units was performed using an automated pipeline.

Although all units were inspected visually to ensure that there are no false positives (i.e., assuming a unit

is grid cell-like while it is not), there may have been some false negatives in the attempt to exclude stripe

cells in the PyTorch implementation. Furthermore, the study did not consider units with conjunctive prop-

erties, from which irregular activity patterns, instead of grid-like or regular patterns, could be observed.24

Thus, for the analysis of grid cell-like unit activity patterns, units displaying conjunctive cell-like activities

were excluded. For example, a unit with 6 firing fields organized in a grid-like pattern but having 2 fields

connected with each other thus showing a stripe-like pattern was excluded.

Importantly, for the statistical analysis of the PyTorch implementation, data of grid cell-like units from the

Base_m2 variant were acquired at 500 epochs, in contrast to other variants where unit activities at 1,000

epochs were analyzed. The main reason was the divergence of model loss after 500 epochs in Base_m2.

Given this approach may have biased model comparisons that involved Base_m2, we examined the evo-

lution of ratemaps of all model variants to ensure that early development of unit activities occurred earlier

than epoch 500 (Figure S6). Moreover, as shown in Figure S6, the difference between ratemaps extracted at

epoch 500 and epoch 1,000 was not significant. Nevertheless, given the differences in the optimization pro-

cedure of the two platforms, and the early stopping in Base_m2, it was challenging to directly assess and

understand the differences in the effects that neuromodulatory components had on model learning and

unit activities.

It is worth noting that DNNs in the present study receive angular and linear velocities, rather than employ-

ing sensory inputs such as visual32–35 and auditory36–41 signals, or even information such as terrain slant.42

Essentially, based on a functional equivalence view, different sensory inputs can result in corresponding

spatial representations, exploratory behavior, and navigation performance.42,43 In fact, studies
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demonstrating the formation of place cells prior to grid cells44,45 and retention of place cell activities after

disrupting grid cell activities46 suggest that place cells receive inputs from various types of cells in paral-

lel.47 The emergence of some of these types of non-grid cells may have been interfered by the use of pre-

cise velocities as an input, thus leading to unit activities that diverge from biologically plausible patterns.

Overall, the proposed framework was loosely inspired by the multiscale nature of neuromodulatory pro-

cesses in the brain. Therefore, the spatiotemporal dynamics of neuromodulation, the effects of chemical

neuromodulation on processes at the cellular level, and the detailed morphological settings of individual

neurons are yet to be realized.48
Outlook

Based on its aims, scope, and limitations, we may consider the following directions for furthering the

present study: First, we did not perform a thorough parameter space search to fully probe the interplay

between model hyperparameters and neuromodulatory components. Instead, given the limited time

and computational resources, we primarily used a learning rate of 1e-5 and 1e-4. Therefore, we may

consider performing a parameter space search to test combinations of hyperparameters and neuromodu-

latory components exhaustively, to investigate how hyperparameter-dependent effects of neuromodula-

tion emerged. Secondly, in the present study, we performed classification of fully connected layer units

based on similarity between artificial and biological neuronal activity patterns, without access to informa-

tion of the actual cell type (i.e., labels). To enable more efficient and accurate classification of cell types

using convolutional neural networks, more data on firing patterns and properties of biologically plausible

artificial neurons, especially conjunctive cells, should be acquired and made available. Thirdly, individual

neuromodulatory components could be further developed to allow for higher complexity and biological

plausibility. One example is the plastic component, where a more complex mechanism using retroactive

neuromodulation and eligibility traces could be enabled.8 Finally, the proposed multiscale neuromodula-

tory framework could be added to other neural network architectures or DNNs of greater complexity, and

tested in various behavioral contexts, for examining its robustness.

To sum up, neuromodulation-inspired mechanisms can speed up model training and lead to smaller errors

in a spatial learning task. More importantly, the effects of these mechanisms may depend on model hyper-

parameters and the platform of implementation, further reinforcing the importance of transparency in re-

porting experimental details andmodel training protocols, in studies that use biologically plausible DNNs.

Therefore, for future studies on neuromodulation-inspired learning in DNNs, extra care should be taken

during model implementation, statistical analysis, interpretation of results, and reporting of experimental

procedures, to allow for maximal reproducibility and comparability across studies.
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Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited on GitHub and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Dataset

The dataset used in this study was introduced by19 and consisted of simulated rat ambulation trajectories

generated for a total of 100 timesteps, in a square-like open environment with dimensions of 2.23 2.2m. To

allow direct comparison between our results and,19 the generated trajectories were obtained from a rat-like

motion simulator and uniformly covered the environment.53 All DNNs implemented in the present study

were trained using this dataset to perform path integration through linear and angular velocity inputs

across the current and past timesteps.

A total of 100 generated ambulation trajectories were made available in the format of TFRecord and can be

obtained from https://console.cloud.google.com/storage/browser/grid-cells-datasets.
Neural network architecture and artificial neuromodulation

To investigate the effects of neuromodulation in a biologically plausible setting, we chose to add

neuromodulatory components to a DNN with the ability to path integrate (i.e., determining and updating

one’s location through cues generated by movements and monitoring one’s trajectory in relation to a

starting location, without using landmarks).54 The DNNs implemented and tested were inspired by the
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base model used in an open field navigation task in.19 This model is a DNN with biologically plausible unit

activities, demonstrating unit activity patterns which resemble that of biological neurons in the

hippocampus and medial entorhinal cortex, e.g., grid cells and place cells.

We aim to explore how multi-level modulation of DNN properties, including hyperparameter auto-tuning

and adaptive, plastic modulation of weights, may affect (1) number of different types of neurons (e.g., place

cell-like units, grid cell-like units, and border cell-like units), and (2) unit activity patterns. In attempt to (1)

examine whether experimental results could be replicated using another platform, (2) enable cross-plat-

form comparisons of the effects of neuromodulatory components on learning and unit activities, and (3)

provide a base code for future model development that facilitates implementation and testing of differing

neuromodulatory components, we performed all experiments using both TensorFlow55 and PyTorch.56

PyTorch is a more flexible framework which allows additional modifications of deep learning models and

their training processes, benefiting the present study as well as future research. The PyTorch implementa-

tion enabled analysis of reproducibility of results where platform-dependent implementation and

optimizations were different.

The base model

The base model consists of a single recurrent layer of long short-term memory (LSTM) units, followed by a

linear layer of 256 units and an output layer (Figure 12). The recurrent layer extends across 100 timesteps,

receiving a vector ½wt ; sinð4tÞ; cosð4tÞ� that encodes velocity of the agent, with wt and 4t representing the

linear and angular velocities at time t. The output of the recurrent layer is passed to the fully-connected

bottleneck layer which is regularized by a dropout probability of 0.5. Network outputs are generated by

projecting the bottleneck activations to a layer representing place and head direction cell ensembles.

For a given spatial location in the open environment and facing angle, the output layer presents corre-

sponding activations of place and head direction units, simulated by the posterior probability of each

component of a mixture of two-dimensional isotropic Gaussians and von Mises distributions, respec-

tively.19 The base model is trained to predict the activations of the place and head direction cell ensembles

by optimizing a custom loss LOSS = LOSSPC + LOSSHD , where LOSSPC represents the cross entropy be-

tween the predicted and actual place cell activities, and LOSSHD represents the cross entropy between

the predicted and actual head direction cell activities.

Multi-scale neuromodulation

Neuromodulation-inspired components were realized at three levels, i.e., single unit level, layer level and

network level, through plastic components, adaptive dropout probability, and learning rate scheduling,

respectively (Figure 12).

Single unit level: Plastic components

A neural network’s weights can be coupled with a plastic component ai;jHebbi;jðtÞ.57,58 Moreover, param-

eters associated with the plasticity component can be learned through gradient descent:

xjðtÞ = s

( X
iεinputstoj

�
wi;j + ai;jHebbi;jðtÞ

�
xiðt � 1Þ

)
(Equation 1)
Hebbi;jðt + 1Þ = Clip
�
Hebbi;jðtÞ + MðtÞxiðt � 1ÞxjðtÞ

�
(Equation 2)

Where xiðtÞ represents output of neuron i at time l, s is a non-linear transformation, ui;j is the weight be-

tween neurons i and j, and ai;j is the plasticity coefficient. Hebbi;j represents the plastic component, and

MðtÞ is the time-varying neuromodulatory signal computed by the DNN that modulates plasticity of

each connection.8

Layer level: Modulation of dropout probability.

At the layer level, instead of using a fixed dropout probability of 0.5 throughout training,19 we modulated

dropout probability based on Dl1 � l2Loss, i.e., the change in model loss between epochs l1 and l2. This al-

lows us to use the model loss as a feedback signal, and to take into account the model performance, when
24 iScience 26, 106026, February 17, 2023
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adjusting the number of neurons to deactivate during learning. Modulation of dropout probability was

applied every 10 epochs, thus, at epoch l = ln + 10:

max step size = min
����upperbound � keep probl = 0

���; ���lowerbound � keep probl = 0

����.
�
total epochs

�
frequency of update

�
(Equation 3)
scaling factor list =
	
1; 1,10� 1;1,10� 2;1,10� 3;1,10� 4;1,10� 5;1,10� 6



(Equation 4)
scalingfactor = argmin
���x � ��max step size

� �
Lossl = ln � Lossl = ln� 10

������for x scaling factor list

(Equation 5)
Dkeep prob =
�
Lossl = ln � Lossl = ln� 10

�
,scaling factor (Equation 6)
keep probl = ln + 10 = keepprobl = ln �Dkeepprob (Equation 7)
dropoutl = ln + 10 = 1 � keep probl = ln + 10 (Equation 8)

where the upper bound and lower bound of dropout probability was set to 0.8 and 0.2, respectively.59–61

Network level: Learning rate decay

At the network level, we applied a decay scheme to learning rate h. From a behavioral perspective,

decrease in learning rate is partly comparable to animal ambulation and learning patterns in novel environ-

ments: When an animal is first introduced to a new environment, it may exhibit intense exploratory activ-

ities, followed by decreased ambulation and exploration when the environment becomes more

familiar.62–64 According to experimental studies, highest amount of daily and hourly exploration and ambu-

lation may be recorded in the animals’ first day in a novel environment, before they perform fine-tuned

exploration for the purpose of gaining access to food and water.62 Under this inspiration, at epoch 0,

learning rate was initialized to:

hl = 0 = n for n ε

�
1,10� 4; 1,10� 5

�
(Equation 9)

And decayed every 10 epochs with evenly spaced decrements on a logarithmic scale of base e, ending at:

hl = 1000 = hl = 0,10
� 1 (Equation 10)

Model variants, implementation, and training

Model variants

In the present study, the base model and five variants were implemented using Tensorflow and PyTorch:

1. Base_m1: The base model with a learning rate of 1e-5. All hyperparameters, model training proto-

cols and optimization procedures were kept the same as in.19

2. Base_m2: Base_m1 with a learning rate of 1e-4.

3. Plast_m: Base_m1 with plastic components incorporated (Equations 1 and 2).

4. PlastDrop_m: Plast_m with dropout probability modulation (Equations 3–8).

5. PlastDropLr_m1: PlastDrop_m with learning rate scheduling. Learning rate was initialized at 1e-5

and gradually decayed to 1e-6 on a log scale (Equations 9 and 10).

6. PlastDropLr_m2: Base_m2 with plasticity, dropout probability modulation and learning rate sched-

uling. Learning rate was initialized at 1e-4 and decayed to 1e-5 on a log scale (Equations 9 and 10).

Although it is commonly observed that learning rate scheduling improves model learning and conver-

gence, we did not implement it in all base models for the following reasons: First, as a surrogate for

network-level neuromodulation effects, adding it as an individual component allow direct comparison

with other model variants, as well as the base model in.19 Moreover, it was not trivial that improvement
iScience 26, 106026, February 17, 2023 25
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in performance (e.g., loss) and convergence would lead to a considerably lower error of ambulation. As a

result, we decided to present the addition of learning rate scheduling as a separate configuration.

We have observed differences in the underlying implementation of the Root Mean Square Propagation al-

gorithm (RMSprop) optimizer in TensorFlow and PyTorch. Moreover, previous work suggested that lower

learning rates and stricter gradient clipping values may lead to hexagonal unit activities.22 To test whether

lower learning rate, higher gradient clipping values, and/or altered optimizer implementations affect unit

activity patterns, two more variants were implemented using PyTorch:

1. Base_SGD: Base_m1 with a Stochastic Gradient Descent (SGD) optimizer instead of RMSProp. Ex-

periments were conducted to examine whether different optimizers would lead to diverging

behavior in the development of learning and unit activity patterns. The learning rate was set to

1e-3 since lower learning rates were demonstrating a very slow decrease in loss during the first

100 epochs, while the momentum was kept at 0.9 to keep hyperparameters consistent with other

model variants.

2. Base_loLR, Base_SGC, Base_loLR_SGC: Base_m1 with a learning rate of 1e-6, stricter gradient clip-

ping (1e-6), or both. Three sets of experiments, each of 2 trials, were performed to analyze model

performance and of unit activities when (a) the learning rate was lowered to 1e-6, or (b) when gradient

clipping was stricter by being set to 1e-6, or (c) both a learning rate of 1e-6 and a gradient clipping of

1e-6 were applied at same time.

Model implementation

All models were implemented using TensorFlow and PyTorch and are made available (https://github.com/

CNAILab). The TensorFlow implementation of the base model was partly based on,19 and all model com-

ponents implemented on the Sonnet platform65 were replaced with a native TensorFlow version. The Py-

Torch implementation of the base model is partly inspired by a previous model created by Lucas Pompe

(https://github.com/LPompe/gridtorch).

Model training

All models and variants in the present study were trained to minimize a custom loss defined as Loss =

LossPC + LossHD , where LossPC represents the cross entropy between the predicted and actual place

unit activities and LossHD represents the cross entropy between the predicted and actual head direction

unit activities. To make our study comparable to,19 we used the same protocol for model training and eval-

uation. Models and variants were trained with a batch size of 10 for a total of 1,000 epochs using an

RMSProp optimizer (momentum = 0.9). For each model, training and test were performed 5 times, and

all results reported in the present study were the average of these 5 trials. A train-test split of 90:10 was

used, with ambulatory trajectories number 0 to number 89 as the training set and ambulatory trajectories

number 90 to number 99 as the test dataset. No hyperparameter tuning was performed using a validation

dataset, and the test set was kept separate and unused during model training.

There were 1,000 training steps per epoch, thus, not all training samples were used in one epoch. Instead,

approximately a total of training steps3batch size training samples were used. Similar to the training pro-

cess, model evaluation was performed through 400 evaluation steps. In each of these steps, model output

was evaluated using the test set. The batch size for model evaluation was 10, same as for model training. To

allow for comparison, all model hyperparameters used were the same as the implementation in19 unless

otherwise mentioned.
Classification of neurons

We quantified the development of fully-connected layer unit activity maps by (1) identifying the different

types of cells in this layer, and (2) evaluating grid cell-like unit activities. Unit activity maps are ratemaps

that illustrate single unit activity over different spatial locations, obtained from the fully-connected layer

activations. Classification of the type of fully-connected layer units was based on the resemblance of their

activity patterns to that of biological neurons involved in spatial learning and navigation, including place

cells, grid cells,66,67 head direction cells24 and border cells:68,69
26 iScience 26, 106026, February 17, 2023
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1. Place cells are a class of hippocampal neurons that activate strongly when an animal enters a specific

location in an environment (the place field; Figure 13). Their activities are largely independent from

the animal’s orientation in the environment.70

2. Investigation of cells in a brain area upstream of the hippocampus, that is, the medial entorhinal cor-

tex (MEC), led to the discovery of grid cells. Studies suggested that grid cells in the MEC show

increased activities at multiple regular locations in an environment, following a triangular/hexagonal

grid pattern (Figure 13). It has been hypothesized that a weighted combination of grid cell inputs

may lead to the emergence of place cell firing fields.67,71,72

3. Border cells only show a higher firing rate in proximity to one or several salient boundaries of an envi-

ronment (Figure 13) andmay encode the environmental geometry.68,73 Border cells have been found

in regions within the hippocampal formation, including the subiculum and entorhinal cortex.74,75

4. Head direction cells have been identified in multiple brain areas, including the entorhinal cortex and

thalamus.76,77 Head direction cells are not responsible for location-specific environmental cues,

rather, they show increased firing whenever an animal’s head is pointing at a certain direction (i.e.,

the cell’s preferred direction). Therefore, head direction cells do not show location-based increase

in activities (Figure 13).

5. Conjunctive cells are cells that respond selectively to two or more types of information, e.g., posi-

tion, direction, and/or speed. As a result, their ratemaps may look like a combination of grid,

head direction, or place cells (Figure 13).24,78 Moreover, a recent study suggested that the majority

of neurons in the MEC are of conjunctive properties, rather than selecting and responding to only

one type of input.30 The same study reports that the response of many cells in the MEC that encode

position or head direction changes with speed, suggesting adaptive change of neural code based on

sensory input.

6. It has been suggested that grid cells can be shaped by combining a set of stripe cells of various ori-

entations.26,28 Stripe cells have also been referred to as band cells in oscillatory-interference

models.79 Each cell has a periodic firing pattern resembling stripes or bands (Figure 13) and tracks

the distance traveled in the direction of stripes by moving the activity bump around as the agent

moves along the stripe direction.26 Although limited, experimental support has also been provided

by studies that located cells with periodic band-like activity patterns in layers III, V, and VI of the dor-

sal segment of MEC,80 and in layers II and III of MEC and the adjacent pre- and para-subiculum.27

Cell type classification of the TensorFlow model

For classification of cell types, we first obtained unit activity maps within the environment for all fully-con-

nected layer units, then trained a k-nearest neighbors (k-NN) classifier using the concatenation of the

following features:

1. Averaged level of activity, for identifying units with lower levels of activity on average (e.g., place cell-

like units and border cell-like units)

2. Standard deviation of activity levels, for identifying units with lower variance in activity across

different locations (i.e., head direction cell-like units)

3. Percentage of area associated with higher-than-average levels of activity, for identifying units with

higher levels of activity over a large portion of the environment (e.g., inverse of place cell-like units

and inverse of border cell-like units) and

4. Grid score calculated as in,19 for discriminating between grid cell-like units and non-grid cell-like

units

A visual inspection was performed following classification by k-NN to ensure all fully-connected layer units

were correctly classified.

For the analysis of grid cell-like unit activities, we selected these units using a 3-step approach:

� Step 1: We compute the mean and standard deviation of unit activity across the whole environment,

and apply a lower bound and an upper bound (Table S1) for both to exclude units with (a) high or low
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level of activity across the environment, (b) head direction cell-like activities or/and (c) high levels of

activity in one certain area of the environment.52, 55 and 56 Non-grid cell-like units are also excluded at

this step by applying a threshold to only include units with a grid_score >0.80–82

� Step 2: For all remaining units, we identify the local maxima of unit activity (i.e., an area associated

with a higher level of activity compared to its proximity, Figure 14) using the scikit-image peak_lo-

cal_max() function83 and define them and their surrounding areas as firing fields. Then we compute

(1) the standard deviation of activity level across all firing fields, as well as (2) the difference between

activity levels at the global maxima and at the 3 local maxima with the lowest level of activity and (3)

apply a lower bound and an upper bound (Table S1) for both parameters to exclude units with (a) one

local maximum with significantly higher level of activity or (b) units with activity patterns resembling

stripes.

� Step 3: We further exclude units with stripe-like activity patterns (i.e., stripe cell-like units and

conjunctive cell-like units; Figure 14) by setting a threshold for the maximal height/width of firing

fields. That is, if the height or width of a firing field exceeds this threshold, the unit was excluded

as a non-grid cell-like unit.

Cell type classification of the PyTorch model

The process for classifying grid cell-like units in the PyTorch implementation consists of the following steps:

� Step 1: The standard deviation of unit activity across the open environment is computed for each

unit. Head direction cell-like unit activities were excluded based on the small standard deviation

in unit activities.

� Step 2: Average size of firing fields was computed for each unit to exclude place cell- and border cell-

like units, given their large firing fields.

� Step 3: Viewing firing fields as nodes of a graph, we used a Depth First Search (DFS) algorithm so that

an edge between two nodes (i.e., firing fields) was drawn if there was a path (defined as a sequence of

adjacent pixels, each with a value above a user-defined quantile of firing activity) between these two

nodes. The number of distinct longest paths with a length of more than 2 nodes (i.e., stripe count)

was used as a metric to identify then count stripe-like patterns for each unit. Units with greater-

than-zero stripe-like patterns were excluded (Figure 14).

� Step 4: Finally, activity patterns of all remaining units were visually inspected to identify grid cell-like

units.
Evaluation metrics

Model loss and error of ambulation

We use (1) the custom model loss Loss = LossPC + LossHD and (2) error of ambulation ε to assess model

learning and performance. Error of ambulation was defined as the Euclidean distance between the pre-

dicted ambulatory trace and the actual ambulatory trace, and was measured in meters (m).

Activity patterns of fully-connected layer grid cell-like units

To examine the interplay between neuromodulatory components and grid cell-like cell activity patterns,

the following metrics were defined and used:

For each model variant:

1. Number of grid cell-like units in the fully-connected layer, averaged across 5 trials

For each grid cell-like unit:

1. Number of firing fields, calculated using a center-based method or a contour-based method.
28
a. For the center-basedmethod, each local maximumwas identified using the scikit-image peak_lo-

cal_max() function. This function dilates the original image, merges neighboring local maxima
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closer than the dilation size, and returns coordinates of pixels that have the same value in the orig-

inal and dilated image.

b. For the contour-based method, we set all pixels of the activation map with a value below 0.65

quantile to 0, and set all other pixels to 255. We then use the OpenCV52 findContours() function

to identify contours and count the number of contours for each unit.

2. Inter-firing field distance. To approximate the distance between neighboring firing fields, firing fields

were first identified. Given the small number of firing fields in some units, for each firing field, only the

3 closest firing fields were located and the mean distance to these 3 firing fields were returned as the

inter-firing field distance (Figure 14). This approach also represents a common approximation for in-

ter-firing field distance in situations such as hexagonal, square-like, or stripy firing patterns, where

there usually are 3 neighboring firing fields.

3. Average size of firing fields. After identifying all contours, their sizes were determined using the

OpenCV contourArea() function. For each unit, the average size of firing fields was calculated by

averaging across all contour sizes.

4. Maximum size of firing fields, i.e., size of the largest firing field. For each unit, the largest contour size

was returned.

5. Average level of activity of firing fields.

6. Maximum level of activity, i.e., activity level of the firing field with the highest activity level.

7. Average width and height of firing fields. These were calculated using the OpenCV boundingRect()

function for all contours, and then averaged per unit.

8. Maximum width/height of firing fields, i.e., the largest height/width identified for each unit.

When analyzing the effects of neuromodulatory components on unit activity patterns, 5 scenarios were

defined for the interpretation of experimental results:

1. Base_m1 vs Base_m2, for examining the effect of learning rate;

2. Base_m1 vs Plast_m, for examining the effects of plastic component;

3. Plast_m vs PlastDrop_m, for studying the effects of dropout probability modulation;

4. PlastDrop_m vs PlastDropLr_m1, for studying the effects of learning rate decay;

5. Base_m1 – PlastDropLr_m1 vs Base_m2 – PlastDropLr_m2, for understanding learning rate-depen-

dent effects of neuromodulatory components.
QUANTIFICATION AND STATISTICAL ANALYSIS

The Shapiro-Wilk test was used to examine the normality of data.84–86 To compare between twomodel var-

iants, T test was used when data samples followed a normal distribution, andMannWhitney U test was used

when data samples deviated from a normal distribution. To compare across three or more model variants,

for normally distributed data of equal sample sizes, one-way ANOVA with Tukey’s procedure to correct for

multiple comparisons was used. For normally distributed data of unequal sample sizes, Brown-Forsythe

and Welch ANOVA tests were conducted, followed by the Dunnett’s T3 test. To compare non-normal

data collected from three or more model variants, Kruskal-Wallis test with Dunn’s post-hoc test for multiple

comparisons was used.87 Data are shown as mean (SD). p-values <0.05 were considered statistically

significant.

Statistical analyses were performed using GraphPad Prism (version 9.4.1, GraphPad Software, San Diego,

California USA) and data were visualized using GraphPad Prism (version 9.4.1, GraphPad Software, San

Diego, California USA), Python (version 3.8.3),49 Matplotlib (version 3.5.0),50 and Seaborn (version

0.11.2).51 Diagrams were created using a free flowchart maker and online diagram software (Diagrams.net).
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