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Abstract: Cannabis sativa L. is a source of over 150 active compounds known as phytocannabinoids
that are receiving renewed interest due to their diverse pharmacologic activities. Indeed, phyto-
cannabinoids mimic the endogenous bioactive endocannabinoids effects through activation of CB1
and CB2 receptors widely described in the central nervous system and peripheral tissues. All phyto-
cannabinoids have been studied for their protective actions towards different biological mechanisms,
including inflammation, immune response, oxidative stress that, altogether, result in an inhibitory
activity against the carcinogenesis. The role of the endocannabinoid system is not yet completely
clear in cancer, but several studies indicate that cannabinoid receptors and endogenous ligands
are overexpressed in different tumor tissues. Recently, in vitro and in vivo evidence support the
effectiveness of phytocannabinoids against various cancer types, in terms of proliferation, metastasis,
and angiogenesis, actions partially due to their ability to regulate signaling pathways critical for cell
growth and survival. The aim of this review was to report the current knowledge about the action of
phytocannabinoids from Cannabis sativa L. against cancer initiation and progression with a specific
regard to brain, breast, colorectal, and lung cancer as well as their possible use in the therapies. We
will also report the known molecular mechanisms responsible for such positive effects. Finally, we
will describe the actual therapeutic options for Cannabis sativa L. and the ongoing clinical trials.

Keywords: Cannabis sativa L.; phytocannabinoids; inflammation; cancer therapeutic agents

1. Introduction

Cannabis sativa L. (Hemp) is a plant long used for its textile fibers and seed oil. Be-
yond these uses, it is the main source of over 150 active compounds known as phyto-
cannabinoids [1] which have received renewed interest in recent years due to the diverse
pharmacologic activities such as anti-inflammatory effects, cell growth inhibition, and
tumor regression. Among the others and although not properly constitutive in hemp,
the most representative compounds are ∆9-tetrahydrocannabinol (THC) and cannabidiol
(CBD). The former, THC appears the most active [2,3] although its use is limited by the
psychotropic effects it exerts, whereas CBD is the most abundant neutral form among
phytocannabinoids in hemp. Compared to THC, CBD has non-psychoactive effects, an
advantage for clinical applications. CBD has become extraordinarily popular around the
world, being commercially available as dietary supplements, creams, lotions, and the most
commonly used oils [4,5]. Furthermore, acidic cannabinoids such as cannabidiolic acid
(CBDA) and tetrahydrocannabinol acid (THCA), together with cannabigerolic acid, are
the main phytocannabinoids in hemp [6,7]; they lack psychoactive effects, and undergo
decarboxylation by heat or aging. Another phytocannabinoid, less expressed in Cannabis
sativa L., is cannabinol (CBN) which is a degradation product of the Cannabis metabolite
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∆9-tetrahydrocannabinol, with a concentration in cannabis between 0.1 and 1.6% [8]. It is
quite important to notice that a synergistic interaction of cannabinoids with terpenes and
flavonoids has been proven. Indeed, terpenes are known to modulate THC pharmacokinet-
ics by increasing blood–brain barrier (BBB) permeability [9]. Ratios between terpenoids and
phytocannabinoids may substantially improve potential medical therapies [10]. Secondary
metabolites may affect THC affinity for the CB1 receptor; flavonoids may also potentially
affect THC pharmacokinetics [11].

Phytocannabinoids exert their biological effects by mimicking the actions of a family
of endogenous bioactive mediators named endocannabinoids that activate two specific G
protein–coupled cannabinoid receptors: CB1 and CB2 [12,13]. Both expression and function
of CB1 have been widely described in the central and peripheral nervous system but their
expression is present also in other peripheral tissues [14,15]. CB1 is a Gi/o type of GPCR
that inhibits adenylyl cyclase (AC) activity and chunks the pathway of cyclic adenosine
monophosphate (cAMP) and protein kinase A (PKA). Furthermore, CB1 suppresses the
influx of Ca2+ ions and activates several components of the mitogen-activated protein
kinases (MAPK) family and phosphoinositide-3-kinase/protein kinase B (PI3K/AKT)
pathway [14,16]. CB2 is a GPCR-associated receptor, expressed as two isoforms, A and B.
The isoform CB2A is mainly found in the testis and lower brain regions, while CB2B is
more present in tissues of the immune system [13]. In addition, THC is a partial agonist of
CB1 and CB2 receptors while CBD has greater affinity for CB2 than CB1 [17,18].

Nowadays, cannabinoids are being investigated as potential therapeutic agents for
different pathologies [19], including cancer [20]. Indeed, both receptors, CB1 as well as CB2,
are expressed in several cancer types including lung, breast and prostate cancer, glioblas-
toma, and colorectal cancer, further demonstrating an implication of the endocannabinoids
system in cancer [16,21–23]. Furthermore, although CBN, CBG, and THCA effects have
been less explored so far, all phytocannabinoids show protective effects towards a number
of biological mechanisms, including inflammation, immune response, and oxidative stress.
Altogether these effects result in an inhibitory activity against cancer [20]; on the other
hand, emerging evidence demonstrated that phytocannabinoids can also modulate tumor
growth through regulation of biological responses strictly related to the carcinogenesis
process, such as inflammation, oxidative stress, and apoptosis [24].

In this scenario, the aim of this review was to report the current knowledge about the
action of phytocannabinoids in Cannabis sativa L. against cancer initiation and progression
with a specific regard to brain, breast, colorectal, and lung cancer, as well as their possible
use in the therapies, substantially reducing the adverse effects. Furthermore, we reported
the known molecular mechanisms responsible for such beneficial effects. Finally, we
described the actual therapeutic options for Cannabis sativa L.

2. The Chemistry of Hemp

The phytochemistry of industrial Cannabis sativa L. is very complex with more than
500 secondary metabolites isolated and identified, of which a considerable number belongs
to the phytocannabinoid class [25]. Phytocannabinoids are terpenophenolic compounds,
whose carbon structure is mainly constituted by 22 or 21 carbon atoms, likely an alkyl
resorcinol linking a monoterpene moiety (Figure 1). The polyketide pathway leads to
an alkylresorcinol following the reaction between hexanoyl-CoA with three molecules of
malonyl-CoA to yield olivetolic acid (OA). This latter undergoes prenylation by geranyl
diphosphate (GPP), that derive from the deoxyxylulose phosphate/methylerythritol phos-
phate (DOXP/MEP) pathway [26]. Thus, through the cannabigerolic acid synthase (CBGAS)
enzyme, mainly expressed in the glandular trichomes of female flowers, cannabigerolic
acid (CBGA) is biosynthetized; this last is considered the precursor of all the phyto-
cannabinoids [6,26]. Subsequently, CBGA is converted into CBDA, CBCA, and ∆9-THCA,
through the action of flavinylated oxidases, namely cannabidiolic acid synthase (CBDAS),
cannabichromenic acid synthase (CBCAS), and ∆9-tetrahydrocannabinolic acid synthase
(∆9-THCAS) [27]. Indeed, the versatility of phytocannabinoid biosynthesis augments the
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compounds’ structure variability, which further is affected by UV-light and temperature.
Thus, phytocannabinoids differ into ten different main types (e.g., CBD-, ∆9/∆8-THC-,
CBG-, CBN-, CBND, CBT-, CBL-, CBE-, or CBC-type (Figure 2). A “miscellaneous” type
is also reported, to which some different molecules, not chemically complying with the
most common phytocannabinoids, such as cannabifuran (CBF-C5), dehydrocannabifuran
(DCBF-C5), cannabicoumaronone-C5 (CBCON-C5).
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(acidic cannabinoids).

Acetyl-CoA and butanoyl-CoA also react with malonyl-CoA derived-polyketide to
produce other cannabinoid derivatives. In this context, a well-known example is cannabidi-
varinic acid, which could be considered a CBDA propyl analogue [7]. Moreover, acidic
phytocannabinoids could undergo nonenzymatic decarboxylation to yield the neutral
forms, which often retain or enhance the bioactivity of their precursors.

Beyond phytocannabinoids, Cannabis sativa L. is a source of a plethora of other com-
pounds with pharmacological potential [28] such as terpenoids, alkaloids, and polyphenols
(e.g., flavonoids, stilbenes, phenylpropanoid amides, lignanamides) [29]. In hemp, different
flavonoids, that have been identified from pollen, leaves, and flowers, have as aglycone
quercetin, kaempferol, orientin, apigenin, and luteolin [30]; these flavonoids could be
present as C- or O-glycoside conjugates. Methylated prenylated flavones, cannflavins
A, B, and C, as well as flavonols glycosides, such as kaempferol 3-O-sophoroside and
quercetin 3-O-sophoroside, were also isolated from hemp pollen [31]. Furthermore, from
Cannabis sativa L. fruits, beyond to a source to produce an oil rich in tocopherols and
mono-, di-, and polyunsaturated fatty acids (PUFA) such as α-linolenic (ALA), γ-linolenic
acid (GLA), and stearidonic acid (SDA), contained different phenylamides, tyramine and
octopamine derivatives of hydroxycinnamic acids, and their lignanamides, also called
cannabisins [32,33].

3. A Brief Focus on Endocannabinoid System

The endocannabinoid system (ES) plays a key role in the inflammatory processes, and
includes CB1 and CB2 cannabinoid receptors. The first endogenous cannabinoid ligands
(eCBs), intensively investigated, are arachidonoylethanolamine (anandamide or AEA)
and 2-arachidonoylglycerol (2-AG) [21]. Furthermore, ES comprises different enzymes
involved in the synthesis, reuptake, and degradation of cannabinoids. Anandamide is
synthesized from N-acyl-phosphatidylethanolamine (NAPE) by the enzyme NAPE-specific
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phospholipase D (NAPE-PLD), while 2-AG is synthesized from diacylglycerol (DAG)
by DAG lipase (DAGL). The endocannabinoid system could be a target for different
pathologies, in particular for cancer, with different levels of dysregulation that can involve
cannabinoid receptors or the enzymes [34]. The most important enzyme involved in eCBs
degradation are fatty acid amide hydrolase (FAAH) for anandamide and monoacylglycerol
lipase (MAGL) for 2-arachidonoylglycerol. Beyond CB1 and CB2 cannabinoid receptors,
other targets are suggested, such as GPR55 [35], transient receptor potential vanilloid 1
(TRPV1) ion channel [36], and peroxisome proliferator-activated receptor (PPAR) α and
γ localized in the nucleus [37]. The CB1 and CB2 receptors are coupled to G protein,
whose activation leads to an inhibition of adenyl cyclase, decreased production of cAMP,
and variation of ion channel activity. THC is the most abundant cannabinoid and the
first psychoactive constituent that was isolated in 1964 [38], which binds CB1 and CB2
receptors. THC, with its metabolite THC 11-oic, could explain analgesic, antiemetic, and
antiglaucoma effects or anesthetic action [39]. Unlike THC, CBD acts as an antagonist of
CB1 and CB2 receptors and its activity on the endocannabinoid system could be explained
by its inhibition of FAAH enzyme for increase of endocannabinoids, such as anandamide,
that normally have a short shell life. Beyond the action on the endocannabinoid system,
there are different targets of CBD such as 5-HT1A, TRPV1A, D2, A1, MOR, PPAR γ,
sodium, and calcium channels [40]. These different endogenous targets underline the CBD
actions on anxiety, depression, pain, memory, and metabolism (Figure 3). The activation of
CB1/2 receptors and transient receptor potential (TRP), maybe vanilloid 1, could inhibit
some cancer cell invasion and metastasis, acting on different pathways involved in the
angiogenesis, tumor vascularization, and tumor cells ability to destroy matrix membranes.
Nuclear receptors PPAR, in particular PPARα and PPARγ, and the receptor GPR55 can be
considered targets of cannabinoids also in cancer. Moreover, cyclooxygenase 2 (COX-2) can
play a critical role on the behavior of endocannabinoids on cancer [41].
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4. Molecular Effects of Cannabis sativa L.

Several molecular processes are strictly related to cancer initiation and development
including inflammation, oxidative stress, and proliferation. Cannabinoids exert a num-
ber of beneficial pharmacological effects, including anti-inflammatory and antioxidant
properties [42].

Several studies indicate that cannabinoid receptors and endogenous ligands are over-
expressed in tumor tissues [43]. Moreover, increased expression of enzymes involved in
endocannabinoid metabolism is often associated with the aggressiveness of cancer. [44,45].
Cannabinoids target the tumor affecting signaling and cellular pathways such as tumor cell
proliferation, angiogenesis, tumor invasion, and apoptosis both in in vitro and in vivo ex-
periments [46]. In particular, different evidence suggests that these compounds exert inhibi-
tion of initiation, progression, and metastatic capacity of several cancer types [17,43,47,48].

Both THC and non-psychoactive cannabinoids have been reported to possess periph-
eral anti-inflammatory properties in a plethora of in vitro and in vivo models [49–51]. In
human peripheral blood cells, CB1 is expressed by B cells, NK cells, neutrophils, CD8+ T
cells, monocytes, and CD4+ T cells, whereas CB2 mRNA is expressed by human B cells,
NK cells, monocytes, neutrophils, and T cells [52]. Typically, CB2 inhibits the production
of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin
(IL)-2, IL-6, IL-8, and IFN-γ by immune cells [51]. CBD decreases peripheral inflammation
through reduction of prostaglandin E2 (PGE2), nitric oxide (NO), and malondialdehyde
production [53–57]. In addition, CBD, in combination with minor phytocannabinoids
of Cannabis sativa L. extracts, can induce a greater pharmacological anti-inflammatory
activity [52,58]. Indeed, a standardized cannabis extract enriched with CBD exerts a more
powerful anti-inflammatory activity than CBD alone [59]. Besides CBD, THC also possesses
potent anti-inflammatory properties both in vivo and in vitro [60,61]. Recently, in a mouse
model of acute respiratory distress syndrome, THC leads to the suppression of the cytokine
storm [62]. The molecular mechanisms at the basis of THC down-regulation of the inflam-
matory processes are various and tissue-dependent [61]. Indeed, regarding gastrointestinal
and systemic inflammatory reactions, THC suppresses both lymphocytes and neutrophils
activity [63,64]; in epithelial and skin cells, THC inhibits the release of inflammatory medi-
ators through impairment of the nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kB) pathway [65]. It is of note that there is clear evidence of the synergistic action
of THC and CBD in terms of down-regulation of the inflammatory processes [66,67].

Regarding other combination extracts, Shebabya et al. demonstrated that Cannabis
sativa L. oil extract markedly suppresses the release of TNF-α in LPS-stimulated rat mono-
cytes with inhibition of LPS-induced COX-2 and i-NOS protein expression and blockage
of MAPKs phosphorylation [68]. Additionally, the presence of phenols, terpenes, or
other phytocannabinoids enhance the therapeutic activity of CBD, defined as ‘entourage
effects’ [69–71]. In addition, cannabis extract inhibits the production of IL-8, matrix metal-
lopeptidase (MMP)-9, and vascular endothelial growth factor (VEGF), an effect not detected
with CBD alone, in skin cells [65]. Other non-psychoactive cannabinoids, including CBC
and CBN, also showed substantial in vivo anti-inflammatory responses. On the other hand,
monoterpenes such as α- and β-pinene, myrcene, and limonene have been also reported to
possess substantial anti-inflammatory properties [72–74].

Regarding neuroinflammation, both CBD and THC have protective effects [75–77]
through the activation of NF-κB as well as the inhibition of Toll like receptor (TLR4) [78,79].
Indeed, in a vitro model of LPS-stimulated neuroinflammation, CBD suppresses the re-
lease of TNF-α, IL-1β, and IL-6 through the inhibition of NF-κB phosphorylation and the
concomitant activation of COX and iNOS [57,80]. In addition, THC treatment selectively
reduces CD8+ T cell response accompanied by inhibition of IL-6 release [81]. The combina-
tion of THC and CBD seems to be the most potent anti-inflammatory drug able to inhibit
the T helper response as well as CD4+ T response in a mouse model of multiple sclerosis
(MS) [82].
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Beyond the regulation of inflammation, phytocannabinoids can prevent prolifera-
tion, metastasis, and angiogenesis, as well as induce apoptosis in a variety of cancer cell
types [83–85]. Treatments with CBC and THC or CBD led to cell cycle arrest and cell apop-
tosis. Additionally, CBC and THC or CBD treatments inhibit bladder urothelial carcinoma
cell migration and affected F-actin integrity [86].

Beyond the actions of CBC, THC, and CBD on different pathways involved into devel-
opment of cancer cell types, also cannabigerol (CBG), cannabidivarin (CBDV), cannabinol
(CBN), cannabivarin (CBV), and tetrahydrocannabivarin (THCV) have showed a role as
anti-cancer for different cells line [34].

Besides the anticancer effects, a role in the resistance to chemotherapy has also been
suggested for Cannabis sativa L. [87]. P-gp is exclusively over expressed in cancer cells
leading to multidrug resistance (MDR) [88]. Phytocompounds of Cannabis sativa L. can
influence Pgp activity. Indeed, in multidrug resistant mouse lymphoma cells, cannabinol,
cannabispirol, and cannabidiol increase cytotoxic drug accumulation [89]. Furthermore,
Kazemi et al. showed that the lignanamides cannabisin M and cannabisin N have high
binding affinities to Pgp, suggesting an inhibitory effect toward MDR [90].

From a molecular point of view, phytocannabinoids mainly stimulate molecular
targets deeply involved in tumor development and progression such as the G-protein
coupled receptors, peroxisome proliferator-activated receptors (PPARs), glycine receptors
(GlyR), and transient receptor potential channels (TRP) channels [36].

In the next paragraphs, we will deepen the current knowledge about the in vitro
effects of phytocannabinoids on different cancer cells with a particular regard to CBD and
THC and the molecular mechanisms that underlie the inhibitory actions.

4.1. Brain Cancer

Both CBD and THC are promising compounds in the fight against brain cancers.
Deng et al. showed that CBD induces a dose-dependent reduction of both proliferation
and viability on glioblastoma multiform (GBM) cancer cells, with a IC50 ranging between
3.1 and 8.5 µM. In addition, co-treatment of CBD with DNA damaging agents produces
synergistic anti-proliferating and cell-killing responses in GMB cell line [91]. These data
have been confirmed in the U-87 glioblastoma cell line in which CBD led to a concentration-
related inhibition of the U87 cell viability [92]. In accordance, Nigro et al. analyzed, in the
same glioblastoma cell line, the effects of a heterogenous extract from Cannabis Sativa L.,
finding the inhibition of both proliferation and migration from a dose of 25 µg/mL [32].
The underlying molecular mechanism is not completely clear but the authors evidenced
DNA damage [32]. Recently, Singer et al. demonstrated that apoptosis together with ROS
production are two additional mechanisms involved in CBD inhibitory activity of 3832 and
387 glioma primary stem cell lines (GSC) with an IC50 value of 3.5 µM [93]. The induction
of apoptosis has also been confirmed by Alharris et al. in neuroblastoma SH-SY5Y and
IMR-32 cell lines in which a reduction of cancer cell migration and invasion was also
induced already with a dose of 10 µM [94]. A recent study suggested a role for CBD in
interfering with chemoresistance in glioblastoma cells describing a decrease in prohibitin
(PHB) and extracellular vescicles (EVs). EVs are lipid bilayer-enclosed structures which
participate in cell-to-cell communication, both in physiological and pathophysiological
processes regulating cell migration, differentiation, and angiogenesis and therefore playing
an important role in cancers. Kosgodage et al. show that CBD reduces PHB protein levels
and changes EV-mediated export of microRNAs to an anti-oncogenic signature in GBM
cells [95].

Interestingly, it is to notice that cannabinoid treatment cannot affect cell viability of
astrocytes (normal glial cells) in comparison to GBM cells, demonstrating a selectivity to-
wards cancer cells. However, the molecular mechanisms mediating cannabinoid selectivity
are not yet fully understood [96,97].

Regarding THC, similar anti-cancer effects have been demonstrated: Blázquez et al.
found that, in mice and glioma cells, THC inhibits the growth and invasion of gliomas
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through the down-regulation of matrix metalloproteinase (MMP-2 expression), factor
involved in the acquisition of invasiveness [98]. The anti-cancer activity of THC on re-
current GBM has also been demonstrated in vivo [99]. The mechanism underlying the
THC anticancer properties has been only partially clarified and relies on the stimulation
of an ER stress-related signaling pathways that unleash the autophagy-mediated cancer
cell death [20,100]. Whether CBD or THC are more potent in antineoplastic activity on
brain cells is still a matter of debate. Marcu et al. conducted experiments comparing the
two molecules, concluding that CBD is a more potent inhibitor than THC in different
glioblastoma cell lines (U87-MG, U251, and SF126) [101].

Besides the use of single cannabinoid, Baram et al. described cannabis extracts as
antitumor agents in U-87 MG and T98G glioblastoma cell lines able to impair the survival
and proliferation of cancer cells as well as induced apoptosis, to a greater extent than
THC alone [102]. In addition, in a combination study, Valero et al. reported that a CBD
concentration higher than THC (5:1), in combination with temozolomide [CBD (15 mg/kg)
and TMZ (5 mg/kg)], targeted glioma stem cells in vivo much more efficiently than the
THC/CBD formulation [103]. Remaining on the evaluation of combinational treatments,
Ivanov et al. demonstrated the upregulation of the cytotoxic effect of γ-irradiation in GBM
by the co-treatment with CBD. The dose of CBD treatment ranged between 5 and 20 µM, in
accordance with previous results. The authors also found that CBD treatment substantially
upregulated TNF/TNFR1 and TRAIL/TRAIL-R2 signaling by modulation of both ligand
and receptor levels followed by apoptosis. The pathways triggered by CBD are JNK1/2
and MAPK p38 levels with the subsequent downregulation of the active phospho-ERK1/2
and phospho-AKT levels [104,105]. On the contrary, in a different cellular model, the U251
cell line, Marcu et al. showed that CBD did not increase the activity of JNK1/2 or p38
MAPK [101].

In addition to irradiation, CBD has also been tested with alkylating agents, especially
TMZ, proving that together they have synergistic anti-proliferative effects on glioma
cells [52,60,61,65].

Beyond proliferation and apoptosis, several papers reported in the GBM cell line
an induction of oxidative stress by CBD treatment, accompanied by a decrease of the
antioxidant cell potential, [106,107]. Interestingly, there is no ROS increase in CBD treated
normal glial cells [107].

4.2. Lung Cancer

Cannabinoids and their agonists have been proposed as complementary pharmaco-
logical agents in the treatment of lung cancer thanks to their antineoplastic, apoptotic, and
anti-metastatic properties [43]. A recent work by Milian et al., showed that lung tumors
can be classified according to the expression of CB1 and CB2 receptors because patients
with high expression levels of both receptors are associated with a better prognosis of the
disease and survival [108].

In vitro studies have largely evidenced that both CBD and THC inhibit viability as
well as invasiveness of lung cancer cells [109,110]. Ramer et al. demonstrated that CBD
caused a profound inhibition of viability and invasion capacity of A549 and H460 lung
cancer cells, accompanied by a decreased expression and secretion of PAI-1, at very low
concentrations (as low as 0.1 µM); these events are CB1-, CB2-, and TRPV1-dependent. The
authors also found that CBD reduces in vivo the size of tumor in nude mice [109].

Similar to CBD, THC has been found to suppresses viability and invasiveness of three
different lung cancer cell lines (H1299, A549, H1975) deterring cell migration and abolish-
ing cytoskeleton reorganization/focal adhesion assembly at a dose of 10 µM [111]. The
molecular mechanism of action of THC passed through the abolishment of Src-dependent
cytoskeleton reorganization and focal adhesion assembly diminished, both processes
deeply involved in carcinogenesis and metastasis [24].

Recently, Cannabis Sativa female flower heterogenous extracts have been found to
induce death of lung cancer A549 cell line in a time-dependent manner but at very low
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doses (50–900 ng/mL), following induction of early apoptosis, cell cycle arrest, elevation of
ROS level, and activation of caspase 3 [112]. The mechanism seems to be mediated by the
binding to the CB2 receptors, since their blockage caused attenuation of Cannabis Sativa
effects on A549 cells [112].

Similar to what was described in brain cancer cells, besides the use of single cannabi-
noids, Baram et al. described cannabis extracts as antitumor agents in A549 and NCI-H460
lung carcinoma to a greater extent than THC alone [102]. The underlying molecular
mechanisms and signaling pathways are mainly related to the activation of the extracellu-
lar signal-related kinase (ERK), phosphoinositide3-kinase (PI3K), p38mitogen-activated
protein kinase (p38MAPK), and ceramide pathways [113]. Another mechanism demon-
strated in CBD-treated lung cancer is the up-regulation of cyclooxygenase-2 (COX-2) and
PPAR-gamma in vitro as well as in vivo [110]. Regarding the anti-metastatic activity, two
mechanisms, directly correlated with the invasion process, have been proposed to be
induced by cannabinoids: a) decreased secretion of plasminogen activator inhibitor-1
(PAI-1) [109]; b) an upregulation in the expression of ICAM-1 [114].

4.3. Breast Cancer

In preclinical studies, CB1 and CB2 agonists (CBD, THC, and synthetic) have been
shown to inhibit the proliferation of estrogen receptors positive breast cancer cell lines [14].
Accordingly, a cytotoxic effect of CBD was observed in several cell lines including estrogen-
receptor (ER)-positive cells (MCF-7, ZR-75-1, T47D), ER-negative cells (MDA-MB-231,
MDA-MB-468, and SK-BR3), and triple-negative breast cancer cells (SUM159, 4T1up, MVT-
1, and SCP2) [115–119].

In particular, CBD induces apoptosis and reticulum stress in MDA-MB-231 and MCF7
cancer cells inhibiting their growth [119]. Other studies confirmed these data in several
breast cancer cell lines, showing inhibition of cell growth, DNA fragmentation, and apop-
tosis [120,121]. In addition, CBD treatment induces an enhancement in the level of ROS
in breast cancer cells [70]. Furthermore, CBD induces apoptosis and blocks cell viability
through the inhibition of the AKT/mTOR axis and cyclin D together with the enhancement
of ROS generation [115,116]. Similarly, THC showed anti-proliferative effects on several
breast cancer cell lines [116,122]. Elbaz et al. observed that CBD specifically inhibits the epi-
dermal growth factor-induced proliferation, suggesting it as a novel potential therapeutic
option for breast cancer [115].

Interestingly, CBD has been associated to sensitivity to chemotherapy; in MDA-MB-
231 cells, it significantly reduces exosome release and inhibits microvesicle release [123] at
a concentration of 1 and 5 µM. These regulatory processes may be associated with changes
in mitochondrial function, including modulation of STAT3 and prohibitin expression,
candidating CBD as a molecule useful to sensitize breast cancer cells to chemotherapy.

Besides natural compounds, synthetic agonists for cannabinoid receptors (WIN55,
212-2, and JWH-133) have also been tested in breast cancer showing dose-dependent anti-
proliferative and anti-migration effects [123–126]. Comparably to natural ones, the effects
induced by the agonists might be linked to the induction of autophagy and inhibition of
cell-cycle progression through the enhancement of ROS production [119,126].

Regarding the minor phytocannabinoids, in MDA-MB-231 breast carcinoma cells, both
CBG and CBC were shown to inhibit cell growth, inhibiting the uptake of [14C]anandamide
and activating the vanilloid receptor TRPV1 [70]. Similarly, CBN has some antiproliferative
effects in aggressive breast cancer cells [118], while CBC powerfully inhibits cell viability in
both MDA-MB-231 and MCF-7 breast cancer cell lines, [70] and CBN has been revealed to
have antiproliferative effects in aggressive breast cancer cells [127]. Among other terpenes,
pinene shows anti-proliferative effects against MCF-7 breast cancer cells [34,128]. Several
studies showed that limonene has anticancer effects on mammary carcinoma models
causing regression and inhibiting subsequent tumor formation [129–131].
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4.4. Colorectal Cancer

Normal and cancerous human colorectal tissues express both CB1 and CB2, indicating
that cannabinoids have biological effects not only on colon but also on colorectal cancer.
In this context, Aviello et al. showed that CBD exerts significant antiproliferative effects
in Caco-2 and HCT116 colorectal carcinoma cell lines through induction of caspase 3 and
apoptosis with an IC50 value reported as 7.5 ± 1.3 µM [132]. The molecular mechanisms
underlying such effects are related to multiple pathways, such as mediated by CB(1)-,
TRPV1, and PPARγ-antagonists sensitive manner [132]. Accordingly, Ligresti et al. reported
that cannabinoid treatments decreased cell viability in undifferentiated Caco-2 cells via CB1
receptor. In comparison to the undifferentiated cells, CaCo-2 differentiated cells did not
respond to cannabinoid treatments. It is interesting to note that the overall CB1 expression
levels remained unchanged after differentiation [53,70,133].

In line with this study, it was demonstrated that HCT116 and DLD-1 colorectal cancer
cells, treated with different concentrations of CBD, present elevated rate of apoptosis
at treatment doses as low as 4 µM [134]; the selectivity of CBD actions have also been
proved since no effects have been found in normal primary colorectal CCD-18Co cells
and normal primary lung Beas2B cells. Regarding the mechanisms of death triggered by
CBD, it has been shown that it induces Noxa-mediated apoptosis through the generation
of ROS and excessive ER stress in both HCT116 and DLD-1 cells [134]. Jeong et al. also
found that Noxa-activated apoptosis was dependent on excessive ER stress from ATF3
and ATF4 [134]. An additional pathway that, at least in part, contributes to CBD effects,
is linked to autophagy-mediated death as well as to the arrest of cell cycle [126]. Kis
et al. investigated the effects of CBD on the CT26 colon cancer cell line, showing that the
beneficial effects of CBD are due to relevant antioxidant activity mediated by superoxide
dismutase (SOD) and glutathione peroxidase (GPX) [1].

The possible use of phytocannabinoids in combination with different conventional
therapies is gaining increased attention. Although oxaliplatin is an effective chemothera-
peutic drug CRC treatment, patients often develop resistance to it; NOS3 is an essential
molecular target for oxaliplatin resistance. The combinational treatment in vitro of CRC
cells with oxaliplatin and CBD is able to decrease NOS3 phosphorylation, resulting in
autophagy, and overproduction of ROS, thus overcoming oxaliplatin resistance [135].

It is relevant to notice that, both THC and CBD are able to restore the increase of
the permeability and inflammation of intestinal cells, events typically occurring during
the neoplastic process [136,137]; these THC and CBD effects suggest the regulation of
inflammation as an additional mechanism for the anticancer effects. In line with this
hypothesis, cytokines levels are significantly reduced by CBD treatment in in vitro models
of colorectal cancer [138,139].

Regarding minor phytocannabinoids, CBG also stimulates apoptosis, ROS production,
up-regulates C/EBP homologous protein (CHOP) mRNA, and inhibits cell proliferation in
colorectal cancer cells [140]. Similarly, in Caco-2 cells, CBC can inhibit cell growth, but only
at a concentration of 30 µM and CBDV reduces cell viability in a concentration-dependent
manner, with an IC50 of 10 µM [141].

Myrcene extracts show significant cytotoxic effects in various tumors including breast
carcinoma and colon adenocarcinoma [142] and other cell lines [143,144]. Similarly, in
colon cancer cells, D-limonene suppresses cell viability through the induction of apoptosis
via the suppression of the PI3K/Akt pathway [145].

5. Cannabis sativa L. in Cancer Clinical Trials

The role of Cannabis sativa in medicine is rapidly evolving. More than 30 countries
worldwide have now legalized access to medical use of Cannabis [146,147]. A prospective
observational study showed that many cancer-related symptoms improve significantly
with Cannabis consumption. Similarly, another study, performed on over 3000 cancer
patients, showed that cannabis use determines significant improvements in the control
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of common symptoms, including sleep problems (70.8%), fatigue (55.9%), anxiety and
depression (74.1%), and nausea and vomiting (54.7%) [148].

Compared to THC, CBD-based preparations seem to be more promising, having di-
verse medicinal properties, such as anti-nausea, anti-emetic, anti-tumor, anti-inflammatory,
antidepressant, anti-psychotic, and anti-anxiolytic effects [149]. To date, some information
has been collected also in relation to the anticancer effects of CBD [92,150], as well as for
the management of cancer pain, cancer-related anorexia and cachexia, and chemotherapy-
induced nausea and vomiting (CINV) [151–153].

Clinical data are available about CBD use for the treatment of glioblastoma. A clin-
ical trial analyzed the effect of CBD as a single agent against glioblastoma (clinical trial:
NCT02255292) while another placebo-controlled phase II clinical trial analyzed the ef-
fect of the combination of THC and CBD as adjuvant in the chemotherapy (clinical trial:
NCT01812603) [https://clinicaltrials.gov/ct2/show accessed on 30 April 2021]. Both trials
report very promising effects in terms of cancer regression.

Similarly, a clinical trial, regarding 119 patients with different solid tumors (e.g., breast,
prostate, and esophageal), was conducted over a four-year framed period: in 92% of the
patients, a reduction in tumor size was obtained when CBD oil was administered [154].

Besides trials aiming at validating anti-cancer properties, the effects of CBD-based
preparations on cancer pain patients are finding a wide interest [155–159]. A significant
analgesic effect has been assessed in patients with malignant disease in 15 of 18 trials
as compared to placebo [160]. Several data have demonstrated improved average pain
score and an increased good quality of life [161–163]. Additionally, when using various
THC dosages or synthetic analogs for cancer-related pain, an improved pain relief was
found [164,165]. Even in cancer patients suffering from inadequate analgesia control with
opioid therapy, a combination of THC and CBD can reduce pain score more than 30%
from baseline [166,167], while the THC group showed a non-significant improvement [37].
However, the main limitation of THC remains sedation [168,169], while the long-term use
of the THC/CBD spray is generally well-tolerated for as long as 2 years [170].

CB receptors, highly expressed in the neuronal tracts for emesis, have been chosen for
treating CINV [171]. Results from several preclinical studies suggest that THC and CBD
have anti-inflammatory, analgesic, anti-nausea, antiemetic, anti-psychotic, anti-ischemic,
anxiolytic, and anti-epileptic impact [172–174]. In a small, controlled, randomized, “double-
blind” experiment, oral THC reduces vomiting caused by chemotherapeutic agents [175].

Finally, the use of cannabinoids is linked to the increase of appetite and the gain
of weight (ClinicalTrials.gov accessed on 14 March 2021, NCT02359123) [151]. However,
cannabis extract and THC were tested in a Phase III clinical trial with no significant
differences among patients with cancer-related anorexia-cachexia syndrome in terms of
appetite [152]. More promising results have been later obtained that described a relevant
increase in appetite [176]. Finally, in cachectic NSCLC patients, the use of a synthetic
analog of THC, in a Phase II trial, significantly increases appetite and caloric intake [23]. No
significant differences between THC/CBD and THC alone have not been observed [152].

6. Conclusions

There is still urgent need of improving cancer treatment through the identification
of a novel pharmacological drug. In this context, the phytocannabinoids from Cannabis
sativa L. are receiving growing attention due to their promising therapeutic potential about
the treatment of variety of cancers such as that affecting brain, breast, lung, and colon.
Indeed, whether at present and undoubtedly, the cannabinoids are in use for the control
of adverse reactions to conventional cancer treatments, an additional important direct
role of these compounds in the development, progression, and metastasis of tumors is
emerging. Furthermore, increasing the body of in vitro and in vivo evidence supports
apoptosis, proliferation, and inflammation such as underlying mechanisms through which
cannabinoids exert their anticancer effects (schematically reported in Figure 4). In addition,
several evidence indicate that the activity of phytocannabinoids might be more effective

https://clinicaltrials.gov/ct2/show
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in combinational therapies, encouraging to explore novel combinations and treatment
schedules. However, the translation of cannabinoids use into clinical practice is still now in
the initial phases.
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OA olivetolic acid
CBGAS cannabigerolic acid synthase
CBGA cannabigerolic acid
CBDAS cannabidiolic acid synthase
∆9-THCAS ∆9-tetrahydrocannabinolic acid synthase
CBF-C5 cannabifuran
DCBF-C5 dehydrocannabifuran
CBCON-C5 cannabicoumaronone-C5
CBGVA cannabigerovarinic acid
PUFA polyunsaturated fatty acids
ALA α-linolenic
GLA γ-linolenic acid
SDA stearidonic acid
ES endocannabinoid system
eCBs endogenous cannabinoid ligands
NAPE N-acyl-phosphatidylethanolamine
NAPE-PLD NAPE-specific phospholipase D
DAG diacylglycerol
DAGL DAG lipase
FAAH fatty acid amide hydrolase
MAGL monoacylglycerol lipase
TRPV1 transient receptor potential vanilloid 1
PPAR peroxisome proliferator-activated receptor
TRP transient receptor potential
TNF-α Tumor Necrosis Factor alpha
IL Interleukin
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
COX-2 Cyclooxygenase 2
PGE2 Prostaglandin E2
NO nitric oxide
TLR4 Toll like receptos 4
MMP matrix metallopeptidase
VEGF vascular endothelial growth factor
MDR multidrug resistance
GBM glioblastoma multiforme
GSC glioma stem cell lines
ERK extracellular signal-related kinase
PI3K phosphoinositide3-kinase
p38MAPK p38mitogen-activated protein kinase
ER estrogen receptors
SOD Superoxide dismutase
GPX glutathione peroxidase
CINV chemotherapy-induced nausea and vomiting
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