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ABSTRACT Mycobacterium tuberculosis is one of the most consequential human bacte-
rial pathogens, posing a serious challenge to 21st century medicine. A key feature of its
pathogenicity is its ability to adapt its transcriptional response to environmental stresses
through its transcriptional regulatory network (TRN). While many studies have sought to
characterize specific portions of the M. tuberculosis TRN, and some studies have per-
formed system-level analysis, few have been able to provide a network-based model of
the TRN that also provides the relative shifts in transcriptional regulator activity triggered
by changing environments. Here, we compiled a compendium of nearly 650 publicly
available, high quality M. tuberculosis RNA-sequencing data sets and applied an unsuper-
vised machine learning method to obtain a quantitative, top-down TRN. It consists of 80
independently modulated gene sets known as “iModulons,” 41 of which correspond to
known regulons. These iModulons explain 61% of the variance in the organism’s tran-
scriptional response. We show that iModulons (i) reveal the function of poorly character-
ized regulons, (ii) describe the transcriptional shifts that occur during environmental
changes such as shifting carbon sources, oxidative stress, and infection events, and (iii)
identify intrinsic clusters of regulons that link several important metabolic systems, includ-
ing lipid, cholesterol, and sulfur metabolism. This transcriptome-wide analysis of the M. tu-
berculosis TRN informs future research on effective ways to study and manipulate its tran-
scriptional regulation and presents a knowledge-enhanced database of all published
high-quality RNA-seq data for this organism to date.

IMPORTANCE Mycobacterium tuberculosis H37Rv is one of the world's most impactful
pathogens, and a large part of the success of the organism relies on the differential
expression of its genes to adapt to its environment. The expression of the organism's
genes is driven primarily by its transcriptional regulatory network, and most research on
the TRN focuses on identifying and quantifying clusters of coregulated genes known as
regulons. While previous studies have relied on molecular measurements, in the manu-
script we utilized an alternative technique that performs machine learning to a large data
set of transcriptomic data. This approach is less reliant on hypotheses about the role of
specific regulatory systems and allows for the discovery of new biological findings for al-
ready collected data. A better understanding of the structure of the M. tuberculosis TRN
will have important implications in the design of improved therapeutic approaches.

KEYWORDS Mycobacterium tuberculosis, gene regulation, independent component
analysis, machine learning, transcriptomics

M ycobacterium tuberculosis is the second leading cause of death from a single in-
fectious agent (the first being COVID-19) and one of the top 10 causes of death

worldwide (1). The evolutionary success of M. tuberculosis is, in part, due to its adaptability
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to various environments, which is largely driven by its transcriptional regulatory network
(TRN) (2–4). The TRN coordinates the expression of genes across various environmental con-
ditions such as hypoxia, starvation, oxidative stress, and infection events. Given the global
health impact of the pathogen, a deep understanding of its TRN is of fundamental
importance.

Previous efforts to elucidate the TRN have typically consisted of characterization of
individual transcription factors (TFs) using transcriptional profiling of TF knockout and
overexpression strains, chromatin immunoprecipitation (ChIP), and similar methods.
These efforts are extremely important for gaining mechanistic understanding and pro-
viding gold standard regulon annotations, but they are time-consuming, expensive,
and often not predictive of transcriptomic data (5, 6). Global characterization of the
TRN based on ChIP and TF overexpression has yielded consensus motifs for many TFs,
as well as interesting observations about the widespread binding of TFs with fairly lim-
ited active regulation (7). Another global study used clustering of gene expression lev-
els and motif analysis to enumerate a genome-scale TRN (8). These works serve as a
strong foundation for understanding gene expression regulation in M. tuberculosis, but
new approaches which take advantage of the large amounts of new data available and
more directly quantify TF activities are needed.

One approach to TRN elucidation, which has been successfully applied to other microor-
ganisms, is the decomposition of compendia of RNA-sequencing (RNA-seq) data using inde-
pendent component analysis (ICA) (9–11). This approach identifies independently modu-
lated gene sets (iModulons) by decomposing an initial gene expression compendium X into
two new matrices:M, which links genes to iModulons and quantifies the strength of a regu-
lator’s effect on a gene’s expression level, and A, which links iModulons to samples and
quantifies the amount of regulator activity under each condition. In one study of over 40
TRN inference methods, ICA was the best at recovering known signals (12). Unlike regulons,
which are defined from the bottom up using biomolecular data, iModulons are driven
purely from the top down by statistical decomposition of transcriptomic data. ICA has been
performed on transcriptomic data compendia for E. coli, S. aureus, B. subtilis, and S. acidocal-
darius, and has facilitated interpretation of complex TRN responses and the discovery of
new transcription factors (9–11). While global statistical analysis of expression data to iden-
tify transcriptional regulators has been performed onM. tuberculosis (7, 8), iModulon analysis
can provide a novel perspective because (i) it directly infers TF activity levels, which signifi-
cantly reduces the dimensionality of differential expression analysis, (ii) genes can be
involved in more than one iModulon, which quantitatively captures coregulation more accu-
rately, and (iii) it can easily be scaled to utilize the vast amount of newly available data (7, 8).

It should be noted that iModulon analysis has some key limitations. The first is that
iModulons require nonnormal distributions across data sets, and thus a lack of data or
insufficient regulator activation can prevent the algorithm from identifying key regu-
lons. This is also why we require a large diversity of conditions to obtain a useful TRN
from ICA (13). Second, in order to address batch effects, each project within the data
set must be centered to a baseline condition within that project, which makes activity
comparisons between projects complicated (14). Additionally, while the unsupervised
nature of ICA is an unbiased approach, gene thresholding and enrichment annotations
rely on existing TRN annotations. We seek to address these limitations by using as
much available data as possible, drawing conclusions about activity levels within proj-
ects only, and carefully comparing each iModulon’s membership to known regulons in
search of gaps in the existing annotations.

In order to gain deeper insight into the structure and operation of M. tuberculosis’
TRN, we performed ICA decomposition using all publicly available RNA-seq data. We
compiled 657 high quality RNA-seq expression profiles from NCBI Sequence Read
Archive (15) and extracted 80 robust iModulons using our rigorous pipeline (14). We
then utilized iModulons to interpret transcriptional responses and discover molecular
actors in M. tuberculosis transcriptional regulation by: (i) quantitatively describing the
organization of the TRN, 2) elucidating the function of new transcription factors,
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3) defining transcriptional shifts that occur across changes in carbon sources, oxygen levels,
and infection states, and 4) using iModulon clustering to identify a core stress response
stimulon. All the work described in this paper can be found at iModulonDB.org, an interac-
tive portal for researchers to explore interactive iModulon dashboards and download the
data used in this study. In addition, we have provided an open-source platform for
researchers to infer iModulon activities for any new transcriptomic data sets at https://
github.com/Reosu/modulome_mtb.

RESULTS
Independent component analysis of publicly available data reveals 80

transcriptional modules for M. tuberculosis. In order to capture the spectrum of M.
tuberculosis’s transcriptional response, we scraped all publicly available transcriptomic
data found in NCBI’s Sequence Read Archive (SRA) and obtained 980 RNA-seq expres-
sion profiles from 53 separate studies (15) (Fig. 1a). Each sample was processed
through a standardized data processing pipeline to assess the data quality and filter
out poor quality profiles (See Methods, Fig. 1b) (14). The final compendium was com-
posed of 647 high quality expression profiles, spanning 231 unique conditions that
describe M. tuberculosis’s response to various nutrient sources, stressors, antibiotics,
and infection events. After the final compendium was obtained, a previously devel-
oped ICA algorithm was used to decompose the data into 80 robust iModulons (16)
(Fig. 1a).

In order to provide biological interpretation of the results, iModulons were catego-
rized by associating the set of genes in each iModulon to knowledge types, including TF
binding sites, KEGG pathways, GO terms, and other associable knowledge found in the
literature. Due to the variances in TF binding site data across various databases and stud-
ies, a new set of literature TRN annotations for M. tuberculosis TF regulation and binding
was constructed by compiling information across 42 different databases and studies
(Supplemental Data Set S2). Among the 42 sources, a majority of TF binding sites used
in this study were obtained from the TB database (http://tbdb.bu.edu/tbdb_sysbio/
MultiHome.html) published by Galagan et al. and the MTB Network Portal (2, 4, 7). An
iModulon was considered associated with a particular knowledge type if there was a stat-
istically significant (FDR , 0.01) overlap between the genes found in the iModulon and
the knowledge type (See Methods). Some iModulons were manually annotated due to
shared functions of constituent genes, or presence of deleted genes (See Methods).
iModulons that share a statistically significant overlap with known regulons can further
be classified based on the number of shared genes between the two clusters and the rela-
tive size of both the iModulon and the regulon (Fig. 1d). iModulons can be classified as
“Well Matched,” a “Subset” of the regulon, contain mostly genes that were “Previously
Unknown” to be within the regulon, or “Poorly Matched.”

ICA also captured the activity of each iModulon in each sample, which were used to
examine the response of M. tuberculosis to various environments. In order to minimize
batch effects between the 53 studies, activity levels for each project were centered to
a reference condition within the experimental subset (17). By reconstructing the origi-
nal expression data set using only the gene weights and activities of individual
iModulons, we can calculate the explained variance of each iModulon and provide a
measure of how important each one is in the data set (Fig. 1e). The iModulon with the
highest contribution to expression variation is one of two associated with DevR, a hy-
poxia onset transcriptional regulator. Altogether, the 80 iModulons account for 61% of
the total variance in the compendium, which is comparable to, but slightly lower than
similar decompositions in other organisms (9–11), which range from 68% to 76%. One
possible reason for the decrease in explained variance for this organism is the more
complex protein-DNA interactions in M. tuberculosis, which include many seemingly
inactive, nonregulatory binding events (7). Another is the particular condition space
explored by the M. tuberculosis literature, which emphasizes infection models and re-
dox perturbations that do not typically decompose as well as controlled monococul-
ture conditions and perturbations to more transcriptomically simple systems.
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FIG 1 QC/QA, ICA Decomposition, and iModulon Characterization of M. tuberculosis RNA-seq Data from Sequence Read Archive. (A)
iModulons are clusters of genes computed by decomposing RNA-Seq data into independently modulated sets (9). (B) Percentage of

(Continued on next page)
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After examining the mapped knowledge types and iModulon activities, each
iModulon was assigned a functional category (Fig. 1f). Most categories indicated a spe-
cific biological function, such as ‘Redox’, ‘Virulence/Persistence’, ‘Nucleic Acid’, and
‘Antibiotic’. We also included three technical categories. For example, the ‘Unknown
Function’ category contains iModulons that have been mapped to an established TF
regulon, but the function of the TF remains unclear. “Uncharacterized'' iModulons are
those which had little overlap with known TFs or knowledge types, but still contained
a significant number of genes. Finally, “Single Gene” iModulons are those that primarily
track the expression of a single gene, and are treated as an artifact of the ICA decom-
position (16). It is important to note that ‘Single Gene’ iModulons are so named based
on the presence of exactly one outlier gene weight, but our automated threshold
assignment may include additional genes due to skewness in the gene weight distribu-
tions resulting from slight correlations in expression. Thus, ‘Single Gene’ iModulons
may contain more than one gene, as long as only one gene has significantly higher
weighting.

We generated searchable, interactive dashboards for each iModulon and gene in
our compendium, which are available at iModulonDB.org (18). Since this genome-scale
TRN covers all publicly available high quality transcriptomic data as of August 20, 2020,
other researchers are encouraged to use this site to explore the genes and regulators
of interest to them.

The ICA decomposition resulted in: (i) the identification of 80 sets of independently
modulated sets of genes across the entire compendium (i.e., the iModulons), dramati-
cally reducing the dimensionality of the 3,906-gene transcriptome, 2) the catalog of
the iModulon activities under the 657 conditions, and 3) the functional annotations to
the iModulons, resulting in a knowledge-based description of the majority of the varia-
tion in the compendium.

iModulons capture the activity of known transcriptional regulators VirS and
Zur. Two iModulons captured the actions of the VirS and Zur regulons, respectively
(Fig. 2a and c). These iModulons provide a good example of how iModulons comple-
ment regulons by recapitulating expected regulator activity. In M. tuberculosis, the VirS
TF has been identified as an AraC family transcriptional regulator that regulates the
mymA operon, is sensitive to acidic pH environments, and plays a role in the modifica-
tion of fatty acids required for the cell membrane (19). Examining our iModulons, we
find one gene cluster with statistically significant overlap with the known VirS regulon,
as all 7 genes found in the iModulon can also be found in both the 8 gene regulon and
the mymA operon (Fig. 2a). This near perfect match between the iModulon and the
known regulon strongly suggests that the activity of this iModulon under various con-
ditions would correlate with prior experiments, and thus we examine the activity of
the VirS iModulon. We found that the activity of the VirS iModulon was significantly up-
regulated under acidic conditions compared to a neutral pH control, which matches
prior findings that demonstrated upregulation of the mymA operon under acidic pH
due to virS regulation (19). Given the additional role of the virS TF in the modification
of fatty acids for the cell membrane and the known accumulation of C24/C26 fatty
acids in virS knockout strains, we also checked to see if the activity of the iModulon
reflects the TF’s association with fatty acids (20). Within our data set, we found one
study of M. tuberculosis in various states (exponential growth phase, stationary phase,

FIG 1 Legend (Continued)
samples with metadata that passed and failed the QC/QA process. The RNA-seq data and associated metadata from 980 H37Rv SRA
samples were processed, and 647 samples passed all QC/QA metrics. (C) A timeline of the number of high quality samples (samples
that passed QC/QA) used in this study added to the Sequence Read Archive. (D) Scatterplot comparing the Regulon Recall to the
iModulon Recall. iModulon Recall is defined as the number of shared genes divided by all genes in the iModulon, while Regulon Recall
is defined as the number of shared genes divided by all the genes found in the regulon. iModulons in green are considered well
matched, those in red contain mostly uncharacterized genes, those in blue are considered to be subsets of the regulon (i.e regulons
can have multiple iModulons showing the dynamic dimensionality of the regulon), and those in gray only have a slight match. (E) Plot
detailing how much explained variance is captured by each iModulon. Most iModulons capture relatively small amounts of explained
variance, with the DevR-1 capturing the most variance in M. tuberculosis. (F) A treemap that organizes the iModulons by category. The
size of each iModulon box corresponds with how many genes were found within that iModulon.
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and hypoxic) in media containing either only dextrose or only fatty acids and choles-
terol. We see that VirS was upregulated in the lipid conditions compared to the dex-
trose control (Fig. 2b). The upregulation was greatest for exponential-phase M. tubercu-
losis grown in lipid only media, which makes sense if virS plays a role in modifying lipid
membrane. Overall, the VirS iModulon captures not only the known genes of the regu-
lon, but reflects the expected activity of the regulon.

In addition to the VirS iModulon, we found another iModulon that had significant
overlap with the Zur regulon, thus leading us to label it as the Zur iModulon (Fig. 2c).
Zur is a zinc-responsive transcription factor that regulates zinc homeostasis, which is
significantly perturbed in the phagosome during infection events (21, 22). While the
Zur iModulon does not have complete overlap with the known regulon as the VirS
iModulon did, we still find that the activity of the iModulon reflects the behavior of the
TF. The Zur iModulon was highly upregulated in in vitro macrophage infection condi-
tions compared to controls, showing that the Zur iModulon quantitatively captured
the previously reported derepression of the Zur TF under those conditions (Fig. 2c)
(22). Interestingly, while Zur is typically activated by zinc ions, the Zur iModulon exhib-
ited high activities when iron concentrations deviated greatly from standard media.
This observation matches previous studies that detail how the ESX-3 secretion systems
regulated by Zur play a small role in maintaining iron homeostasis in tandem with the
iron uptake regulator, IdeR (23, 24).

Overall, both the VirS and Zur iModulons were able to capture the known activities
of their associated TF, and many other iModulons matched the known regulators with

FIG 2 iModulons Capture Activity of Known Transcriptional Regulators Zur and Lsr2. (A) Venn diagram showing the genes that overlap between the
established Zur regulon and the calculated iModulon. (B) Bar plot representing the activity of the Zur iModulon across infection, high iron, and low iron
conditions. In general, iModulon activity corresponds with expression of the genes within that iModulon, with positive activity representing increased
expression. (C) Venn diagram showing the genes that overlap between the established Lsr2 regulon and the calculated iModulon. (D) Bar plot representing
the activity of the Lsr2 iModulon across three different infection conditions (THP-1 macrophages, mice bone marrow derived macrophages (miceBMDM),
and mice neutrophils (miceNF)). For activity bar plots, error bars represent mean and standard deviation of all other samples, black dots represent the activity
of each replicate for a condition, and vertical gray bars separate the samples into projects. Each project is normalized to a reference condition within that
project such that the reference condition represents zero activity.
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similarly high recall (Fig. 1d). This evidence suggests that the calculated iModulons pro-
vide a quantitative structure that largely agrees with the known TRN of M. tuberculosis.

iModulons support the predicted function of the uncharacterized transcription
factor Rv0681. Since iModulons successfully captured the structure and function of the
knownM. tuberculosis TRN, we further investigated if iModulons could be used to elucidate
functions for TFs which have yet to be fully explained. Therefore, we examined the activity
of the Rv0681 iModulon to determine the function of the associated TF.

Rv0681 is a HTH-type transcriptional regulator that has been experimentally shown
to be phosphorylated by the PknH kinase, though not much more is known about the
function of the TF (25, 26). The Rv0681 iModulon had significant overlap with a previ-
ously described Rv0681 regulon, and thus was a candidate for functional discovery
(Fig. 3a) (2, 4). While previous definitions of the Rv0681 regulon have suggested that
the TF is related to lipid transport and metabolism, the inclusion of additional genes in
the iModulon bearing a similar Cluster of Orthologous Genes (COG) classification sup-
ports that role for the TF (Fig. 3b) (7). Among these newly included iModulon genes
was the KstR TF, an important regulator for cholesterol metabolism in M. tuberculosis
(27). Given that the KstR TF regulates many genes associated with cholesterol catabo-
lism similar to the ones found within the Rv0681 iModulon, the fact that our data sug-
gest co-stimulation of the two TF’s suggests to us Rv0681 is an important transcrip-
tional regulator for lipid and cholesterol metabolism (27, 28). It may even be possible

FIG 3 Functional Characterization of Rv0681 and involvement in lipid metabolism. (A) Venn diagram displaying the genes that overlap between the
predicted Rv0681 regulon and the calculated Rv0681 iModulon. (B) Barplot displaying the activities of the Rv0681 iModulon across lipid, hypoxic
reactivation, and infection conditions. (C) A diagram that characterizes the position and function of the genes found in the Rv0681 iModulons. Many of
these genes are related to fatty acids and cholesterol, including the KstR transcription factor (27, 79, 80). Single jagged lines indicate a small skip between
two iModulon genes (less than 10 genes), while double jagged lines indicate larger skips.
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that Rv0681 may help regulate the expression of the KstR TF, but further investigation
is required to elucidate any possible regulatory mechanisms.

The activity of the Rv0681 iModulon also supports its role in lipid catabolism. In one
project, M. tuberculosis was grown on either dextrose or lipid-only media, during expo-
nential-phase, stationary-phase, and hypoxic exposure (BioProject: PRJNA390669) (29).
We found that using lipid as a carbon source led to a significant upregulation of the
iModulon relative to dextrose, regardless of growth phase (Fig. 3c). This would be con-
sistent with a function in lipid catabolism.

In a second data set, M. tuberculosis was first induced into a persistence state via hy-
poxia. The bacteria was then reactivated via reaeration, and RNA-Seq was performed
once a day for 4 days (BioProject: PRJNA327080) (24). The Rv0681 iModulon had signifi-
cantly decreased activity when reactivating from dormancy (Fig. 3c), suggesting that
Rv0681 is important for hypoxia and dormancy response, but is downregulated when
ample oxygen is available.

Due to the close relationship between lipids, hypoxia, and infection, we examined a
third data set that tested the infection of mouse BMDM (BioProject: PRJNA478245)
(22). The iModulon was significantly upregulated during infection of the macrophage
compared to noninfection controls at all time points, suggesting that the iModulon is
involved with infection as well. This supports findings from the same study which sug-
gested that lipid metabolism for cell wall remodeling was an essential component of
transcriptional remodeling during infections. Altogether, we propose that Rv0681 is a
transcription factor that regulates lipid metabolism (likely lipid catabolism) to promote
survival in stressful conditions such as hypoxia and infection.

Redefining the core lipid response inM. tuberculosis. While individual iModulons
can provide information about a single TF, one of their most useful functions is to
simplify analysis of organism-wide transcriptional responses. Given the association
between Rv0681 and lipid metabolism, we were interested in determining which
other iModulons were activated under lipid-rich conditions. Within the compendium,
a study examined the differentially expressed genes between dextrose and lipid-fed
M. tuberculosis across 3 metabolic states (exponential growth, stationary phase, hy-
poxia) (BioProject: PRJNA390669) (29). The study then defined a “core lipid response,”
which contained genes that were found to be differentially expressed between dex-
trose and lipid media across all three metabolic states. This core lipid response was
composed of 6 genes: Rv3161c, Rv3160c, Rv0678, Rv1217c, PPE53 and che1 (29).
Since a core lipid response can be crucial for identifying potential targets to combat
M. tuberculosis infections, we were interested if iModulons could be used to define a
regulator-level core lipid response utilizing the same RNA-seq data.

iModulon activities were examined between lipid and dextrose conditions, and
iModulons with significant differential activity (iModulon activity change . 5 and
FDR , 0.01) across all three metabolic states were labeled as part of the new core lipid
response (Fig. 4a). While the original study identified a core lipid response composed
of only 6 genes, our analysis of the same data identified a core lipid response of four
iModulons: Mce3R, Rv0681, Rv2488c, and Positive Regulation of Growth (PROG)
(Supplemental Data Set S3). Altogether, these four iModulons contained 80 genes. As
stated before, the Rv0681 contains many genes associated with lipid and cholesterol
catabolism, and the Mce3R TF is known to regulate operons associated with beta-oxi-
dation, propanoate metabolism, and other lipid related processes (30). On the other
hand, PROG was labeled based on its significant overlap with the KEGG pathway of the
same name, and contains genes associated with transcriptional regulation, translation,
and cell cycle control, particularly during in vitro growth (31). Rv2488c contains a vari-
ety of genes of different functions, and it is role in the core lipid response will be
explained in greater detail later in this paper. The genes contained in Rv0681 and
Mce3R makes it clear that they would be involved in the catabolism and metabolism of
the lipid carbon sources, while the PROG iModulon may be triggered by the lipid rich
environments to transition the organism into a reduced growth state, possibly similar
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FIG 4 iModulons Illuminate Metabolic Shifts from Changes in Carbon Source. (A) A three-way venn displaying the differentially
activated iModulons between dextrose and lipid conditions across three metabolic states (exponential, stationary, and hypoxia). The

(Continued on next page)
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to those found during in vitro growth (evidenced by similar differential iModulon activ-
ity in other infection conditions). Within the lipid study, the Rv0681 and Rv2488c
iModulons had consistent activation across all three cell states, whereas Mce3R and
PROG were found to have both increased and decreased activity depending on the cell
state. Though the activities of Mce3R and PROG vary, we maintain that all four of these
iModulons are important systems for M. tuberculosis in a lipid rich environment.

Upon closer examination, we found that five of the six genes previously identified
as part of the core lipid response were captured by the Rv2488c iModulon, whereas
che1 was not found in any of the computed iModulons. Besides the five core lipid
genes, the Rv2488c iModulon also contains various transcriptional regulators and
membrane-associated proteins, such as the MmpS4, MmpL5, and MmpS5 efflux
pumps. It is important to note that this iModulon was named after Rv2488c because it
captured all three genes that Rv2488c was known to regulate, but its other 9 genes are
not known to be regulated by it. The coregulation of these important functions may
be due to costimulation across all available RNA-seq profiles, or point to an important
knowledge gap about the regulation of the lipid response. Further studies should
examine the possible role of Rv2488c as a regulator for the transport of lipids in and
out of the cell, with an additional potential role in modulating essential, lipid-activated
cellular defense (32). Taken together, the results show that iModulons provide a modu-
lar definition of a core lipid response, propose uncharacterized regulators of interest to
that response, and add to our knowledge on how M. tuberculosis responds to lipids.

iModulons elucidate transcriptional responses to shifts in carbon sources. Given
the transcriptomic response M. tuberculosis exhibited when grown with lipids as a sole
carbon source, we were interested to see how the organism would respond to other
carbon sources. In order to study such effects, we utilized data obtained from a study
where either glucose, lactate, or pyruvate was used as a sole carbon source (BioProject:
PRJNA480455) (33). In total, the study contained six different conditions, representing
the three carbon sources (glucose, lactate, and pyruvate) with two time points each
(6 h and 24 h). The original study found that genes associated with the glyoxylate shunt
and Krebs cycle, such as pckA and icl1, were essential and highly expressed in lactate and
pyruvate conditions. To assess if iModulons could capture the upregulation of the genes
highlighted in the previous findings, we created several DIMA (Differential iModulon
Activity) plots to examine which iModulons had significantly different activities between
glucose and the alternate carbon source (Fig. 4b to e). Three iModulons were of particular
interest: Fumarate Reductase, Sulfur Metabolism, and PrpR (Supplemental Data Set S4).

For cells growing on both lactate and pyruvate, the Fumarate Reductase iModulon
was upregulated at all time points compared to the glucose-fed conditions. The
Fumarate Reductase iModulon contained 33 genes associated with the TCA cycle and
fatty acid synthesis, including icl2, pckA, and fad genes (Fig. 4b). Many of the genes in
this iModulon were also highlighted by the original study for survival in lactate and py-
ruvate media, which include genes that regulate the glyoxylate shunt. However, the
Fumarate Reductase iModulon also captures the expression dynamics of many genes
not found in the original research. These include the fad genes, which code for various
enzymes in fatty acid synthesis, the yrbE1 putative permeases, and the mce1R transcrip-
tion factor, which has an important role in establishing the persistence state in vivo

FIG 4 Legend (Continued)
iModulons that were differentially activated across all three states represent the core lipid response. (B) A 1D DIMA plot representing
the differentially activated iModulons at 6 h between L-lactate and glucose conditions. (C) DIMA plot representing the differentially
activated iModulons at 24 h between L-lactate and glucose conditions. (D) A 1D DIMA plot representing the differentially activated
iModulons at 6 h between pyruvate and glucose conditions. (E) DIMA plot representing the differentially activated iModulons at 24 h
between pyruvate and glucose conditions. (F) A metabolic map representing the reactions controlled by differentially activated
iModulons across carbon source shifts. Arrows represent reactions between metabolites, and reactions with bars represent transport
from the environment. Map displays how reactions controlled by the significant iModulons are connected to one another, and in
conjunction with DIMA plots can describe potential changes in metabolite flux. For example, the Fumarate Reductase iModulon is
differentially upregulated across all time points and carbon sources, which would tend to increase the amount of enzyme present and
ultimately catalyze higher flux through the pink pathways (in the absence of protein and metabolite-level regulation, which cannot be
studied with our data).
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(34, 35). Many of these genes are important for maintaining lipid homeostasis, which
suggests that the systems that help metabolize pyruvate and lactate are tran-
scriptionally connected to the same systems that metabolize or synthesize lipids (36).
Additionally, these metabolites may play a role in the organization of granulomas and
the persistence state, based on the coregulation with Mce1R.

When lactate is used as a carbon source, we observed very strong upregulation of
the Sulfur Metabolism iModulon. This is interesting given that sulfur homeostasis
should not have been perturbed by the change to the media. Sulfur is essential for the
production of mycothiol, which maintain redox homeostasis in Actinobacteria (37, 38),
an essential function for survival in a host. Indeed, the only condition that creates a
stronger activation for this iModulon is a redox stress condition (39). We therefore pro-
pose an important link between lactate and sulfur metabolism. It may be explained by
changes to sulfurous amino acid metabolism, reactive oxygen species accumulation
under lactate oxidation, or a more distal causation: given that lactate is a major carbon
source during infection (40), it may be a cue for the host cell environment which M. tu-
berculosis treats as a signal to prepare for redox stress.

We also found evidence of time-dependent iModulon responses during exposure
to alternative carbon sources. At 24 h, we found significant upregulation of the PrpR
iModulon under both lactate and pyruvate conditions (Fig. 4b and d). In M. tuberculosis,
the PrpR TF is responsible for control of the prp operon, which codes for several key
enzymes that break down Propionyl-CoA into pyruvate and succinate, which can be
used in the methylcitrate cycle to produce NADH (Fig. 4f) (41). The appearance of the
PrpR iModulon at 24 h and not at 6 h suggests that this is a starvation response, and
we hypothesize that the iModulon is activated to supplement the production of NADH
and ATP from solely lactate carbon sources.

Overall, the use of iModulons and their associated activities to elucidate systematic
changes in M. tuberculosis under different carbon sources is effective. Here, we were
able to highlight insights into which portions of carbon metabolism were coregulated
(such as the surprising relationship between the TCA cycle and fatty acid synthesis), as
well as when they are used (the activation of the PrpR iModulon as a possible starva-
tion response).

iModulon analysis of time-course data agrees with prior models of TF responses to
hypoxia.We analyzed the important iModulons and significant activities during a hypoxia
time course study in our compendium by Peterson, et al. (BioProject: PRJNA478238) (22).
During this study, the organism was exposed to changing dissolved oxygen levels, and we
categorized the changes into four temporal phases: (i) Decreasing Oxygen, 2) Hypoxia
Onset, 3) Stable Hypoxia, and 4) Reaeration. (Fig. 5a). The transcriptional changes associ-
ated with hypoxia are relatively well-characterized in M. tuberculosis, and thus we assessed
if the activities of the iModulons would recapitulate previous studies (Supplemental Data
Set S5) (2). The prior study proposed a model of the M. tuberculosis TRN and determined
that the DevR (also called DosR) and Rv0081 TFs serve as the primary regulators for the
hypoxic response, while other TFs such as Rv2034, Rv3249c, KstR, and PhoP can alter the
response. In order to test that the iModulons recapitulate the prior model, we examined
iModulons mapped to hypoxia-associated transcriptional factors and examined their activ-
ities throughout the hypoxic time course study. We found that the DevR, PhoP, KstR2, and
Lsr2 iModulons had increased activity during the hypoxia time course (Fig. 5b). The two
DevR iModulons showed the highest activity during the Hypoxia Onset phase, which reca-
pitulates the previous understanding that the DevR TF controls the hypoxia onset response
(Fig. 5a) (42). A primary component of both DevR iModulons are the nitrate reductase and
nitroreductase genes, which are associated with the reduction of the electron transporters
NADH and NADPH. The importance of these electron transporters give further evidence
that the DevR iModulons recapitulate the hypoxia onset response inM. tuberculosis.

Additionally, the increase in activity of the Lsr2, KstR2, and PhoP iModulons also
capture the known transcriptional changes associated with hypoxia. Due to the lack of
a KstR iModulon, KstR2 activity was examined instead as both iModulons are thought
to regulate cholesterol metabolism, which may be important for a hypoxia response
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FIG 5 iModulons help Categorize the Phases of Hypoxia Response, including Metabolic Anticipation. (A) Time Course of M. tuberculosis undergoing
Decreasing Oxygen, Hypoxia Onset, and Reaeration. The top plot displays the dissolved oxygen concentration in the environment, and the bottom

(Continued on next page)
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(2). The Rv00781Rv2034 and MbcA1Rv3249c1Rv3066 iModulons were not signifi-
cantly expressed at any point in the time course.

Different levels of oxygen lead to distinct transcriptional states. After confirming
that our iModulons are consistent with our current understanding of hypoxia, we exam-
ined the activities of the iModulons in a phase-specific manner across three of the four
phases. DIMA plots were created to compare the iModulon activities from the first and last
time point of each phase, and the significant iModulons were examined (Fig. 5c and d). We
chose not to analyze the iModulons during stable hypoxia given that there were limited
significant changes in iModulons. The lack of change in the transcriptome is consistent
with the dormant persistence state that hypoxia induces (43).

Here, we define the Decreasing Oxygen phase to represent the time when dissolved
oxygen levels transition from 81% to 11%. Examination of significant iModulons during
this phase reveals a three part response (Fig. 5b). The first response is the significant
increase in the production of enzymes associated with central carbon metabolism and
energy production, and is captured by the Central Carbon Metabolism and Fumarate
Reductase iModulons. The second response was an increased activity in growth and
cell replication systems, which was captured by the upregulation of the Rv1828/SigH,
GroEL-ES complex, and WhiB1 iModulons. Rv1828/SigH contains genes that encode a
wide range of proteins, including cell division proteins (SepF, FtsZ), DNA helicases
(RuvA/B/C), and DNA polymerases (44). Additionally, we found both the WhiB1 and
GroEL/ES complex iModulons play a role in protein synthesis. WhiB1 also contains sev-
eral genes that code for RNA polymerase subunits, and is likely a translation iModulon
that has been seen in the ICA decompositions of other organisms (9, 10, 45). All three
iModulons are related to growth and replication, which suggests that cell division is an
important response in M. tuberculosis in a decreasing oxygen environment. Though
surprising given the relatively decreased metabolic efficiency in low oxygen environ-
ments, this may be explained by a decrease in oxidative stress or an evolutionary
advantage for strains that replicate as much as possible prior to entering dormancy.

The final response of the Decreasing Oxygen phase was a shift in the mammalian
cell entry (Mce) proteins produced within the cell. This response is captured by
increased activity in the Mce1R iModulon and a decrease in activity for the Mce3R
iModulon. The Mce proteins are cell surface proteins that are thought to play a role in
lipid transport, redox reactions, and invasion of host cells (30, 34, 46, 47). Further exam-
ination of the Mce1R and Mce3R iModulons indicates that as the time course proceeds
and the cell enters Hypoxia Onset and Stable Hypoxia, the activities of the two
iModulons returned to their original reference state; the activity of the Mce3R
iModulon significantly increases while the activity of the Mce1R iModulon significantly
decreases. Given the close relationship between hypoxia, infection events, and activity
levels over this experiment, we predict that proteins in the Mce1 iModulon help facili-
tate the initial stages of infections while proteins in the Mce3 iModulon facilitate cell
entry into a dormant state.

The next phase of the hypoxia time course was the Hypoxia Onset phase, where
the dissolved oxygen levels decrease from 11% to 0% (Fig. 5c). Apart from the previ-
ously described activities of both DevR iModoulons, we also found that a few of the
iModulons had inverted activities during Hypoxia Onset compared to the Decreasing
Oxygen phase. The Mce1R, WhiB1, and Central Carbon Metabolism iModulons showed
decreased activity over the course of the Hypoxia Onset phase. These decreases are
consistent with a more dormant, less metabolically active persistence state. On the
other hand, the IdeR iModulon moved from a decrease in activity in the prior phase to

FIG 5 Legend (Continued)
plot displays the activities over time for iModulons controlled by TFs previously identified to be highly involved in hypoxic response (2). The TF
Rv2034 is represented by the iModulon Rv00781Rv2034 and Rv3249c is represented by MbcA1Rv3249c1Rv3066 iModulons. (B) DIMA plots of
hypoxia phases were created by comparing the iModulon activities between the first and last time point of each phase. The bar graph represents a
1D DIMA plot for the decreasing oxygen phase, since the original t = 0 time point served as the reference condition. (C) DIMA plot for the Hypoxia
Onset Phase. (D) DIMA plot for the Reaeration phase.
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a significant increase in activity during Hypoxia Onset. Additionally, we found two
iModulons, the WhiB7 and PDIM;PGL Synthesis iModulons, with significant changes in
activity during this phase. WhiB7 is a redox homeostasis transcriptional regulator that
has also played a role in drug resistance (48). The PDIM;PGL Synthesis iModulon cap-
tures genes associated with the production of phthiocerol dimycocerosate (PDIM) and
phenolic glycolipids (PGL). These families of molecules have been associated with cell
wall impermeability, phagocytosis, defense against nitrosative and oxidative stress and
possibly, biofilm formation (49). The presence of both these systems during hypoxia is
expected, though we did not expect PDIM;PGL Synthesis to have decreased activity
during Hypoxia Onset. This would suggest that while PDIM and PGL molecules are im-
portant for oxidative stress defense, their production may require more energy than
can be generated in an anaerobic environment or are otherwise detrimental to the sur-
vival of the cell.

The final phase of the hypoxia time course was the Reaeration phase (Fig. 5d). During
this phase, the cell returns to an aerobic environment as dissolved oxygen levels increase
from 0% to 47%, and we found significant changes in several iModulons. Most interesting
among these are the Peptidoglycan Biosynthesis and Polyketide Synthase Complex. In M.
tuberculosis, both polyketides and peptidoglycans are cell membrane bound molecules
that play a role in virulence and persistence. Peptidoglycans are involved in cell growth
and host response manipulation, while polyketides are essential in the formation of bio-
films and are likely to improve persistence (50, 51). The increased activation of these
iModulons under Reaeration suggests that M. tuberculosis attempts to defend itself from a
possible host response during this phase. We also found that the Fatty Acid Biosynthesis
iModulon had increased activity while KstR2 had decreased activity. Thus, we can conclude
that under reaeration conditions, M. tuberculosis moves from the consumption of lipids
and cholesterol to production.

Altogether, we showed that iModulons can validate previous results obtained from
the hypoxia time course, while also revealing a concise summary of the complex tran-
scriptional responses that M. tuberculosis undergoes throughout large shifts in oxygen
concentration.

M. tuberculosis has host cell-specific transcriptional responses. Due to the broad
pathological impact of M. tuberculosis, we additionally used iModulons to examine the
transcriptional response of M. tuberculosis during infection of two different host cell
types: macrophages and neutrophils. It is important to note here that while both cell
types are important players in the immune system for fighting against M. tuberculosis,
each cell type responds very differently when encountering the bacterium. Neutrophils
serve as key mediators in the innate immune response, with 3 potential responses
when encountering the bacterium: direct killing of bacteria via enzymes or reactive ox-
ygen species, trapping of bacteria via neutrophil extracellular trap formations, and
secretion of cytokines to signal other immune cells (52). On the other hand, the macro-
phages primarily respond to M. tuberculosis bacteria through phagocytosis. While mac-
rophages seek to eliminate the bacteria via production of pro-inflammatory cytokines
and reactive oxygen species, macrophages also serve as the primary host cell type for
the bacteria (53, 54). The transcriptional response of the bacteria to each immune cell
type will likely have distinct differences, and in order to investigate these potential dif-
ferences we examined the activities of iModulons in two different infection data sets.
In one data set, M. tuberculosis was grown in vitro during infection of mice bone mar-
row-derived macrophages (BMDM), and RNA-Seq was performed at 2, 8, and 24 h after
infection (BioProject: PRJNA478245) (22). In the other data set, M. tuberculosis was
grown in vivo with mice neutrophils, and RNA-Seq was performed at between 2 and
8 h after infection (BioProject: PRJNA588440) (55). DIMA plots were created comparing
each infection condition to a control at the same time point (Fig. 6a).

Examination of the significant iModulons under the three time points of the mice
BMDM conditions resulted in consistent patterns (Supplemental Data Set 6). For exam-
ple, the activity of the acid-sensing MarR iModulon increased across all time points.

Analysis of All Mycobacterium tuberculosis RNA-Seq Data mSphere

March/April 2022 Volume 7 Issue 2 10.1128/msphere.00033-22 14

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA478245
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA588440
https://journals.asm.org/journal/msphere
https://doi.org/10.1128/msphere.00033-22


FIG 6 iModulon Response to Infection of Mice Macrophages and Neutrophils and Pearson R iModulon Clusters. (A) A time course of the
iModulon activities during infection of mice BMDM. The iModulons with differential activities at each time point are displayed as upregulated

(Continued on next page)
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MarR is an acid transcriptional repressor that controls the expression of virulence asso-
ciated methyltransferase, and it is activation during infection events allows M. tubercu-
losis to adapt and replicate in acidic intracellular environments (56). In addition, we
found that PrpR, lipid metabolism iModulons, along with the metal sensing Zur, M-
box, and IdeR iModulons, were consistently upregulated throughout the infection time
course. All of these iModulons play a role in either starvation or hypoxia response, indi-
cating that residence within a macrophage requires distinct adaptations to multiple
stresses (57, 58). Additionally, the consistent upregulation of Zur is likely due to the
increased concentration of zinc ions within the phagosome during infection events, a
known immune response to M. tuberculosis infection (59). iModulons that are differen-
tially regulated at only specific time points can provide context for how M. tuberculosis
behaves during macrophage infections. For example, we see that the Fumarate
Reductase and Central Carbon Metabolism iModulons are upregulated during the 2 h
and 8 h time points, respectively. Possible reasons for this include the organism’s need
to metabolize fatty acids found within the macrophage environment, thus requiring
the activation of the Fumarate Reductase iModulon, or simply an increased need for
energy in order to power the infection related cellular systems.

A similar analysis of M. tuberculosis under in vivo neutrophil conditions revealed an
altered TRN response compared to in vitro mice BMDM infections (Fig. 6b). Comparison
of differentially activated iModulons revealed 25 additional iModulons with significant
activities during infection of mice neutrophils, but not during infection of mice BMDM.
These neutrophil-specific iModulons include some important regulators such as DevR-
2, PhoP, Mce3R, and PROG. Interestingly, DevR-2, PhoP, and Mce3R are iModulons that
were found to be important during the hypoxia time course, and all three of these TF’s
play an important role in M. tuberculosis hypoxic response (30, 42, 60). Given that these
3 iModulons are uniquely significant to only the infection of mice neutrophils, this sug-
gests that the infection of mice neutrophils exposes M. tuberculosis to greater oxidative
stresses compared to mice macrophages. Additionally, the presence of the PROG
iModulon during the infection of mice neutrophils and not mice macrophages sug-
gests that the patterns of replication and growth for M. tuberculosis are different
between the two cell types.

While the cell type specific iModulons can provide insights into how the orga-
nism adapts during infection events, we also discovered five iModulons that exhib-
ited consistently significant activities across all experiments (KstR2, MarR, PrpR,
Rv0681, Uncharacterized 2) (Fig. 6c). All of these iModulons, with the exception of
the Uncharacterized 2 iModulon, were activated in the same direction (positive ac-
tivity) across the BMDM and neutrophil conditions. Overall, these results show how
M. tuberculosis has different transcriptional responses depending on the host cell
type, but a core infection response is required for all infection events.

Clustering of iModulon activities across all conditions reveal coordinated stress
responses. By investigating the iModulons across various conditions, we noticed that
certain sets of iModulons activated together. To investigate which iModulons had simi-
lar activities to one another, we clustered the iModulon activities, resulting in several
clusters with biologically relevant implications. One such cluster contains the DevR-1,
DevR-2, and LysG iModulons (Fig. 6d) (14). Given the function of DevR and the pres-
ence of the gene Rv0081 and several oxidoreductases and formate respiration enzymes

FIG 6 Legend (Continued)
(green) or downregulated (red). Peptidoglycan, Mycofactocin, and MceR1 are displayed outside the cell to indicate regulation of secretory
pathways. (B) 1D DIMA plot of differential iModulons between control noninfectious condition and in vivo infection condition. Surprisingly, the
most upregulated and most downregulated iModulons both regulate different portions of central carbon metabolism, which suggests that central
carbon metabolism plays a large role in infection. (D) A core infection response was constructed by examining the iModulons with differential
activity across all infection conditions (3 time points in mice macrophage infection and 1 neutrophil condition). The core infection response was
found to consist of KstR2, MarR, PrpR, Rv0681, Uncharacterized 2, and Zur. (D) Hypoxia Response iModulon cluster calculated using Pearson R
score and agglomerative clustering. Scatterplots that provide pairwise comparison of the activities of the iModulons across all experimental
conditions is provided to indicate the relatively high correlation between these three iMoudlons. Color bar indicates pairwise Pearson R score. (E)
General Stress Response iModulon cluster calculated from Pearson R score and agglomerative clustering.
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in LysG, it is clear that these iModulons comprise the main hypoxic response in M. tu-
berculosis (2).

Clusters also described global responses in the M. tuberculosis TRN, as shown by the
General Stress Response Cluster (Fig. 6e). This cluster contained infection related iModulons
such as Mce1R, metal related iModulons like RicR, and lipid metabolism iModulons such as
Rv0681. We found that while six of the iModulons within the cluster were positively corre-
lated with each other, Mce1R was found to be negatively correlated with the others, indicat-
ing that stress conditions actually downregulate predicted cell entry machinery. To help vis-
ualize which systems were controlled by this cluster, we mapped the genes within each
associated iModulon to known pathways using annotations from a metabolic reconstruction
(61). The reactions encoded by the iModulons in the cluster linked cholesterol-catabolism
pathways to propionyl-CoA biosynthesis. Propionyl-CoA is an important precursor to both
mycothiols and sulfolipids, and we found that the General Stress Response Cluster also con-
trols pathways associated with sulfur import. The cluster also controls the production of
mce1 proteins, the type 1 NADH-dehydrogenase, and metal sensing systems. Type 1 NADH-
dehydrogenase is known to produce ROS species and increase oxidative stress, while metal
sensing systems such as those encoded by RicR are important for protection against oxida-
tive stress (62, 63). Given the function of these genes, we propose that this cluster represents
a general stress response in M. tuberculosis, most likely related to intrahost survival. It also
provides insight into the major metabolic pathways associated with stress in the organism.
Though the General Stress Response Cluster represents a commonly cotranscribed set of
iModulons, each one is still independently modulated; there are instances where one part of
the cluster is not needed and its iModulon’s activity diverges from the rest. This example
demonstrates that iModulon clustering can create a complex, hierarchical understanding of
the TRN.

DISCUSSION

Here, we utilized ICA to decompose 657 distinct RNA-Seq profiles of M. tuberculosis
into 80 independently modulated sets of genes, termed iModulons. Many of these
iModulons correspond to important transcription factors in the organism. Using these
iModulons, we revealed putative new gene associations for previously uncharacterized
regulators, 2) described the transcriptional shifts that occurred during environmental
changes such as carbon source shifts, hypoxia, and infections, and 3) demonstrated
the presence of large clusters of transcriptional regulons that link several important
metabolic systems, including lipid, cholesterol, and sulfur metabolism.

Although all data sets analyzed in the manuscript were previously reported in separate
publications, we have illustrated that combining the data together elucidates hidden com-
mon signals (i.e., iModulons) across all data sets. iModulons were used to both validate pre-
vious findings, such as the identification of DevR as a major regulator of hypoxic response,
and gain more detailed insights in these data sets, such as characterizing the core lipid
response at the TRN level. Many of the results derived from iModulon analysis could not be
detected with traditional DEG analysis, since they required the synergistic analysis of multi-
ple data sets to detect co-expression trends. For instance, detection of the host cell-specific
transcriptional responses required the analysis of two independent data sets with different
host cells using a method robust to batch effects.

We also demonstrated that iModulons are effective at providing detailed, mechanistic
insights into complex transcriptional changes in M. tuberculosis’s TRN. Lipid metabolism, hy-
poxia protection, and host cell responses are all vital factors in the success of M. tuberculosis
as a pathogen, and iModulons provided a clear model of the transcriptome changes occur-
ring under these conditions. Additionally, compendium-wide clustering of iModulon activities
outlined a set of stimulons (64), or groups of genes that respond to the same stimulus, for hy-
poxia and general stress response. Such stimulons, especially those that respond to infection
conditions, can also provide better understanding on ways to combat the pathogen.

All results presented in the manuscript are reproducible at https://github.com/Reosu/
modulome_mtb. In addition, we have provided an interactive Jupyter notebook so
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researchers can infer iModulon activities for any new transcriptomic data sets at https://
github.com/Reosu/modulome_mtb/tree/master/analyze_new_data. Researchers can also
investigate the current iModulon structure of M. tuberculosis, the iModulon activities,
and the original gene expression compendium at https://imodulondb.org/dataset
.html?organism=m_tuberculosis&dataset=modulome. The data presented here still
has potential to reveal new insights into the function of uncharacterized transcrip-
tion factors and the TRN behavior of M. tuberculosis under different conditions, and
this analysis can be scaled in the future to incorporate the growth of new public
data sets.

Data availability. The iModulons composition, activities, and the code used to gen-
erate figures and results are available on Github (https://github.com/Reosu/modulome
_mtb). Detailed, curated dashboards for each iModulon and gene can be searched or
browsed on iModulonDB.org under the “M. tuberculosis Modulome” data set (https://
imodulondb.org/). Additional information, such as the sources used to compile the
RNA-Seq and TRN data sets, can be found in the supplementary files.

MATERIALS ANDMETHODS
The functions used in this study and description of the methods for compiling and processing RNA-

Seq data, running ICA, and computing iModulon enrichments were adapted from Sastry et al. (14).
Compiling all public transcriptomics data. Using the script from Sastry et al., (https://github.com/

avsastry/modulome-workflow/tree/main/1_download_metadata), we found all RNA-seq data for M. tu-
berculosis on NCBI SRA as of August 20, 2020. We manually selected samples that used the strain M. tu-
berculosis H37Rv (14).

Processing prokaryotic RNA-seq data. To process the complete M. tuberculosis RNA-seq compen-
dium, we used Amazon Web Services (AWS) Batch to run a Nextflow pipeline (14, 65).

The first step in the pipeline was to download the raw FASTQ files from NCBI using fasterq-dump
(https://github.com/ncbi/sra-tools/wiki/HowTo:-fasterq-dump). Next, read trimming was performed using
Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with the default options, fol-
lowed by FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) on the trimmed reads. Next,
reads were aligned to the genome using Bowtie (66). The read direction was inferred using RSEQC (67) before
generating read counts using featureCounts (68). Finally, all quality control metrics were compiled using
MultiQC (69) and the final expression compendium was reported in units of log-transformed Transcripts per
Million (log-TPM).

Quality control and data normalization. To guarantee a high quality expression compendium for
M. tuberculosis, data that failed any of the following four FASTQC metrics were discarded: per base
sequence quality, per sequence quality scores, per base n content, and adapter content. Samples that
contained under 500,000 reads mapped to coding sequences were also discarded. Hierarchical cluster-
ing was used to identify samples that did not conform to a typical expression profile.

Manual metadata curation was performed on the data that passed the first four quality control steps.
Information about the strain description, base media, carbon source, treatments, and temperature were
pulled from the literature. Each project was assigned a short unique name, and each condition within a
project was also assigned a unique name to identify biological and technical replicates. After curation,
samples were discarded if (a) metadata was not available, (b) samples did not have replicates, or (c) the
Pearson R correlation between replicates was below 0.95. Finally, the log-TPM data within each project
was centered to a project-specific reference condition.

Computing the optimal number of robust independent components. To compute the optimal in-
dependent components, an extension of ICA was performed on the RNA-seq compendium as described
in McConn et al. (16).

Briefly, the scikit-learn (v0.23.2) (70) implementation of FastICA (13) was executed 100 times with
random seeds and a convergence tolerance of 1027. The resulting independent components (ICs) were
clustered using DBSCAN (71) to identify robust ICs, using an epsilon of 0.1 and minimum cluster seed
size of 50. To account for identical with opposite signs, the following distance metric was used for com-
puting the distance matrix:

dx;y ¼ 12jjr x;yjj

where r x,y is the Pearson correlation between components x and y. The final robust ICs were defined as
the centroids of the cluster.

Since the number of dimensions selected in ICA can alter the results, we applied the above proce-
dure to the M. tuberculosis compendium multiple times, ranging the number of dimensions from 10 to
320 with a step size of 20. To identify the optimal dimensionality, we compared the number of ICs with
single genes to the number of ICs that were correlated (Pearson R . 0.7) with the ICs in the largest
dimension (i.e., final components). We selected the number of dimensions where the number of non-sin-
gle gene ICs was equal to the number of final components in that dimension.

Compiling gene annotations. The gene annotation pipeline can be found at https://github.com/
SBRG/pymodulon/blob/master/docs/tutorials/creating_the_gene_table.ipynb. Gene annotations were
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pulled from AL123456.3. Additionally, KEGG (72) and Cluster of Orthologous Groups (COG) information
were obtained using EggNOG mapper (73). Uniprot IDs were obtained using the Uniprot ID mapper (74),
and operon information was obtained from Biocyc (75). Gene ontology (GO) annotations were obtained
from AmiGO2 (76). The known transcriptional regulatory network was obtained primarily from the
Galagan TB database and MTB Network portal databases (2, 4).

Computing iModulon enrichments. iModulon enrichments against known regulons were computed
using Fisher’s Exact Test, with the false discovery rate (FDR) controlled at 1025 using the Benjamini-Hochberg
correction. Fisher’s Exact Test was used to identify GO and KEGG annotations as well, with an FDR, 0.01.

Calculating differentially expressed iModulons across conditions. The difference in activity of
iModulons were compared across relevant conditions and significantly changed iModulons were calcu-
lated utilizing a log-normal probability distribution. For each comparison, we computed the absolute dif-
ference in the mean iModulon activity and compared it to an iModulon's log-normal distribution (calcu-
lated between biological replicates). P value statistics was obtained for a given pair of conditions across
all iModulons and a FDR was calculated. iModulon changes were considered significant if the difference
was greater than 5 and FDR , 0.01.

DIMA scatterplots compare the activities of iModulons under one condition versus another, and allow for
the visualization of significantly changed iModulons. 1D DIMA plots plot iModulons under one condition to a
reference condition. Reference conditions have been normalized to have 0 activity across all iModulons, and
thus a bar plot is used instead of a scatterplot.

Calculating iModulon activity clusters. The activities of iModulons were clustered using a Seaborn
clustermap (77). Pearson R correlation was used as a distance metric, and pairwise distances for each
iModulon were calculated. After creation of the clustermap, the scikit-learn agglomerative clustering
function was performed on the clustermap (70). Optimal cluster sizes were obtained by computing the
various the threshold statistic for agglomerative clustering and finding the optimal silhouette score.
Once iModulons clusters were calculated, clusters that had above average Pearson R correlation
between iModulons were manually inspected to determine physiological function.

Generating iModulonDB dashboards. iModulonDB dashboards were generated using the PyModulon
package (14, 18). Where applicable, we provide links to gene information in Mycobrowser (78).
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