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AbstrAct
Cell- based and antibody- based cancer immunotherapies 
have been widely tested across increasing numbers of 
cancers with an unprecedented number of successful 
practice- changing immunotherapy clinical trials, achieving 
significant survival outcomes and, characteristically, 
some very long- term survivors. Still, a sizeable proportion 
of patients, especially with solid tumours, do not 
benefit from immunotherapy. Here, we summarise key 
literature on immunotherapy biomarkers and resistance 
mechanisms and discuss potential strategies to overcome 
such resistance to improve patient outcomes. The 
ever- expanding understanding of the tumour- immune 
interaction and the tumour microenvironment allows a 
real opportunity to identify predictive biomarkers and 
tailor immune- based therapies, including designing 
rational combination drugs to enhance clinical outcomes, 
and to identify patients most likely to benefit from 
immunotherapy. Where there has never been a precision 
chemotherapy clinic in the last 70 years since its inception, 
even with no shortage of trying, the hope and evolution of 
a functional precision immunotherapy cancer clinic is a 
much more likely reality.

IntroduCtIon
There has been remarkable progress in the 
development of systemic cancer therapies 
since the birth of cytotoxic chemotherapy in 
the 1940s and the first hormonal therapies 
developed in the 1970s. In the 1990s, imatinib 
against chronic myeloid leukaemia heralded 
the era of molecular targeted therapy. In all 
these years, the only few validated predic-
tors of chemotherapy efficacy include the 
use of Recurrence Score (Oncotype DX 
and MammaPrint) in early- stage hormone 
receptor- positive breast cancers1–3 and the 
detection of the promoter methylation status 
of the O6- methylguanine- DNA methyltrans-
ferase gene, which predicts response to 
temozolomide in patients with glioblastoma 
multiforme.4 Extensive research into drug 
efflux and multidrug resistance has yielded 
no therapeutic impact in overcoming chemo-
therapy drug resistance. Precision therapy 
against oncogene driver mutations has led 
to the development of an ever- increasing 
number of targeted drug agents, although 
the eventual number of patients who benefit 
remains limited. Cancer immunotherapy had 

its early beginnings with Coley’s toxin at the 
turn of the 20th century,5 Bacillus Calmette- 
Guerin (BCG) against superficial bladder 
cancer in the 1970s6 and cytokine infusions 
such as interleukin (IL)-2 against renal cell 
carcinoma (RCC) in the 1980s.7 However, 
these remained blunt tools and offer only a 
glimpse of the potential of cancer immuno-
therapy.

The hypothesis of immunoediting came 
about in recent decades, with three phases 
described: elimination, equilibrium and 
escape.8 9 The host immune system discrim-
inates ‘self’ from ‘non- self’ and eliminates 
non- self tumour cells through the recogni-
tion of tumour antigens; these antigens exist 
either as tumour- specific antigens (TSAs) 
which are unique to tumour cells or tumour- 
associated antigens (TAAs) that are also 
found, though less abundantly, on normal 
tissues (e.g. cancer/testis antigens).10 Apart 
from specific viral oncoproteins, TSAs are 
mainly derived from ‘neoantigens’ that are 
generated from genomically unstable cancer 
cells and form potential targets for precision 
immunotherapy.11 Tumour cells develop 
immune escape strategies, one of which is the 
subversion of the immune checkpoint path-
ways. The well- described immune checkpoint 
pathways include the inhibitory programmed 
death (PD)-1 and PD ligand-1 (PDL1) inter-
action, as well as cytotoxic T- lymphocyte asso-
ciated protein-4 (CTLA4) and CD80/CD86 
interaction with competitive inhibition of 
the costimulatory domain CD28.12Both of 
these inhibitory pathways form the scientific 
rationale for the development of monoclonal 
antibodies against PD1, PDL1 and CTLA4. 
Precision immunotherapy also comes in the 
form of adoptive cell therapy, which uses 
lymphocytes that are either primed or engi-
neered to recognise and eliminate tumour 
cells from the body.13 Other forms of mech-
anistically driven immunotherapy include 
oncolytic viruses, dendritic cell (DC) vaccine 
or small molecule inhibitors/monoclonal 
antibodies against specific immunomodula-
tory pathways.
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With the rapid advances in immuno- oncology, it is 
timely to look towards a future where we can more consis-
tently identify patients whose cancers best respond to 
such therapies. The determinants of response to immu-
notherapy have become increasingly explored and under-
stood in the last few years. Yet it remains a highly complex 
landscape for clinicians to navigate and make informed 
treatment decisions. This review will focus on the preci-
sion biomarkers of immune checkpoint inhibitors (ICIs), 
T- cell therapies, and overcoming intrinsic and extrinsic 
resistance pathways, with an aim to identify the most ideal 
immunotherapy for each patient to achieve maximum 
benefit.

Biomarkers of ICIs
ICIs such as anti- CTLA4 antibody (ipilimumab) and 
anti- PD1/PDL1 antibodies (pembrolizumab, nivolumab, 
atezolizumab, avelumab, durvalumab and cemiplimab) 
have revolutionised the field of oncology and have been 
widely used in various cancers, including Merkel cell 
carcinoma (MCC), melanoma, hepatocellular carcinoma 
(HCC), urothelial cancers, triple- negative breast cancers 
(TNBCs), head and neck cancers, lung cancers, RCC and 
relapsed lymphomas. Patients are also surviving longer; 
for example, a combination of nivolumab and ipilimumab 
for the treatment of metastatic melanoma has yielded a 
5- year overall survival exceeding 50%.14 However, despite 
the promising efficacy in some tumour types, it remains 
a challenge to identify responders to ICIs reliably and 
consistently.

The initial biomarkers of ICIs were thought to be the 
presence, location and quantity of tumour- infiltrating 
lymphocytes (TILs), which were noted to have posi-
tive prognostic and predictive values across multiple 
tumour types, including breast, ovarian, endometrial, 
head and neck, gastrointestinal, non- small cell lung 
cancers (NSCLCs) and melanoma.15–19 Recognising 
the importance of TIL as a biomarker, an international 
workgroup sought to standardise the assessment of TIL 
presence.20 21Further studies suggest that not all TILs 
are equal; the presence of interferon- gamma and other 
markers of T- cell activation was associated with better 
treatment response to anti- PD1 therapy.22 A recent finding 
also suggests that bystander CD8+ T cells from TILs could 
recognise non- tumour epitopes and show distinct pheno-
types compared with tumour- specific CD8+ TILs with 
CD39 expression.23 Multiple studies have also looked into 
various T- cell subtypes, their ratio and correlation with 
ICI response but report varying results.24 25 These observa-
tions were not consistent and may be partly due to factors 
in the tumour microenvironment (TME) and tumour 
heterogeneity. Through improved technology in high- 
throughput next- generation sequencing (NGS), T- cell 
receptor (TCR) repertoires of TILs have been explored in 
a few cancers, including metastatic melanoma with mixed 
results, with one study showing an expanded TCR reper-
toire leading to response to combination PD1/CTLA4 
therapy but another showing poorer overall survival.26

Subsequently, correlation analyses of pooled genomic 
data from multiple clinical trials have revealed that muta-
tional burden of cancers are closely associated with ICI 
treatment responses across multiple cancer types.27–30 This 
clinical observation translated into tumour mutational 
burden being used as a surrogate marker for ‘neoantigen’ 
burden, and therefore ‘immunogenicity’ and response 
to ICIs. In the same vein, microsatellite instability high 
(MSI- H) or deficient mismatch repair (dMMR) tumours 
are associated with a higher mutational burden due to 
its genomic instability. Indeed, this was prospectively vali-
dated in a phase II study, leading to MSI- H status being 
approved as a tumour agnostic biomarker for pembroli-
zumab.31 Also, neoantigen heterogeneity may influence 
immune surveillance and increasingly, clonal neoanti-
gens have been shown to predict sensitivity to PD1 and 
CTLA4 blockade in melanoma and NSCLC.32

The most widely used companion predictive biomarker 
of anti- PD1 therapy is the immunohistochemistry (IHC) 
assay scoring of PDL1 on tumour and/or immune cells, 
that is, tumour proportion score (TPS) and combined 
positive score (CPS). Multiple studies in head and neck 
cancers, urothelial cancers, NSCLC, RCC and TNBC33–37 
have shown both PDL1 TPS and CPS to stratify response 
to ICIs. PDL1 expression is heterogenous and may not 
always be predictive of response to anti- PD1 or anti- PDL1 
therapy. In fact, PD1 expression is regulated in a complex 
manner, being influenced by factors including cyto-
kines, genomic aberrations, transcriptional control 
mechanisms, oncogenic signalling and mRNA/protein 
stability.38 On top of this, structural variations (SVs) 
disrupting the 3′-untranslated region (UTR) of PDL1 
 gene also are implicated in multiple cancers, espe-
cially in T- cell leukaemia/lymphoma and diffuse large 
B- cell lymphoma (DLBCL).39 40 Our own institution 
also reported a novel PDL1 3′-UTR SV in natural killer 
(NK) T- cell lymphoma that predicts response to anti- 
PD1 therapy,41 which is also now being developed as a 
blood- based circulating- tumour DNA (ctDNA) predic-
tive test. Furthermore, the varying assay platforms (eg, 
PDL1 clones 22C3, 28–8, SP263 and SP142) and cut- off 
of PDL1 expression have made comparison across trials 
challenging. We note the efforts to validate, standardise 
and combine these assays using multiplex immunoflu-
orescence and digital imaging platforms.42 The limita-
tions of IHC- based methods should also be recognised, 
despite its cost effectiveness, and future studies may move 
toward genomic and transcriptomic studies looking at the 
various immune- permissive gene signatures for higher 
level of precision.43 44 However, single- sample analysis and 
finding the optimal cut- off for different analyses would 
remain challenging.

Blood- based predictive biomarkers have been being 
increasingly reported but require further validation. 
These include serum markers such as raised lactate dehy-
drogenase45 and peripheral blood markers, including 
increased absolute lymphocytes and circulating CD4+ 
and CD8+ T cells, lower baseline ratio of absolute 
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neutrophil count to absolute lymphocyte count, ratio of 
myeloid to lymphoid and higher frequency of Vδ2+ cells, 
and increased eosinophil count.46–49 With improved NGS 
techniques, high mutational load may be picked up by 
ctDNA in peripheral blood to correlate with treatment 
responses.50 Peripheral blood biomarkers may also poten-
tially allow longitudinal observations and predictions 
during the patient’s treatment journey. Liquid biopsy 
analyses of ctDNA, exosomes and autoantibodies are also 
being explored as potential predictive biomarkers for ICI 
treatment.50–53 Recently, two separate groups have shown 
that tumour- secreting exosomal PDL1 influences immu-
nosuppression and systemic immunity, which affects the 
responses of anti- PD1 antibody treatment.51 52 In addi-
tion, by metabolomic analytic tools, increased serum 
kynurenine to tryptophan ratio is an acquired resistance 
mechanism to ICI treatment and correlates to worse clin-
ical outcome, suggesting another new potential strategy 
to stratify patients for ICI treatment.54

The aetiology of cancer, including viral- driven cancers, 
may form a basis for predicting immunotherapy benefit, 
with their presence of surface viral proteins and influence 
on the TME. ICI has shown striking clinical efficacy in 
polyomavirus- associated MCC55–57 and, to a less extent, 
human papillomavirus- associated cancers (eg, squamous 
cell carcinoma of cervix, head and neck, and anus) and 
Epstein- Barr virus (EBV)- associated cancers (eg, naso-
pharyngeal carcinoma (NPC), lymphoepithelioma- like 
carcinoma (LELC), post- transplant lymphoprolifera-
tive disorder (PTLD), Burkitt’s lymphoma, NK T- cell 
lymphoma and other B- cell malignancies).58–61 MCC 
has shown remarkable clinical response to anti- PD1 and 
anti- PDL1 therapy, ranging from 50% to 70% in some 
studies.55–57 A Korean group characterised the genomic 
characteristics of 61 patients with gastric cancer to seek 
biomarkers and reported an overall response rate (ORR) 
of 50% in PDL1- positive gastric cancer, 85.7% in MSI- H 
gastric cancer and 100% in EBV- associated gastric cancer 
to anti- PD1 therapy,60 although with a small sample size. 
However, the ORR in advanced NPC is comparably low, 
with 20.5% response to nivolumab and 25.9% response to 
pembrolizumab in the second- line setting.58 59

The gut microbiota and its correlation with response 
to ICI has been reported in pre- clinical studies.62–66 The 
studies also showed that by oral administration of specific 
bacteria into preclinical mouse models, the efficacy of 
ICIs could be improved. Through a diet/supplement 
survey on a completed ICI clinical trial with stool sample 
collection,62 67 high- fibre diet, defined as full of vegetables, 
fruits and whole grains, is highly correlative with several 
specific types of microbiota and better response to anti- 
PD1 antibody treatment—heralding the possibility of 
designing specific diets to improve ICI benefit—a first for 
any kind of cancer treatment.

Biomarkers of adoptive t-cell therapy
Harnessing tumour- specific T cells, either with TILs or 
genetically modified (GM) T cells for antitumour effect, 

has been pursued actively in clinical research, again a 
demonstration of precision immuno- oncology. Chimeric 
antigen receptor (CAR) T- cell therapy is manufactured 
through genetic modification to express antigen- specific 
CARs and costimulatory domains on a T cell, followed 
by ex vivo cell expansion and reinfusion back to the 
patient.68 They can expand exponentially in vivo, espe-
cially when preceded by cytoreductive preconditioning, 
to eliminate cancer cells in a targeted, human leucocyte 
antigen (HLA)- unrestricted manner. To date, CD19- 
directed CAR T- cell therapy has established itself in the 
treatment of relapsed haematological malignancies, 
including DLBCL,69 B- acute lymphoblastic leukaemia 
(B- ALL),70 chronic lymphoblastic leukaemia (CLL)71 as 
well as multiple myeloma,72 with complete response rates 
ranging between 30% and 90%.

Despite CAR- T therapy’s efficacy in haematological 
malignancies, this dramatic success has yet to be repro-
duced in solid cancers. Adoptive transfer of TILs, TCR- 
redirected and GM- TCR T cells have a longer track 
record in solid tumours but with mixed outcomes. These 
forms of cell therapies are capable of recognising somat-
ically mutated neoantigens presented by HLA molecules 
as opposed to CAR T- cells which bind surface TAAs. 
Autologous TIL and GM- TCR therapy rely on reactivity of 
infused T cells, an intact antigen- presenting machinery 
(APM) in cancer cells and a permissive host immune 
state. Through small- scale clinical studies since the 1980s, 
adoptive transfer of ex vivo expanded TILs has consis-
tently demonstrated their potential in tumour control, 
especially in metastatic melanoma.73 However, for 
GM- TCR therapies, specificity for a variety of TAAs such 
as NY- ESO-1 and MAGE- A374–76 has been engineered into 
T cells for more precise tumour targeting.

Being a ‘living therapy’, the efficacy of adoptive cellular 
therapy depends on its interaction with the host milieu, 
and hence biomarkers may either be host related or cell 
therapy related. In a CAR- T study in CLL, raised levels of 
specific plasma markers (Interleukin 12 (IL12), DC- LAMP, 
TRAIL and Fas ligand) before treatment were associated 
with longer overall survival.77 Conversely, higher IL-6 
and soluble PDL1/2 were found to correlate with worse 
survival outcomes. Responding patients also had low 
peripheral monocytic myeloid- derived suppressor cells 
(MDSCs), which are immunosuppressive.77 These host 
immune characteristics, detected by serum biochemical 
assays and flow cytometry analyses, could be employed as 
biomarkers to improve outcomes in future cell therapy 
studies. One phase II study suggests that the serum level 
of IL-9 may predict response to TIL therapy in advanced 
melanoma.78 This study was not able to identify other 
significant clinical host characteristics that may separate 
the responders from non- responders, except that patients 
who had previous anti- CTLA4 therapy appeared to have a 
shorter duration of response to TIL.78

In terms of cell product- related biomarkers, one group 
recently reported the phenotypical, functional and 
genomic characteristics of CD19 CAR- T in 41 patients 
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with relapsed CLL,79 80 and identified memory T cells 
(CD27+CD45RO−CD8+) and memory- related IL-6/
STAT3 gene signature, which correlated with high clin-
ical response. Also, higher exhaustion marker expres-
sion (eg, TIM3 and LAG3) and higher glycolytic activity 
in the CAR- T products correlated with worse clinical 
outcomes. In another clinical trial investigating CD19 
CAR- T in relapsed DLBCL, in vivo persistence of CAR- T 
was observed in patients with better and more sustained 
responses.81 These are also described in some TIL studies 
where persistent response correlated with the detection 
of the TIL product in vivo after infusion, though this 
observation is not always consistent in other studies.82

Adoptive transfer of in vitro activated and expanded 
autologous T cells that target virus antigens has also 
demonstrated its potential. Infusions of HPV- specific cyto-
toxic T cells (CTLs) have resulted to tumour response in 
cervical and other HPV- associated cancers.83 EBV- specific 
CTLs have also demonstrated promising clinical benefits 
for EBV- positive cancers, including patients with PTLD 
and advanced NPC.84 85 In our phase II clinical trial of 
EBV- specific CTL infusion following first- line combi-
nation chemotherapy in patients with advanced NPC, 
manufactured and expanded T cells that contained EBV 
LMP2A specificity were found to correlate with better 
survival, whereas a higher percentage of MDSCs found in 
peripheral blood before EBV- specific CTL infusion after 
chemotherapy predicted poorer survival outcomes.85 
These studies suggest that fine tuning, sorting and selec-
tion for a fitter, better T- cell product as cell therapy, 
guided by a constellation of biomarkers, may produce 
more precise immunotherapy. This can be enhanced by 
strategies with T- cell constructs and/or combined drugs 
which can circumvent the immunosuppressive TME.

resistance mechanisms and the tME
One of the biggest challenges of immuno- oncology is the 
complex multifactorial resistance mechanism landscape, 
whether primary or acquired, intrinsic or extrinsic to 
tumour cells.86 87 Examples of intrinsic resistance path-
ways against ICIs include loss of HLA loci and neoan-
tigen expression, genetic or epigenetic subversion of 
APM, upregulation of alternative pathways such as TGFβ 
and JAK/STAT signalling pathways, or other oncogenic 
alterations, including activation of Wnt/β-catenin, loss of 
PTEN and amplification of MYC oncogenic pathways.87–91 
These resistance mechanisms are fuelled by the genomic 
instability of tumour cells, coupled with the ‘immunoed-
iting’ process, where the selection pressure exerted by the 
host immunity, or immunotherapy agents, drive further 
resistance.92

The TME of solid tumours is a major barrier for ther-
apeutic efficacy of both ICI and adoptively transferred 
T cells by limiting T- cell infiltration93 and T- cell activa-
tion,94 and counteracting T- cell cytotoxicity via regula-
tion of immunosuppressive mechanisms.95 The presence 
of stroma, cancer- associated fibroblasts, immunosup-
pressive immune cells (regulatory T cells, MDSCs and 

tumour- associated macrophages (TAMs)) and immu-
nosuppressive cytokines in the TME can significantly 
contribute to the suppression of TIL effector functions 
and compromised antitumour immunity.96 Upregulation 
of angiogenesis factors (VEGF family proteins) in the 
TME is one of the classical responses to hypoxia, which 
then promotes T- cell dysfunction and upregulation of 
coinhibitory receptors, contributing to T- cell exhaus-
tion.97 98 The hypoxic microenvironment of the TME also 
drives the production and accumulation of metabolites 
such as adenosine, which promote tumour growth, migra-
tion and also immunosuppression within the microenvi-
ronment via its binding to adenosine receptors.99–101 High 
tumour- secreted lactic acid accumulation due to hypoxia 
could also suppress CTL function.102–104 Increased trypto-
phan catabolism can also result in immunosuppression 
via indoleamine 2,3- dioxygenase (IDO1) upregulation.105 
Some of these pathways serve as potential therapeutic 
biomarkers in designing rational combinations of ICI 
with other potentially synergistic drugs, where a multi-
tude of clinical trials are ongoing.

The TME has also the ability to induce post- translational 
modifications to chemokines. Production of reactive 
nitrogen species by MDSCs within the TME induces nitra-
tion of CCL2, resulting in trapping of T cells in the stroma 
surrounding tumour cells of human colon and prostate 
cancers.106 In multiple solid tumours, FasL expression 
was associated with reduced CD8+ T- cell infiltration and 
increased FoxP3+ regulatory T- cell infiltration.107 Tumour 
endothelial cells can express FasL and endothelin B 
receptor107 108 or functional abnormalities causing 
impaired infiltration of effector CD8+ T cells.109 Apart 
from MDSCs, TAMs can be recruited by factors within 
the TME, inhibiting the antitumour immune response 
and aiding tumourigenesis by invasion of nearby tissues, 
stroma remodelling and promotion of tumour angio-
genesis and cell proliferation.110 Recruitment of TAMs 
to TME is primarily determined by the CCL2- CCR2 axis. 
Early- phase trials of monoclonal antibody against CCL2 
showed initial but modest effects in patients with meta-
static castration- resistant prostate cancer,111 112 reflecting 
the multiple potential targeting pathways and combina-
tory strategies.

Multiomics analysis of more than 10 000 samples from 
33 cancer types further revealed six pan- cancer immune 
TME subtypes, which could define immune response 
patterns.113 Most of the tumours could be classified into 
immune- inflamed, non- inflamed, excluded or immu-
nosuppressed based on their oncogenic, immune and 
metabolic genetic signatures.96 114Other forms of ‘immu-
noscores’ or ‘immunograms’ exist,115 116 but no unifying 
scoring system has been commonly agreed on currently 
by the wider scientific community. It is with an ever- 
expanding understanding of the TME that we can best 
validate biomarkers to predict response to ICI, as well as 
apply novel, multipronged approaches to counter resis-
tance mechanisms.96 117
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Fine tuning highly personalised immunotherapy
In light of the suppressive TME being a major barrier 
to response to immunotherapy, extensive efforts are 
ongoing to turn ‘cold’ tumours into ‘hot’ tumours. Strat-
egies to reprogramme the immunoexcluded or immune 
suppressive landscape with ‘activating’ combinatory ther-
apies to overcome intrinsic or extrinsic resistance are 
ongoing in the preclinical and early clinical phases. Inter-
estingly, radiation also may contribute to improving TIL 
infiltration and response to ICIs, even in off- target (non- 
irradiated) sites, also known as the ‘abscopal effect’.118 
Such strategies interrogating and using the new knowl-
edge of both ‘seed and soil’ move beyond conventional 
principles of combining non- cross- resistant cytotoxic 
chemotherapy to overcome resistance.

Preclinical studies have demonstrated that targeting 
the VEGF/VEGFR pathway, in combination with cell 
vaccines119 120 and adoptive T- cell therapy, leads to 
higher intratumoural CD8+ T- cell infiltration.121 Recent 
successful clinical examples include the positive land-
mark phase III studies of atezolizumab with bevacizumab 
in the treatment of advanced HCC,122 and axitinib with 
pembrolizumab in the treatment of metastatic RCC.35 
However, a recent negative phase III trial of IDO1 
inhibitor with anti- PD1 therapy is a sobering reminder 
that despite a rationally designed drug combination, 
overcoming resistance to ICI remains challenging.123 
Neoadjuvant studies have also begun to reveal crucial 
translational readouts especially about primary resistance 
and the TME, potentially revealing further biomarkers of 
response.124

With advances in NGS technology and neoantigen 
prediction capabilities, efforts are ongoing to improve 
the specificity and efficacy of autologous TIL therapy by 
preselecting neoantigen- reactive TILs. As a clinical proof 
of principle, Rosenberg’s group succeeded in achieving 
objective tumour regression and persistent remission for 
selected patients with chemorefractory metastatic cholan-
giocarcinoma and colorectal and breast cancers by using 
neoantigen prediction algorithms to produce somatic- 
mutation antigen- specific TILs.125–127 This remains a 
highly tailored, time- intensive and labour- intensive 
personalised form of cell therapy.

Similarly, efforts to improve the efficacy and specificity 
of pre- existing CAR- T therapy are ongoing, and novel, 
new- generation CARs are being explored through new 
therapeutic targets, for instance, CD19/22 bispecific 
CAR- Ts developed to overcome the issue of CD19 anti-
genic loss in B- ALLs.128 129 Armoured CAR- T is also been 
developing to improve efficacy and to overcome immuno-
suppressive TME.130 Efforts to overcome defective APM 
and HLA loci loss also include the exploration of the 
innate immunity, including the development of adoptive 
NK cell therapy, with promising early signals.131

Promising new interdisciplinary technologies will 
augment precision immunotherapy. A recent deep- 
learning approach successfully predicts the microsatellite 

instability status in gastrointestinal cancers,132 and 
radiomics can now monitor TIL distribution and assess 
response to ICI.133 134 Systems and computational biology, 
artificial intelligence, deep learning and digital medi-
cine will all play an increasing role in precision immu-
notherapy, including improving the power of prediction, 
patient enrichment, diagnostics, therapeutic design and 
decision making, monitoring, evaluation of outcomes 
and survivorship.135

ConClusIons
The aspirational goal of precision immunotherapy is to 
be able to identify the right patient for the right treat-
ment and to accurately predict a patient’s best response to 
highly tuned, personalised immunotherapies guided by 
biomarkers, including phenotypic, genotypic, proteomic, 
cellular or metabolic ones. In the treatment journey, 
we envision a comprehensive ‘immunoscore’ for each 
patient, with the aid of machine learning and algorithms 
assigning weightage to respective biomarkers.

With improved technology and reduced cost of NGS 
and other deep analytics, further composite analyses 
can be made of the TME, host immune profile, and the 
tumour omics in therapeutic decision making. A patient 
entering the future precision immunotherapy clinic, 
instead of receiving only his tumour PDL1 expression by 
IHC, may receive comprehensive reports of PDL1 expres-
sion by multiplex immunofluorescence imaging, mRNA 
sequencing and/or exosome analyses. If the patient is 
identified to harbour known resistance pathways, rational 
strategies with combinatorial treatment approaches 
and sequencing can be designed for better outcomes. 
Lifestyle and biology modifying strategies may include 
prescribing an oral microbiome pill, avoiding prolonged 
antibiotics and consuming more high- fibre diet to opti-
mise ICI response. Highly customised, fitter, stronger, 
more persistent, ‘better armed’ T cells can be used as a 
new generation of engineered CAR- T or other adoptive 
cell therapies. In addition, third- party tumour- specific 
donor T cells sourced from a donor cell bank, requiring 
either only a partial HLA match or gene- editing to avoid 
detection by host immunity.

We look forward to a future where such cutting- edge 
technologies will become more cost- effective to enable 
rapid and accurate clinical decision making, patient 
management and long- term follow- up. While still a work 
in progress, tailoring ‘bespoke’ precision immunotherapy 
for each cancer patient could become a routine reality 
and not just a quixotic quest.
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