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Summary

Genome sequencing projects are discovering millions of genetic variants in humans, and 

interpretation of their functional effects is essential for understanding the genetic basis of variation 

in human traits. Here we report sequencing and deep analysis of mRNA and miRNA from 

lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project – the first uniformly 

processed RNA-seq data from multiple human populations with high-quality genome sequences. 

We discovered extremely widespread genetic variation affecting regulation of the majority of 

genes, with transcript structure and expression level variation being equally common but 

genetically largely independent. Our characterization of causal regulatory variation sheds light on 

cellular mechanisms of regulatory and loss-of-function variation, and allowed us to infer putative 

causal variants for dozens of disease-associated loci. Altogether, this study provides a deep 

understanding of the cellular mechanisms of transcriptome variation and of the landscape of 

functional variants in the human genome.
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Introduction and data set

Interpreting functional consequences of millions of discovered genetic variants is one of the 

biggest challenges in human genomics1. While genome-wide association studies have linked 

genetic loci to various human phenotypes and the functional annotation of the genome is 

improving,2,3, we still have limited understanding of the underlying causal variants and 

biological mechanisms. One approach to address this challenge has been to analyze variants 

affecting cellular phenotypes, such as gene expression,4–8 known to affect many human 

diseases and traits.9,10

In this study, we characterize functional variation in human genomes by RNA-sequencing 

hundreds of samples from the 1000 Genomes project1, the most important reference data set 

of human genetic variation, thus creating the biggest RNA sequencing data set of multiple 

human populations to date. We not only catalogue novel loci with regulatory variation but 

also, for the first time, discover and characterize molecular properties of causal functional 

variants.

We performed mRNA and small RNA sequencing on lymphoblastoid cell line (LCL) 

samples from 5 populations: the CEPH (CEU), Finns (FIN), British (GBR), Toscani (TSI) 

and Yoruba (YRI). After quality control, we had 462 and 452 individuals (89–95 per 

population) with mRNA and miRNA data, respectively (Fig. S1–11, Table S1). Of these, 

421 are in the 1000 Genomes Phase 1 dataset1, and the remaining were imputed from SNP 

array data (Fig. S3, Table S2). RNA-seq was performed in seven laboratories, and the 

smaller amount of variation between laboratories than individuals demonstrated that RNA 

sequencing is a mature technology ready for distributed data production (MW p < 2.2 × 

10−16 for mRNA, p = 1.34 × 10−10 for miRNA; Fig. 1a, S11;11). To discover genetic 

regulatory variants, we mapped cis-QTLs to transcriptome traits of protein-coding and 

miRNA genes separately in the European (EUR) and Yoruba (YRI) populations (Fig. S12, 

Table S3, Table 1). The RNA-seq read, quantification, genotype and QTL data are available 

open-access (see Data Access section).

Transcriptome variation in populations

This first uniformly processed RNA-seq data set from multiple human populations allowed 

high-resolution analysis of transcriptome variation. Individual and population differences in 

transcription can manifest in (1) overall expression levels, and (2) relative abundance of 

transcripts from the same gene (transcript ratios). Deconvolution of the relative contribution 

of these12 indicates that this ratio is characteristic for each gene with transcript ratio being 

on average more dominant (Fig. 1b, Fig.S13, S14). Population differences explain a small 

but significant proportion of 3% of total variation (MW p < 2.2 × 10−16). In addition to this 

genome-wide perspective to population variation, we identified 263–4379 genes with 

differential expression and/or transcript ratios between population pairs (PGF, JM, MGP, 

MB, TL, TW, MRF, A Guin, MAR, TGC, PR, ETD, RG, MS, submitted). Interestingly, 

continental differences between YRI-EUR population pairs have much higher contribution 

of genes with different transcript usage than European population pairs (75–85% versus 6–

40%; Fig. 1c, Fig. S14). This has not been observed before in humans, but it is consistent 
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with splicing patterns capturing phylogenetic differences between species better than 

expression levels13,14.

We quantify a total of 644 autosomal miRNAs in >50% individuals of which 60 have 

significant cis-mirQTLs for miRNA expression (Fig. S15, Table 1), showing that genetic 

effects on miRNA expression are much more widespread than the previously identified 

loci15. To complement previous studies of miRNA function in cell perturbation experiments, 

we analyzed miRNA-mRNA interaction in our steady-state population sample. Of 100 

miRNA families, 32 correlated with the expression of predicted target exons in a highly 

connected network (P<0.001, Fig. 1d, Table S4), including miRNA families with important 

immunological or lymphocyte functions, such as miR-150, miR-155, miR-181, and 

miR-14616. Interestingly, 45% of the associations were positive – consistent with previous 

results15 – even though based on knockout experiments miRNAs mostly downregulate 

genes. Analyzing the direction of causality, cis-mirQTLs had small trans-eQTL effects to 

predicted targets only when effects were negative (pi1 = 0.11 versus pi1 = 0, Fig.S16), 

suggesting that miRNAs indeed downregulate their targets. Positive correlations may be 

driven by other effects, which is supported by overrepresentation of transcription factors in 

the network (29%, Fisher p= 2.1 × 10−7 for negative targets and 26% p=4.0 × 10−4 for 

positive targets). This suggests feedback loops of both mRNA and miRNA genes affecting 

the expression of each other, and supports the idea that under steady-state conditions 

miRNAs confer robustness to expression programs17. Altogether, these results highlight the 

added insight into the role of miRNAs in regulatory networks from analysis of population 

variation.

Genetic effects on the transcriptome

Expression QTL (eQTL) analysis of protein-coding and lincRNA genes uncovered 

extremely widespread regulatory variation, with 3,773 genes having a classical eQTL for 

gene expression levels (Table 1). While the potential of RNA-seq to discover other 

transcriptome traits such as splicing variation is widely known7,8,18–20, a comprehensive 

analysis has been lacking. To this end, we first mapped eQTLs for exon quantifications that 

can capture both gene expression and splicing variation, discovering as many as 7,825 genes 

with an eQTL, referred to as eQTLs in this paper unless otherwise specified. Regressing out 

the most significantly associated variant from the EUR eQTL analysis showed that as many 

as 34% of the genes have a second, independent eQTL for any of their exons (of which 7% 

for the exon of the first association). Thus, there is substantial allelic heterogeneity for 

regulatory effects on a single gene and independence of exons of the same gene (Fig.S17), 

To investigate genetic effects specifically on splicing, we discovered 639 genes with 

transcript ratio QTLs (trQTLs) affecting the ratio of each transcript to the gene total – the 

largest number of genetic effects on transcript structure identified to date. The lower number 

relative to gene eQTLs is likely caused by higher noise in model-based transcript 

quantifications than in gene counts. To characterize the relationship of genetic variants 

affecting expression versus splicing, we regressed out the best trQTL variant from the gene 

eQTL analysis in 279 genes with both types of QTLs. The results showed that the causal 

variants are independent in ≥57% of these genes (Fig. S18), suggesting that transcriptional 
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activity and transcript usage are usually controlled by different regulatory elements of the 

genome.

The transcript differences driven by trQTLs involve exon skipping only in 15% of genes, 

with as much as 48% and 43% varying in 5’ and 3’ ends, respectively (in EUR; categories 

not mutually exclusive; Fig. 2b). To further analyze transcript modifications through 

unannotated transcript elements, we mapped cis-eQTL for expressed retrotransposon-

derived elements (repeat elements) outside genes, known to be an important source for 

evolution of new transcripts.21 We detected widespread sharing between the 5,763 cis-

eQTLs discovered for repeat elements (Fig. S19, Table 1) and nearby exon eQTLs: of the 

best repeat eQTLs variants in EUR, 49% were significant and 6% the top eQTLs variants for 

exons of a nearby gene (3.8× and 26× enrichment; Fisher p<2.2 × 10−16). This suggests that 

retrotransposon-derived elements can share regulatory elements with nearby genes. These 

results provide the first genome-wide characterization of genetic effects on transcript 

structure through annotated and unannotated 3’ and 5’ changes, which may predominate 

exon skipping that previous studies have focused on19. This opens new perspectives for 

understanding their cellular and high-level effects, as end modifications will rarely change 

protein structure but may affect post-transcriptional regulation.

Altogether, we present the largest and the most diverse catalog of cis-regulatory variants 

discovered in a single tissue to date. The majority of the analyzed genes – 8,329 out of 

13,970 – have one or several QTLs for different transcript traits, a resolution enabled by in-

depth analysis of high-quality transcriptome and genome sequencing data. These results 

highlight both allelic heterogeneity of regulatory variants and phenotypic heterogeneity of 

diverse transcriptome traits of individual genes.

Properties of regulatory variants

To understand how eQTLs affect gene expression, we compared the properties of the top 

(most significant) eQTL variant per gene to a null of non-eQTL variants (matched for 

distance from TSS and minor allele frequency). The best eQTL variant may not always be 

the causal variant due to noise in genotype and phenotype data, and to estimate our ability to 

pinpoint causal variants, we contrasted the properties of the 1st eQTL to the 2nd, 5th and 10th 

best eQTL variants (Fig. 2a).

First, comparing the eQTL with the best p-value to the matched null showed an enrichment 

of indels among top eQTLs (13% = 1.22× enrichment; Fisher p = 1.9 × 10−3 in EUR; 

Fig.S20), suggesting that indels are more likely to have functional effects than SNPs. eQTLs 

are highly enriched in several noncoding elements from the Ensembl Regulatory Build, such 

as many transcription factor peaks (median enrichment 3.3×, median p = 0.009 in EUR; Fig. 

2a, S21), DNase1 hypersensitive sites (3.4×, p = 1.00 × 10−20), as well as in chromatin states 

of active promoters (3.5×, p = 1.08 × 10−36) and strong enhancers (median 2.4×, median p = 

1.14 × 10−5). Within genes, splice-site (3.8×, p = 1.65 × 10−5) and nonsynonymous (2.3×, p 

= 4.84 × 10−6) enrichments point to putative regulatory functions of coding variants. 

Transcript ratio QTLs are overrepresented in splice sites (6.8×, p = 2.44 × 10−7), as 

expected, but also for example in 3’UTRs (2.5×, p = 1.83 × 10−6; Fig. S22) and promoters 
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(2.4×, p = 5.79 × 10−6). Altogether, the higher resolution of annotations and eQTLs relative 

to previous studies22,23 provides important insight into the role of individual transcription 

factors and other regulatory elements mediating genetic regulatory effects.

Functional enrichment typically decreases rapidly from the best eQTL variant towards lower 

ranks. To estimate how often the first variant is likely to be the causal regulatory variant, we 

calculated the annotation enrichment of the best eQTL variants relative to the null for (1) all 

eQTL loci, and (2) loci where the best eQTL variant is very likely causal due to having a 

log10 p-value >1.5 higher than the second variant (Fig.S23). The ratio of the enrichments (1) 

and (2) yields an approximation of the best variant being causal in 55% of EUR and 74% of 

YRI eQTLs, with more conservative estimates being 34% and 41%, respectively (Fig.S23). 

Thus, we have reasonable power to pinpoint causal regulatory variants from unbiased p-

value distributions alone without annotation priors23. This is enabled by not relying on SNP 

array data22: in 81% of the cases the best variant is not on the Omni 2.5M chip (Fig.2c, 

Fig.S25). Validating the putative causal effects, we observed that the best eQTL variants in 

CTCF peaks showed more allele-specific binding compared to matched null variants (p = 

2.0 × 10−3, Fig.S24) in CTCF ChIP-seq data from 6 individuals24, and the best eQTLs were 

enriched in DNase1 hypersensitivity QTLs25 (3.3×, p = 2.51 × 10−6 in EUR, 7.9×, p < 2.2 × 

10−16 in YRI). In conclusion, we not only identify broad eQTL loci but also substantially 

increase our confidence to pinpoint individual causal variants and their functional 

mechanisms.

Of the 6,473 variants in the GWAS catalog26, 16% are eQTLs and 1.8% are trQTLs in EUR 

or YRI, but a high overlap is observed also by chance for a frequency-matched GWAS null 

(11% and 0.84%, respectively). The modest (albeit significant: eQTL chi2 p < 2.2 × 10−16; 

trQTL p = 7.2 × 10−9) enrichment9,10 is due to eQTLs being very ubiquitous, and 

consequently, a GWAS variant being an eQTL does not mean that the regulatory change is 

necessarily driving the disease association. Our data offers a unique opportunity to address 

the key question of whether the causal eQTL variant is also causal for the disease. The 

enrichment of GWAS SNPs in the top eQTL ranks (p=1.18 × 10−7; Fig. S26) is a genome-

wide signal of shared causality. To further characterize individual loci, we selected 78 eQTL 

regions that are likely causal signals for 91 GWAS SNPs (estimated by the RTC 

method),6,9, and in these loci our best eQTL variant is the putative disease-causing variant 

(Fig.S27, Table S5). Figure 2d shows an example of the DGKD gene where an intronic SNP 

rs838705 is associated to calcium levels27, and 21 kb downstream the top eQTL – a 2bp 

insertion – is the likely causal variant affecting calcium levels. Thus, the integration of 

genome sequencing and cellular phenotype data helps not only to understand causal genes 

and biological processes but also to pinpoint putative causal genetic variants underlying 

GWAS associations.

Allelic and oss-of-function effects

Transcript differences between the two haplotypes of an individual allow quantification of 

regulatory variation even when eQTLs cannot be detected e.g. due to low allele frequency. 

We analyzed both allele-specific expression (ASE) and allele-specific transcript structure 

(ASTS), a novel approach based on exonic distribution of reads (Fig.S2, S28–33). This first 
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genome-wide quantification of allelic effects on transcript structure shows that it is almost 

equally common as ASE, with significant (p < 0.005) ASE and ASTS in a median of 6.5% 

and 5.6% sites (out of 8,420 and 2,135) per individual, respectively. Furthermore, the 

substantial overlap of ASE and ASTS signals (Fig.3a) suggests that ASE is actually often 

driven by transcript structure variation. The low population frequency of the vast majority of 

ASE (Fig.3b) and ASTS (Fig.S30) events points to widespread rare regulatory variation that 

is undetectable in eQTL analysis.

An important caveat in ASE analysis has been the possibility that it can be driven by purely 

epigenetic effects rather than cis-regulatory genetic variants. We investigated this by a novel 

approach to quantify concordance between ASE and putative regulatory variants (prSNPs), 

where heterozygotes but not homozygotes for a true rSNP should have differential 

expression of the two haplotypes, i.e. allelic imbalance in an aseSNP (Fig. S2, S34). We 

calculated concordance of allelic ratios of 5,479 aseSNPs and genotypes of all SNPs +/− 

100kb from TSS, with an empirical p-value from 100–1000 permutations. Assigning the 

prSNPs with empirical p-value <0.01 to p<0.001 as likely rSNPs yielded a total of 224,640 

rSNPs (7.4% of tested, Table S6) that clustered close to TSS as expected for regulatory 

variants5 and replicate the majority of eQTL signals (Fig. S35). Nearly all aseSNPs (95%) 

had more observed rSNPs than expected; thus ASE appears to be nearly always genetic 

rather than driven by genotype-independent allelic epigenetic effects. rSNP signals are 

widespread and robust also outside eQTL genes (Table S6, Fig.S35), indicating potential to 

capture novel effects. Variants that are both eQTLs and rSNPs show higher enrichment in 

functional annotations (Fig. S3c, S36), suggesting that integrated analysis may improve 

resolution to find causal regulatory variants. Altogether, we show evidence that ASE effects 

are mostly rare and nearly always genetic, and ASE-based analyses may complement eQTL 

analysis in identification of especially low-frequency regulatory variants in future studies.

While QTL and prSNP analyses aim at identifying previously unknown regulatory variants, 

we can also quantify functional effects of predicted loss-of-function variants.28 Our RNA-

seq data captures 839 premature stop codon and 849 splice-site variants, with the much 

higher number than in previous studies enabling proper quantification of their transcriptome 

effects. As expected, premature stop variants often show loss of the variant allele (Fig, S37) 

indicating nonsense-mediated decay29 as in previous studies28,30. Variants close to the end 

of the transcript appear to escape NMD as predicted29. However, of the variants predicted to 

trigger NMD, in 68% (54% of rare variants MAF<1%) the ASE results do not support this 

(Fig. 4), suggesting currently unknown mechanisms of NMD escape.

Finally, we modeled how genetic variants affect splicing affinity in the entire splicing motif 

rather than only the canonical splice site, which is the first comprehensive set of such 

predictions genome-wide (PGF et al., submitted). Nonreference alleles have a lower splicing 

affinity on average (p<2.2 × 10−16, Fig. S38). For the 10% of these variants predicted to 

destroy the motif, individuals carrying two motif-destroying alleles have 29% lower median 

inclusion rates of the affected exon (p<2.2 × 10−16, Fig.4c), indicating that our RNA-seq 

data is consistent with predictions of splicing effects.
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Conclusions

By integrated analysis of RNA and DNA sequencing data we were able to obtain a unique 

view to variation of the transcriptome and its genetic causes, moving beyond eQTL catalogs 

to a high-resolution view of genetic regulatory variants. We deconvoluted the effect of gene 

expression and transcript structure in population differences of the transcriptome, in QTLs, 

and in allele-specific effects, and show that these two dimensions of transcript variation 

appear equally common but largely independent. Genetic regulatory variation is the rule 

rather than the exception in the genome with widespread allelic heterogeneity, and is the 

major determinant of allelic expression. For the first time, we were able to predict large 

numbers of causal regulatory variants, and thus provide a detailed view into cellular 

mechanisms of regulatory and loss-of-function variation, which is essential for future 

functional prediction of variants discovered in personal genomes.

A subset of this functional variation at the cellular level will also have effects on higher-

level traits. We demonstrate how eQTL data can be used to pinpoint putative causal GWAS 

variants of individual loci, which is important as a new paradigm of how integration of 

cellular phenotypes and genome sequencing data can uncover causal variants and biological 

mechanisms underlying diseases. The landscape of regulatory variation in this study adds a 

functional dimension to the 1000 Genomes data, which is used in effectively all disease 

studies, and together they form an important joint reference data set of variation and 

function of the human genome. Ultimately, this study illustrates the power of combining 

genome sequence analysis with a high-depth functional readout such as the transcriptome.

Methods

Total RNA was extracted from EBV transformed lymphoblastoid cell line pellets by the 

TRIzol reagent (Ambion), and mRNA and small RNA sequencing of 465 unique individuals 

was performed on the Illumina HiSeq2000 platform, with paired-end 75bp mRNA-seq and 

single-end 36bp small RNA-seq. Five samples were sequenced in replicate in each of the 

seven sequencing laboratories. The mRNA and small RNA reads were mapped with GEM31 

and miraligner32, respectively, with an average of 48.9M mRNA-seq reads and 1.2M 

miRNA reads per sample after QC. Numerous transcript features were quantified using 

Gencode v1233 and miRBase v1834 annotations: protein-coding and lincRNA genes (16,084 

detected in >50% of samples), transcripts (67,603; with FluxCapacitor7), exons (146,498), 

annotated splice junctions (129,805; analyzed in detail in Ferreira et al. submitted), 

transcribed repetitive elements (47,409), and mature miRNAs (715). Data quality was 

assessed by sample correlations and read and gene count distributions, and technical 

variation was removed by PEER normalization35 for the QTL and miRNA-mRNA 

correlation analyses11. The samples clustered uniformly both before and after normalization. 

The genotype data was obtained from 1000 Genomes Phase 1 data set for 421 samples (80× 

average exome and 5× whole genome read depth), and the remaining 41 samples were 

imputed from Omni 2.5M SNP array data. Furthermore, we did functional reannotation for 

all the 1000 Genomes variants using Gencode v12. QTL mapping was done with linear 

regression, using genetic variants with >5% frequency in 1MB window and normalized 
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quantifications transformed to standard normal. Permutations were used to adjust FDR to 

5%. Full details are provided in Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Transcriptome variation
a) Spearman rank correlation of replicate samples, based on mRNA exon and miRNA 

quantifications of 5 individuals sequenced 8 and 7 times for mRNA and miRNA, 

respectively, and separated by the individual or the sequencing lab being the same or 

different. The quantifications have been normalized only for the total number of mapped 

reads (see Fig. S11 for correlations after normalization). b) The proportion of expression 

level variation (as opposed to splicing) of the total transcription variation between 

individuals in each population, measured per gene. c) Proportion of genes with differential 

expression levels and/or transcript usage between population pairs, out of the total listed on 

the right-hand side. d) Network of significant miRNA families (P<0.001; yellow) and their 

significantly associated mRNA targets (P<0.05; purple). The edges display negative (green) 

and positive (red) associations.
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Figure 2. Transcriptome QTLs
a) Enrichment of EUR exon eQTLs in functional annotations for the 1st, 2nd, 5th and 10th 

best associating eQTL variant per gene, relative to a matched null set of variants denoted by 

the horizontal line. The numbers are −log10 p-values of a Fisher test between the best eQTL 

and the null. b) Classification of changes caused by transcript ratio QTLs. c) The rank of the 

best Omni2.5M SNP among the significant EUR eQTL variants per gene. d) DGKD gene 

locus where an intronic SNP rs838705 is associated to calcium levels (red), and the top 

eQTL variant 21 kb downstream (blue) is a very likely causal variant, close the TSS of two 

transcripts in the MEF2A,C binding region.
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Figure 3. Allele-specific effects on expression and transcript structure
a) Sharing of allele-specific expression (ASE) and transcript structure (ASTS) signals: the 

distribution of ASTS p-value of the sites with significant (p<0.005) ASE in the same 

individual, and vice versa. The ASE p-values are calculated from sites sampled to exactly 30 

reads. The numbers denote the pi1 statistic measuring the enrichment of low p-values. b) 

Frequency of significant ASE event in the population (x-axis) and their effect size (|0.5 – 

REF/TOTAL|), calculated per ASE SNP. Only ASE SNPs with >=20 heterozygote 

individuals with >=30 reads were included, and the estimates were corrected for coverage 

bias and false positives by sampling and permutations. c) Enrichment of variants in 

regulatory annotations relative to a matched null distribution for the most significant eQTL 

variants, and for the subset of these that are also rSNPs. Categories with highest amount of 

data are shown (see Fig. S36 for all categories, see also Fig. 2a).
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Figure 4. Transcriptome effects of loss-of-function variants
A) Nonsense-mediated decay due to premature stop codon variants was measured using 

allele-specific expression. The distribution of non-reference allele ratios (on the y-axis) for 

premature stop variants sorted on the x-axis according to derived allele frequency, split to 

sites predicted to trigger and escape NMD. The dots denote the median across individuals, 

and the vertical lines show the range of ratios for variants carried by several individuals. The 

grey vertical lines denote derived allele frequencies of 0, 0.001 and 0.01. B) Exon inclusion 

scores for variable exons for individuals that carry 0, 1 or 2 copies of variants that destroy a 

splice motif, with p-value from Mann-Whitney test.
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Table 1

Numbers of transcriptome features with a QTL (FDR 5%)

Total EUR (n=373) YRI (n=89) Union

exon eQTL 12981 genes 7390 2369 7825

gene eQTL 13703 genes 3259 501 3773

transcript ratio QTL 7855 genes 620 83 639

mirQTL 644 miRNAs 57 15 60

Transcribed repeat eQTL 43875 repeats 5763 1055 6069
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