
RESEARCH ARTICLE

Transforming Palmyra Atoll to native-tree

dominance will increase net carbon storage

and reduce dissolved organic carbon reef

runoff

Kate Longley-WoodID
1☯*, Mary EngelsID

2☯, Kevin D. Lafferty3‡, John P. McLaughlin4‡,

Alex Wegmann5‡

1 The Nature Conservancy, Protect Oceans Land and Water Program, Boston, Massachusetts, United

States of America, 2 Department of Natural Resources and Society, University of Idaho, Moscow, Idaho,

United States of America, 3 U.S. Geological Survey, Western Ecological Research Center at Marine Science

Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America,

4 University of California, Santa Barbara, Marine Science Institute, Santa Barbara, California, United States

of America, 5 The Nature Conservancy, Sacramento, California, United States of America

☯ These authors contributed equally to this work.

‡ KDL, JPM and AW also contributed equally to this work.

* Kate.Longley-Wood@tnc.org

Abstract

Native forests on tropical islands have been displaced by non-native species, leading to

calls for their transformation. Simultaneously, there is increasing recognition that tropical for-

ests can help sequester carbon that would otherwise enter the atmosphere. However, it is

unclear if native forests sequester more or less carbon than human-altered landscapes. At

Palmyra Atoll, efforts are underway to transform the rainforest composition from coconut

palm (Cocos nucifera) dominated to native mixed-species. To better understand how this

landscape-level change will alter the atoll’s carbon dynamics, we used field sampling,

remote sensing, and parameter estimates from the literature to model the total carbon accu-

mulation potential of Palmyra’s forest before and after transformation. The model predicted

that replacing the C. nucifera plantation with native species would reduce aboveground bio-

mass from 692.6 to 433.3 Mg C. However, expansion of the native Pisonia grandis and

Heliotropium foertherianum forest community projected an increase in soil carbon to at least

13,590.8 Mg C, thereby increasing the atoll’s overall terrestrial carbon storage potential by

11.6%. Nearshore sites adjacent to C. nucifera canopy had a higher dissolved organic car-

bon (DOC) concentration (110.0 μMC) than sites adjacent to native forest (81.5 μMC), sug-

gesting that, in conjunction with an increase in terrestrial carbon storage, replacing C.

nucifera with native forest will reduce the DOC exported from the forest into in nearshore

marine habitats. Lower DOC levels have potential benefits for corals and coral dependent

communities. For tropical islands like Palmyra, reverting from C. nucifera dominance to

native tree dominance could buffer projected climate change impacts by increasing carbon

storage and reducing coral disease.
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Introduction

Planting trees can be a win-win for nature when the land to be restored is unforested, but pro-

posals to replace non-native trees like coconut palms (Cocos nucifera) with native forest habitat

can lead to societal conflicts and could impact carbon storage and cycling. At Palmyra Atoll

(“Palmyra”), efforts are underway to transform the rainforest community composition from

C. nucifera dominated to native mixed-species. Here, we use the term transform, rather than

restore because the management objective is not to recreate a predetermined baseline vegeta-

tion community, but rather to optimize community conditions to enhance ecological out-

comes. Palmyra rainforest management and transformation efforts have conservation benefits

without societal conflicts; however, it is less clear how changes in forest composition will alter

Palmyra’s carbon stocks and flows. Although relatively isolated from human disturbance, Pal-

myra, like other island ecosystems [1, 2], is impacted by invasive plants [3]. C. nucifera has his-

torically been recorded as native vegetation [4]; however, it is now naturalized outside of the

species’ southeast Asian place of origin, and is characterized as introduced or non-native to

Palmyra in the existing literature [3, 5–7]. Historical cultivation for copra at Palmyra begin-

ning in the 19th century [4, 5, 8] and subsequent natural range expansion led to C. nucifera
occupying ~40% of the forest canopy today [9].

The C. nucifera expansion came at the expense of Palmyra’s formerly large native forests.

The ten tree species native to Palmyra compete with C. nucifera for light [10] and freshwater

[5, 11], and losses to native forests have indirect impacts on ecosystem dynamics of Palmyra’s

rainforest. Less food for invertebrate herbivores [12] under the C. nucifera canopy has reduced

prey for native geckos [3], the only resident terrestrial vertebrate. Moreover, nitrogen and

phosphorus deposits are orders of magnitude lower under C. nucifera than under the native

broadleaf canopy preferred by roosting seabirds [3, 13]. In marine environments, the proxim-

ity of nutrient-poor palm-dominated forests has been linked to a decrease in plankton abun-

dance and growth, impacting the foraging behavior of manta rays [3, 14]. The loss of native

forest cover, especially the decline of the iconic atoll native Pisonia grandis [12], coupled with

the expansion of C. nucifera, motivated efforts to transform Palmyra’s rainforest from a palm-

dominated canopy to a mixed-species rainforest with native trees and shrubs.

Spearheaded by the United States Fish and Wildlife Service (USFWS) and The Nature Con-

servancy (TNC), these management efforts are expected to take five years and include removal

of C. nucifera from 95% of the emergent land area and replanting native forest species. The for-

est transformation program at Palmyra started in 2019 [41]. Forests fix carbon through photo-

synthesis, and forest biomass (i.e., roots, trunks, branches, and leaves) is approximately 50%

carbon [15]. Some of this carbon-rich biomass eventually falls to the forest floor as litter,

which then decomposes and adds to soil organic carbon (SOC) [16]. The amount of carbon

stored in forest biomass and soils is largely influenced by climatic conditions [15]; however,

tree species can alter carbon budgets at the local scale [17–19]. With rain, the water soluble

fraction of SOC becomes dissolved organic carbon (DOC) [20], which can leach into adjacent

water bodies. The DOC flux in temperate forest is between 6% and 30% (average 17%) of

aboveground litter input [21, 22]. DOC affects various processes on coral reefs, including

favoring bacterial populations associated with coral disease [23]. The rate of DOC flux varies

by vegetation type [21], and increases with precipitation, pH, and decomposition [22], envi-

ronmental conditions that are common at Palmyra, though fine scale data on these metrics do

not exist at the scale of the sampling site. This study aims to assess the carbon implications of

the ongoing forest management and transformation efforts at Palmyra with the hypothesis

that an increase in the ratio of native to non-native trees will have a net positive increase on

carbon accumulation–an added benefit of planned management activities. To project carbon-
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related impacts, this study measured existing carbon budgets in Palmyra’s C. nucifera-domi-

nated forest and remnant native mixed-species forest. We used field sampling, remote sensing,

and parameter estimates from the literature to evaluate above-ground carbon storage, SOC

accumulation and DOC export. This data informed models of how the atoll’s carbon budget

and export will change under C. nucifera removal and replacement with native trees and

shrubs. C. nucifera is widespread throughout Oceania [7], and the results from this study can

inform efforts to conserve and restore native-tree dominance on other islands.

Methods

Estimating soil carbon

Soil carbon field sampling. Field sampling was conducted within the Palmyra Atoll

National Wildlife Refuge (5˚52’ N, 162˚04’ W), jointly managed by TNC and USFWS.

Research reported here was conducted under USFWS Special Use Permits 12533–19013 and

12533–16007. No protected species were sampled.

To estimate soil carbon storage across Palmyra’s dominant tree species, we structured our

sampling to account for how islet size and vegetation community, (and by extension, nutrient

subsidies) could influence soils. The 17 islets (out of a total of 28) sampled in this study form a

representative subset in terms of relative size: 8 large (>6.5 ha), 5 medium (between 1 and 6.5

ha) and 4 small (<1 ha). In 2016, 72 sampling sites spanning seven canopy types were chosen

at random after stratifying by islet and canopy type. Sampling efforts focused on the most

widespread and dominant canopy types: C. nucifera (N = 15), Pandanus tectorius (N = 15),

Scaevola sericea/Heliotropium foertherianum (N = 15) and P. grandis (N = 14). Canopy types

with more restricted distributions were sampled less: Terminalia catappa (N = 1), no canopy

cover (N = 9), and Hibiscus tiliaceus (N = 3). The replicates for each canopy type came from

different islets, exceptH. tiliaceus which had multiple sites from one islet due to its limited

distribution.

We augmented the 2016 sampling data in 2019 by adding 27 sites (totaling 99 sites), evening

the distribution between samples taken in homogeneous tree communities (n = 47) and

mixed-species communities (n = 52). This was beneficial as mixed tree stands can have differ-

ent carbon accumulation characteristics than pure stands [24]. This also increased the number

of samples collected from islets on the western edge of the lagoon, where dredging activities

during the mid-20th century resulted in man-made islets (Sand, Lesley, and Dudley). These

islets may have different soil properties and thus different carbon storage capacities than soils

occurring on natural islets. Samples from both time periods were assigned a vegetation com-

munity type based on remote sensing data [9]. 2019 sampling efforts covered the five most

dominant woody-stemmed species (C. nucifera,H. foertherianum, P. tectorius, P. grandis, and

S. sericea) on five islets (Cooper, Eastern, Dudley, Sand, and Lesley Islets). Sampling locations

are shown in Fig 1. Table 1 lists the number of samples by islet and islet area and Table 2 lists

the number of samples by vegetation community type, along with the proportional representa-

tion of each community type in the study area. Additional sample data can be found in S1

Table.

At each sampling location, 1,000–2,000 ml of soil were removed from the first 0–15 cm of

soil with a small trowel and stored in a sealable plastic bag. Because the coarse textured nature

of atoll soils makes traditional coring difficult, we followed the water method for sample vol-

ume [25], which determines volume by lining the sample hole with a thin plastic layer and

recording the volume of water needed to fill the hole to the reference surface. Hardpan depth

at each site was measured with a soil probe. After collection, soil samples were passed through
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Fig 1. Map of study area at Palmyra. Sampling locations and years are provided for soil organic carbon (SOC), basic

wood density (BWD) and dissolved organic carbon (DOC). Transformation plot boundaries are also depicted.

Basemap data depicting Palmyra Atoll islet locations are made available in the public domain from the USGS [9].

Global reference map in the inset is made available in the public domain from Natural Earth.

https://doi.org/10.1371/journal.pone.0262621.g001

Table 1. Soil samples by islet.

Islet No. Samples Islet Area (ha)

Aviation 3 4.28

Cooper 18 91.81

Dudley 7 0.89

Eastern 7 11.43

Engineer 7 6.52

Fern 2 0.25

Holei 4 11.42

Kaula 5 14.18

Lesley 6 0.61

N. Fighter 5 6.13

Pelican 3 6.07

Paradise 5 6.21

Portsmouth 1 0.26

S. Fighter 5 8.12

Sand 11 6.92

Strawn 5 7.04

Whippoorwill 5 1.18

Number of soil samples by islet, with the area of each islet.

https://doi.org/10.1371/journal.pone.0262621.t001
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a 2 mm sieve, air-dried, and then the<2 mm fraction was shipped to a laboratory for carbon

analysis.

The samples collected in 2016 were analyzed for both organic carbon and total carbon per-

centage. Although the 2019 samples were analyzed for total carbon only, the organic carbon

fraction for the 2019 samples were estimated based on the relationship between total carbon

and organic carbon derived from the 2016 samples and samples collected at other atolls in the

tropical central Pacific.

Soil carbon modelling approach. To estimate soil carbon values across the study area we

used the ‘randomForest’ statistical package in R [26, 27] to predict soil carbon percentages

using 1 m resolution remotely-sensed vegetation community and tree species dataset as pre-

dictor variables. These variables were selected due to the high-resolution spatial data coverage

across the study area. The “Woody Crowns Palmyra Atoll 2016” dataset [9] from which the

tree species raster was derived contained overlapping polygons, and each pixel in the resulting

raster was assigned the tree species value that was most prevalent in the 1 m cell. Similarly, the

vegetation community raster was derived by converting the “Vegetation Communities Pal-

myra Atoll 2016” polygons [9] to a 1 m raster. To account for known soil heterogeneity [28],

soil carbon percentages for each sample were binned as high (>20%), medium (10–20%), and

low (<10%), informed by the Natural Resource Conservation Service organic/mineral soil def-

initions [29] before running the model. Total carbon was calculated by multiplying the soil

percentage value associated with each category by the mean dry bulk density for each category

(S1 Table), the soil depth (assumed to be 20 cm based on average hardpan depth measure-

ments across all soil sampling locations), and total area.

To verify the results of the random forest model, we also calculated present-day soil carbon

using the mean carbon concentration and dry bulk density values based on the combination of

vegetation community and species at each location. To do so, we converted the 1m community

and tree species rasters to polygons and used a geometric union to create a polygon layer iden-

tifying community type and tree species across the study area. We then assigned mean carbon

concentrations and dry bulk density values to each polygon by calculating averages for each

combination of variables (vegetation community and species) in in the sampling data. Where

a combined mean could not be calculated from the data (i.e., no values for a specific species

was measured or when n< 2 for a combination of community and species), the community

mean value was used as a default. Similarly, if there was no value for the community, the

Table 2. Soil samples by community.

Vegetation community # of Samples % Vegetated Area

C. nucifera 20 29.8%

C. nucifera/H. foertherianum 16 11.5%

H. foertherianum/S. sericea 3 4.0%

H. tiliaceus 2 2.6%

Lepturus repens var. palmyrensis/Fimbristylis cymosa 2 6.5%

P. tectorius 12 13.0%

P. grandis 29 13.2%

P. grandis/H. foertherianum 14 1.4%

S. sericea/H. foertherianum 1 11.8%

Other 0 6.3%

Number of soil samples by vegetation community, and proportional representation of each community type across

Palmyra’s vegetated area.

https://doi.org/10.1371/journal.pone.0262621.t002
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species value was used. If neither value was available, the mean of all samples was used. We

assigned a value of zero to all areas where either community or species value was blank, as this

usually indicated a shoreline polygon overlapping with water, or where either value was either

unknown, water, or the runway area on Cooper Islet. We then calculated present day carbon

values using the same formula described above.

The presence of man-made islets as part of the atoll system provides a unique opportunity

to estimate soil carbon accumulation rates for Palmyra’s vegetation communities. Dudley and

Leslie Islets’ primary vegetation community is P. grandis/H. foertherianum, and the construc-

tion of these islets was completed by 1942. Similarly, the North Fighter Strip Islet, home to

communities ofH. foertherianum/C. nucifera was likely completed by 1943 [30]. We assumed

a linear accumulation rate and estimated the yearly soil accumulation rate for the P. grandis/H.

foertherianum andH. foertherianum/C. nucifera communities by dividing the current esti-

mated soil carbon totals on these islets and dividing them by 77 years and 76 years, respec-

tively, using 2019 as the baseline year to indicate the minimum accumulation rate. As there are

no homogeneous C. nucifera communities on the man-made islets sampled in this study, an

accumulation rate was estimated from available literature [31] by dividing the reported carbon

density at 0–20 cm sampling depth (27 Mg C ha-1) by 20 (the age of the trees). By multiplying

the carbon accumulation rates by the current and projected area estimates for each community

type and then by 15 for the number of years until projected community maturity, we were able

to compare the projected carbon accumulation over 15 years in a no-transformation scenario

to our current transformation scenario, to determine the additional carbon added under the

transformation scenario.

Estimating aboveground carbon

Aboveground carbon field sampling. We derived our basic wood density (BWD; i.e., the

ratio of dry mass over green volume) estimates from the literature and field sampling. BWD

estimates for C. nucifera, Cordia subcordata,H. tiliaceus, and T. catappa were from the French

agricultural research and international cooperation organization (CIRAD) database [32].

BWD estimates for many Palmyra native trees are not present in these databases, so we col-

lected wood from P. grandis,H. foertherianum, P. tectorius, and S. sericea at Palmyra. Wood

was collected at 18 different locations. As the location at Palmyra was not expected to influence

variation of wood density, the sites were not stratified by islet, and instead were collected

opportunistically to coincide with soil sampling locations (Fig 1). At each sampling location, a

single woody branch approximately 10 cm in length was removed from each tree and cut into

discs.

To standardize sampling in a remote location with limited facilities, woody density was

measured (disc diameter and width) at the fiber saturation point [33] (discs were submerged

for 24 hours at ambient pressure) and the anhydrous state (measured and weighed). We did

not have the ability to estimate fiber saturation point and volumetric shrinkage in the field.

These values were estimated as the mean of values reported for 50 tropical tree species by the

Inter-American Institute for Cooperation on Agriculture (IICA) [34], with the exception of P.

grandis, for which genera-specific values were reported. The ranges for both values were nar-

row and final BWD estimates were insensitive to variation within reported ranges. With these

coefficients, we calculated BWD for native trees at Palmyra according to Vieilledent et al. [32],

making them comparable to CIRAD values. BWD values for Palmyra natives fell within the

range reported for congeners in CIRAD [32]. The corrected BWD values (i.e. the minimum,

mean, and maximum values that were calculated using these coefficients) and their sources

can be found in Table 3.
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Aboveground carbon modelling approach. Due to lack of data availability on key met-

rics, we were only able to estimate biomass values for the dominant tree species at Palmyra.

The list of species used in this calculation are shown in Table 3.

We estimated aboveground biomass (AGB) using the equation derived specifically for trop-

ical tree species [38], that incorporates (BWD) (ρ), tree height (H), and diameter (D) where

AGB = .0673 X (ρD2H).976. The mean corrected BWD values (Table 3) were used in this

equation.

The location, species, and height of each tree was derived from remote sensing data [9, 39].

To approximate the point location of each tree trunk, we used the remote sensing dataset rep-

resenting woody crowns to derive the centroid of each crown polygon. In order to estimate the

approximate height of each tree, we then used the elevation data to assign a height to each

point, subtracting 2m from each location to account for height above sea level. A gap in the

LIDAR data [39] for Engineer Islet resulted in some of the points being assigned a mean height

value specific to the species across the study area. Diameters were assigned according to tree

species by taking the quadratic mean of measured tree diameters collected during transect sur-

veys (S3 Table). Aboveground biomass values were then calculated using the above-referenced

equation and then converted to carbon values using a multiplier of 0.47 [40]. The carbon den-

sity (Mg C ha-1) is based on an estimate of areas covered by a canopy (i.e. area that excludes

runway, bare ground, grassland, and unknown land cover).

Projecting future soil and aboveground carbon

To estimate the expected carbon storage following transformation activities (allowing for

transformed forests to reach maturity), we created spatial data layers for expected future vege-

tation community values and future tree species values, based on a transformation area poly-

gon dataset provided by Island Conservation [41]. Within the transformation polygons, the

objective is to remove all C. nucifera, and plantH. foertherianum and P. grandis at a 2:1 ratio.

Table 3. Corrected basic wood density (BWD) values by species.

Species BWD Min (g cm-

3)

BWD Max (g cm-

3)

BWD Mean (g cm-

3)

Source(s) SE Sample Size

(n)

Cocos nucifera 0.31 0.70 0.50 CIRADa, Reyes et al.b 0.08 5

Cordia subcordata 0.18 0.89 0.42 CIRAD, Reyes et al., Hidayat & Simpsonc, GWDDd 0.01 135

Heliotropium
foertherianum

0.23 0.44 0.31 Field data, GWDD 0.01 31 (15)

Hibiscus tiliaceus 0.26 0.66 0.38 CIRAD, GWDD 0.02 28

Pandanus tectorius 0.06 0.32 0.16 Field data, GWDD 0.01 43 (21)

Pisonia grandis 0.12 0.46 0.23 Field data, GWDD, Hidayat & Simpson, IICAe,

Reyes et al.

0.01 51 (21)

Scaevola sericea 0.23 0.57 0.40 Field data 0.06 6 (3)

Terminalia catappa 0.22 0.83 0.47 CIRAD, GWDD, IICA, Reyes et al. 0.01 330

The source notes where the values used to calculate the corrected BWD came from (either literature, field data, or both). For values calculated from field measurements

collected during this study, both the raw and corrected values were used to calculate the mean. The sample size refers to the number of calculations used in the

correction while the number in parentheses indicates the number of samples collected in the field.
aCIRAD [32].
bReyes et al. [35].
cHidayat & Simpson [36].
dGWDD (Global Wood Density Database) [37].
eIICA [34].

https://doi.org/10.1371/journal.pone.0262621.t003
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However, since the survival rate of replantedH. foertherianum is estimated at 46% (S4 Table),

mature, transformed forest communities are expected to have approximately half of the exist-

ing C. nucifera replaced byH. foertherianum and half replaced by P. grandis [41]. These forest

communities will be considered mature 15 years after they have been planted.

Based on the management plan [8, 41], we simulated the future community scenario data

by selecting areas within the remote sensing data [9] that had a community value of C. nucifera
and were within the transformation polygons and reclassified them as the mixed P. grandis/H.

foertherianum community. Similarly, all tree species points classified as C. nucifera within the

transformation areas were randomly reassigned to be either P. grandis, orH. foertherianum,

based on the target 50:50 representation. Heights for newly planted P. grandis andH. foerther-
ianum were assigned based on mean values for those species across the study area. Using the

steps described in previous sections, we then recalculated the aboveground and soil carbon val-

ues based on predicted future community and species values.

Dissolved organic carbon

DOC was sampled at 12 sites (Fig 1) to compare DOC export in native and non-native cano-

pies, though this sample size was deemed too small to try to model DOC concentrations under

the future transformation scenario. Sites were chosen to represent different parts of the atoll,

shorelines facing different directions (N, S, E, W), different canopy types and different C. nuci-

fera removal schedules. Because metabolism by marine organisms can alter DOC flux, and res-

piration and photosynthesis are affected by temperature and light, three HOBO Pendant1

Temperature/Light Data Loggers were place on the shoreline for 24 hours at each DOC site,

and at least one logger returned air temperature and lux each minute for each site (we report

the average daily value per site across all functioning loggers). Lux was converted to relative

lux by dividing values at a site by values at an unshaded site. To confirm that shading reduced

water temperature in the nearshore, we compared four submerged shaded loggers with two

submerged unshaded loggers.

Two samples were taken 50 m apart at each site. Three comparison samples (expected to be

low in terrestrial influence) were taken from surface waters offshore of the atoll, on the forereef

and from lagoon away from shore. Water samples were collected in new quart Ziploc bags

with powder free gloves and put on ice after collection. To process DOC, Luer lock syringes

were filled with 5% HCl for> 1 hour, then rinsed 2 more times with acid, then rinsed with dis-

tilled water before use. Filter holders were similarly soaked in 5% HCl and rinsed. The DOC

filtering procedure involved drawing 60 ml of water from the sample bag into a syringe as a

rinse and then then drawing a second 60 ml for the sample. A combusted GF75 filter was

loaded into a clean 25 mm plastic filter holder and connected to the syringe. The syringe was

used to filter 30 ml of sample to rinse an acid-washed collection vial three times. The last 30ml

was inserted into the vial and the vial was capped. One filter was used per site. Filtered samples

were acidified to pH 2- by adding 50ul 4N HCl, then agitated to mix. Samples were stored and

shipped to Dr. Craig Carlson’s lab at the University of California, Santa Barbara for analysis.

Samples were analyzed via high temperature combustion method on a modified Shimadzu

TOC-V or Shimadzu TOC-L using the standardization and referencing approaches described

in [42]; detection limit was roughly 1 μmol C L–1.

Results

Soil carbon

The soil organic carbon percentages calculated from sample data ranged from 0.48–38.46%,

with the mean value of 6.37%. There were 83 samples in the Low bin, 9 in the Medium bin,
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and 7 in the High bin (Table 4). The values calculated for each sample, the islet where they

were collected, and the assigned bin can be found in S1 Table.

Based on these values, the random forest analyses predicted soil carbon storage values com-

parable to the values calculated using averages from vegetation communities and species mea-

surements. The latter approach predicted baseline values that were comparable (11,856.2 Mg

C in the averages method compared to 11,872.2 Mg C in the random forest method) and

future values that were somewhat higher than those predicted by the random forest analysis

(15,378.2 Mg C in the averages method compared to 13,590.8 in the random forest method).

For this reason, only the results of the random forest model are presented, as they reflect a

more conservative estimate for changes in carbon storage.

The results of the soil carbon analyses indicate a 14.5% gain in soil carbon in the post-

transformation scenario, representing an increase from 73.4 Mg C ha-1 to 84.0 Mg C ha-1

when averaged across the study area (Table 5). The model projects a reduction in soil car-

bon contributions from C. nucifera, H. tiliaceus, and S. sericea, and an increase in soil car-

bon contributions from H. foertherianum, P. tectorius, P. grandis, and T. catappa in under

the transformation scenario (Fig 2A). Kaula Islet (14.2 ha) shows the largest gain, by total

tonnage, with an increase of 509.9 Mg C, and the second largest gain by percentage

(57.0%)—Cooper Islet (91.8 ha) shows the second largest gain by soil carbon, with an

increase of 347.0 Mg C (6.9%). Marine Islet (5.5 ha) has the largest gain by percentage,

with a percent increase of 63.7% (217.7 Mg C) (S5 Table). A map of the distribution of soil

carbon in the pre and post transformation scenarios and areas of loss and gain can be

found in Fig 3A–3C.

Estimates of current carbon soil content in the P. grandis/H. foertherianum and C. nucifera/
H. foertherianum communities on manmade Dudley, Lesley, and North Fighter Strip Islets

suggest a soil carbon accumulation rate of 1.3 Mg Carbon ha-1 year-1 for P. grandis/H. foerther-
ianum and 1.0 Mg C ha-1 yr-1 for C. nucifera/H. foertherianum. 1.3 was the estimated accumu-

lation rate for C. nucifera derived from the literature [31]. This suggests that after 15 years,

there will be marginally less carbon accumulation in the transformation scenario (1,517.3 Mg

C) compared to the no transformation scenario (1,536.9 Mg C) (Table 6).

Table 4. Summary of soil organic percentage values derived from sample data.

Bin No.

Samples

Organic Carbon

Percentage Range

Organic Carbon

Percentage Mean

Organic Carbon

Percentage SE

Dry Bulk Density

Range

Dry Bulk Density

Mean

Dry Bulk

Density SE

Low 83 0.48–9.93 3.64 0.25 0.15–2.09 1 0.05

Medium 9 10.16–15.95 12.88 0.69 1.17–3.84 0.43 0.11

High 7 21.80–38.46 30.43 2.7 0.10–0.54 0.27 0.06

Organic carbon percentage values by bin. Carbon percentage and dry bulk density value ranges, means, and standard errors are also reported.

https://doi.org/10.1371/journal.pone.0262621.t004

Table 5. Summary of current and projected total carbon.

Carbon source Baseline Total (Mg C) Baseline Density (Mg C ha-1) Future Total (Mg C) Future Density (Mg C ha-1) % Change to Total

Aboveground 692.6 4.3 433.3 2.7 -37.4%

Soil 11,872.3 73.4 13,590.8 84.0 +14.5%

Total 12,564.9 77.6 14024.1 86.7 +11.6%

The aboveground carbon values reported are calculated based on the mean basic wood density values. The carbon density (Mg C ha-1) is based on an estimate of areas

partially or fully covered by a canopy (i.e. all areas other than those classified as runway, bare ground, grassland, and unknown land cover).

https://doi.org/10.1371/journal.pone.0262621.t005
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Basic wood density

Corrected basic wood density values for the dominant woody vegetation types at Palmyra are

reported in Table 3. The uncorrected BWD values calculated from field data ranged from 0.16

(P. tectorius) to 0.40 (S. sericea). These raw, pre-corrected BWD values can be found in S2

Table. S1 Fig compares BWD estimates from the literature to both uncorrected and corrected

values from field data.

Aboveground carbon

The results of the analyses indicate a decline of 37.4% in total aboveground carbon in the post-

transformation scenario, representing a decrease from 4.3 to 2.7 Mg C ha-1 when averaged

across the study site (Table 5). On average, C. nucifera at Palmyra exceed both P. grandis and

H. foertherianum in height, density, and basic wood density, meaning that their removal and

replacement results in a loss of aboveground biomass, and, by extension, aboveground carbon

stocks. In the post-transformation scenario, the gain in aboveground carbon storage from the

addition of P. grandis andH. foertherianum does not offset the simultaneous losses in carbon

storage from the removal of C. nucifera (Fig 2B).

Kaula Islet shows the largest loss, both by percentage and total tonnage, with a decrease of

73 Mg C (69%). Cooper Islet shows the second largest loss by total carbon, with a decrease of

65 Mg C. Aviation Islet (4.3 ha) has the second largest loss by percentage, with a percent

decrease of 65% (S5 Table). This is similar to the spatial patterns observed for soil organic car-

bon increases. A map of the distribution of aboveground carbon in the pre and post transfor-

mation scenarios and areas of loss and gain can be found in Fig 3D–3F.

Overall carbon

Overall, the gains in soil carbon in the post-transformation scenario offset the losses to above-

ground carbon, resulting in an overall increase (11.6%) in carbon storage in the post-transfor-

mation, representing an increase from 77.6 Mg C ha-1 to 86.7 Mg C ha-1 when averaged across

the study area (Table 5) after transformation maturation at 15 years. The large gains in soil car-

bon storage driven by the increased number of P. grandis and H. foertherianum eclipse the loss

of aboveground carbon driven by the removal of C. nucifera (Fig 2C). A map of the distribu-

tion of total carbon in the pre and post transformation scenarios and areas of loss and gain can

be found in Fig 3G–3I.

Dissolved organic carbon

Intertidal (81.5 μMC) sites that were adjacent to native forest did not differ in DOC from off-

shore (71.9 μMC), forereef (78.9 μMC), or open water lagoon (73.8 μMC) sites. Water depth

was not a significant factor after accounting for habitat type. If sites were adjacent to C. nuci-
fera there was no difference (p = 0.9) in their DOC concentration whether they came from the

intertidal lagoon flats (117.0 μMC) or intertidal reef flats (112.7 μMC). We pooled all the inter-

tidal samples adjacent to C. nucifera canopy before comparing canopy effects with site as ran-

dom effect to account for repeated measures at a site. We also excluded Sacia Islet because C.

nucifera had recently been controlled there. Intertidal sites adjacent to C. nucifera canopy had

a higher DOC concentration (110.0 μMC) than intertidal sites adjacent to native forest

(81.5 μMC, P = 0.0025, Fig 4). Note that Saci1E, where C. nucifera had been controlled, had a

lower DOC (69.1 μMC), than any site with intact C. nucifera, suggesting that the hypothesized

C. nucifera effect could be rapidly reduced after C. nucifera removal (Fig 4). Air temperature

declined with shade, and shading reduce afternoon water temperatures from 37 to 34 degrees,
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Fig 2. Current and future projections of soil organic carbon, (2a), aboveground carbon (2b), and total carbon (soil and aboveground) (2c) by tree species.

https://doi.org/10.1371/journal.pone.0262621.g002
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but neither the average 24-hour air temperatures (mean = 32.6 C, SD = 1.7), nor relative Lux

values (0.41,SD = 0.20), taken at DOC sites differed by canopy type, or correlated with DOC,

suggesting that the differences among sites was not greatly affected by differences in metabo-

lism from marine organisms.

A conceptual illustration of study results and other anticipated transformation and realign-

ment benefits can be found in Fig 5.

Discussion

This study is the first known attempt to calculate the carbon stored by vegetation for an entire

tropical atoll and represents a unique opportunity to explore the benefits of transformation

Fig 3. Maps of carbon distribution across the study area in the pre (column 1) and post (column 2) transformation scenarios. The third column shows the

net gain and loss of carbon between the two scenarios. Fig 3A–3C show the results for soil carbon. Fig 3D–3F show the results for aboveground carbon. Fig 3G–

3I show the sum of the two carbon sources. Units are in Mg C ha-1 where the area includes only those areas partially or fully covered by a canopy (i.e. all areas

other than those classified as runway, bare ground, grassland, and unknown land cover).

https://doi.org/10.1371/journal.pone.0262621.g003

Table 6. Calculations of soil carbon accumulation estimates in transformation and no transformation scenarios based on changes to community structure.

Community Total ha

(Current)

Accumulation Rate (Mg

C ha-1 yr-1)

Total accumulation after 15 years with

no transformation (Mg C)

Total ha

(projected)

Total accumulation after 15 years

with transformation (Mg C)

C. nucifera 57.3 1.3 1160.5 14.5 292.7

H.foertherianum/P.

grandis
2.7 1.3 51.1 54.0 1020.3

H.foertherianum/C.

nucifera
22.6 1.0 325.3 14.2 204.3

Total 1536.9 1517.3

https://doi.org/10.1371/journal.pone.0262621.t006
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beyond biodiversity and ecosystem health in a manner that can inform management activities

in other similar environments. The results of the study confirmed that C. nucifera and native

forest types differed in their carbon sinks and exports at Palmyra, and that changes in the for-

est composition at the atoll scale will have an impact on carbon stocks, with decreased carbon

in wood, but increased carbon in soil, resulting in a net increase in carbon storage under

planned rainforest management activities. Carbon content was in the range of expected values

for soils in similar environments but was unique for aboveground carbon.

It is challenging to directly compare the estimated soil values from this study to other stud-

ies due to the range of data collection techniques, spatial resolutions, depth profiles, and spe-

cific methods used to quantify SOC elsewhere. When comparing the soil carbon values to

mean soil carbon values from a global dataset [43] summarized by ecoregions in the Eastern

Indo-Pacific [44], we find that soil carbon content at Palmyra falls within, although closer to

the lower end of the range of values found in similar environments (69.6–334.4 Mg C ha-1).

However, these global datasets are based on a larger soil depth range (1 meter), so differences

based on soil depth alone would not be surprising, yet also may reflect the unique soil forma-

tion processes of atoll environments [45]. There are few comparable studies in similar atoll

environments. Organic carbon percentages in Palmyra’s soils are in line with expected values

of 2–20% documented in the literature [45], which looked at soil characteristics across a num-

ber of Pacific atolls; however, because these values do not have associated bulk density esti-

mates they cannot be converted to total tonnage as we did at Palmyra.

These new data echo previous research at Palmyra which found higher SOC in areas of low

C. nucifera density [5]. C. nucifera stands at Palmyra may have higher SOC than C. nucifera
monocultures in other locales. For example, in Kerala, India, samples taken at the same depth

profile (0–20 cm) showed a carbon stock of 24.81 Mg C ha-1. Although this is much lower than

the estimates of soil carbon in C. nucifera stands at Palmyra (49.8 Mg C ha-1), this may be due

to the fact that there are active C. nucifera cultivation practices taking place in Kerala, where C.

Fig 4. Map of DOC sampling results. On this map, different shapes symbolize different management actions under

which the samples were taken; DOC, (μMC) measured at each site is indicated by a label. Basemap data depicting

Palmyra Atoll islet locations is made available in the public domain from the USGS [9].

https://doi.org/10.1371/journal.pone.0262621.g004
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nucifera is strictly a monoculture. At Palmyra, C. nucifera can be found in mixed-species

stands and plant litter (coconuts and fronds) are not removed. In general, our findings are

consistent with previous studies documenting reduction in soil carbon following the conver-

sion of native forests to agricultural plantations, inclusive of C. nucifera [e.g., 5, 46]. Further-

more, the carbon accumulation rate at Palmyra was consistent with the 1.3 Mg C ha-1 yr -1

seen during 20 years of tropical forest reforestation [47] and values of up to 5 Mg C ha-1 yr -1

recorded in other moist tropical environments [48].

The amount of carbon retained in soils is a function of both litter quality and quantity [49,

50]. C:N ratios and lignin contents are typically important markers of litter quality and Young

et al. [51] found foliar C:N ratios are substantially higher for C. nucifera (32.83 ± 0.57) than for

three native forest species on Palmyra (S. sericea, 16.15 ± 0.59; P. grandis, 10.92 ± 0.57;H.

foertherianum, 9.91 ± 0.60). The C:N ratios of soils under native tree species may also be low-

ered by guano inputs from seabirds, which preferentially roost and nest in native forest cano-

pies [14]. C. nucifera also has a relatively high lignin content (39%) [52] while recorded

measurements of lignin content in other dominant tree species are lower (P. grandis just under

10%,H. tiliaceus ~15%, P. tectorius ~20%, andH. foertherianum ~13%) [53, 54]. This informa-

tion suggests that litter quality is lower under C. nucifera canopies, which may impact SOC

Fig 5. Conceptual illustration of study results and other anticipated transformation and realignment benefits (bars not to scale). The panel on the left shows a forest

dominated by C. nucifera (current pre- transformation scenario on Palmyra), while the panel on the right shows a forest dominated by native species, following anticipated

transformation and realignment. In the pre-transformation scenario, a homogenous, non-native vegetation community consisting of C. nucifera is associated with higher

aboveground carbon values and lower soil carbon values (bars not to scale). In this scenario, palm fronds and coconut dominate the ground cover, leading to increased

dissolved oxygen concentrations negatively impacting the health and diversity of nearby coral reefs. In the post-transformation scenario, a transformed, native, mixed-

species vegetation community is associated with lower aboveground carbon values, with higher soil carbon values, with a total net increase in carbon storage. In this

scenario, seabird and understory diversity also increases, and lower DOC concentrations mean increased coral reef health and biodiversity (Fig 5 credit: Adi Khen).

https://doi.org/10.1371/journal.pone.0262621.g005
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accumulation rates, though long-term SOC development in some cases is more a function of

litter quantity than litter quality [55]. However, at Palmyra C. nucifera forests have three times

the litter accumulation, and yet only one third the SOC compared to native forests [5]. This

suggest that enhanced litter quantities under C. nucifera canopies does not lead to greater SOC

stabilization in this case. The balance between carbon inputs from litter fall and retention mea-

sured as SOC, as well as nearshore DOC measurements, all suggest that more carbon is leached

from C. nucifera forests than from native forests. This might be, in part, due to the higher pH

in soils from C. nucifera forests [5] given that high ph causes temperate soils to leach more

DOC into stream and lakewater [56]; however, it is likely also due to differences in litter

quality.

While estimates of SOC are generally in line with those from comparable geographies, esti-

mates of aboveground carbon at Palmyra were much lower than the 17–255 Mg C ha-1

reported from other tropical forests [57]. In Hawaii, for instance, mean aboveground carbon

storage values were 60–130 Mg C ha-1, with, as at Palmyra, non-native plants holding more

aboveground carbon than young native plants [58]. In the tropics, aboveground carbon stocks

typically exceed SOC [59, 60]; however, this pattern was not observed in this study. The rela-

tively low aboveground biomass at Palmyra may be due to shorter tree heights (e.g., S. sericea)

and relatively low wood density values in dominant vegetation, especially P. grandis and P. tec-
torius, which have softer wood texture than, for example, H. tiliaceus.

Although some studies tout the carbon storage benefits of agroforestry projects [61, 62],

other studies show that variation among individual tree species can impact carbon storage

potential in tropical ecosystems [18], and changes from native to non-native vegetation or cul-

tivated environments can reduce carbon stocks [e.g., 62–65]. The results of this study align

with the latter studies’ results and further emphasize that the carbon storage outcomes of con-

version will hinge on the biophysical characteristics of both the individual tree species as well

as the vegetation community impacts on soil characteristics.

The increased DOC in nearshore water near C. nucifera forests suggests that C. nucifera
removal could have indirect effects on nearshore communities. DOC released by macroalgae

is important in the context of coral reef degradation as it contributes to coral mortality by pro-

moting bacterial metabolism on the coral surface. DOC can be important in oligotrophic sys-

tems like Palmyra; its primary effect is to increase bacterial metabolism, which can then be a

resource for some invertebrates like sponges [66], but also cause disease in corals [23]. How-

ever, given the limited sampling effort for DOC in this study, and the lack of concurrent data

on nitrogen, the hypothesized net effects of terrestrial runoff on the nearshore systems at Pal-

myra Atoll remain speculative and in need of further study. We note that the paucity of DOC

exported from native forests is opposite to the pattern seen for nitrogen associated with seabird

guano from native forests. Nitrogen likely plays a different role in this system than DOC. For

instance, it might increase both coral growth and phytoplankton productivity, which can sup-

port zooplankton populations [67]. Higher zooplankton abundance adjacent to native forest at

Palmyra attracts manta rays, and likely has other food-web effects [14].

Stocks and flows of soil carbon at Palmyra are likely to change over time scales and climate

regimes that extend beyond the scope of this study. Our calculations of accumulation rates fac-

tor in soil carbon degradation, averaged over time since the initial construction of man-made

islands. Future efforts could improve on our models by more accurately and explicitly incorpo-

rating the drivers of soil carbon degradation at Palmyra.

The remote location and limited research facilities at Palmyra constrained sample sizes and

restricted field techniques. Incorporating estimates of belowground biomass (e.g., roots), leaf

litter, and other sources of biomass such as coconuts at Palmyra would enhance comparisons

to other studies. The rapid assessment of carbon based on limited field measurements did not
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sample belowground biomass, thereby potentially underestimating the amount of carbon

found in tree biomass in both forest types. However, this study benefited from high resolution,

remotely-sensed imagery, not typically available for such remote locations. These datasets

allowed for estimates of aboveground carbon storage to be calculated at the scale of the indi-

vidual tree, while simultaneously allowing for estimates of soil carbon storage potential based

on community level characteristics. While the specific values estimated in this study might be

refined through additional data, the key takeaways are the patterns of carbon fluctuations

observed.

C. nucifera presence in, and in many instances dominance of, tropical oceanic island for-

ests, through cultivation (copra) or naturalization (drift dispersal) [7] is widespread. An unre-

ported yet likely significant portion of the world’s 439 atolls [68] have experienced loss of

native forest habitat through the agricultural introduction of C. nucifera [69]. C. nucifera’s role

in human migration and settlement throughout Oceania is notable [70], and control of C.

nucifera to transform native forest should be balanced with the societal value provided by C.

nucifera to Pacific Island communities. While the biocultural implications of controlling C.

nucifera on oceanic islands have not been widely studied [71], the benefits of a landscape dom-

inated by native vegetation facilitating seabirds, and seabird-transported nutrients are becom-

ing more clear. For atoll ecosystems facing near-term challenges from global (climate-related)

and localized impacts [72], transformation of forests from C. nucifera dominance to native

tree dominance could not only enhance ecosystem integrity [3, 14, 73, 74] and reduce disease

risk for corals [23], but also act as a natural climate solution through enhanced carbon banking

[75]. This study provides further incentive to consider the climate resilience and mitigation

benefits associated with intact atoll ecosystems, and specifically with forest communities bene-

ficial to seabirds, when planning management activities.
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