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Abstract

The extreme complexity of mammalian brains requires a comprehensive deconstruction of neuroanatomical structures. Scientists
normally use a brain stereotactic atlas to determine the locations of neurons and neuronal circuits. However, different brain
images are normally not naturally aligned even when they are imaged with the same setup, let alone under the differing
resolutions and dataset sizes used in mesoscopic imaging. As a result, it is difficult to achieve high-throughput automatic
registration without manual intervention. Here, we propose a deep learning-based registration method called DeepMapi to predict
a deformation field used to register mesoscopic optical images to an atlas. We use a self-feedback strategy to address the problem
of imbalanced training sets (sampling at a fixed step size in nonuniform brains of structures and deformations) and use a dual-
hierarchical network to capture the large and small deformations. By comparing DeepMapi with other registration methods, we
demonstrate its superiority over a set of ground truth images, including both optical and MRI images. DeepMapi achieves fully
automatic registration of mesoscopic micro-optical images, even macroscopic MRI datasets, in minutes, with an accuracy

comparable to those of manual annotations by anatomists.

Keywords Brain image registration - Deep learning - Convolutional neural networks - Mesoscopic optical images

Introduction

Deconstructing fine neural structures at the cellular level is
critical in understanding the connections and collaborations
of brain networks (Economo et al. 2015; Gong et al. 2016;
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Huang and Luo 2015; Li et al. 2015; Oh et al. 2014). In
biological research, neuroscientists often manually delineate
the brain regions and nuclei in which neurons are located
(Fiirth et al. 2018; Lein et al. 2007; Lin et al. 2018; Osten
and Margrie 2013) with the help of a brain stereotactic refer-
ence atlas. However, mainly due to the differences in individ-
ual animals and the conditions of specific experimental set-
tings, the correspondence of brain structures with an atlas is
highly dependent on personal experience and proficiency
(Fiirth et al. 2018; Jin et al. 2019; Ni et al. 2018). Moreover,
the rapid development of neural circuit labeling methods and
whole-brain imaging technologies (Gong et al. 2016; Li et al.
2010; Ragan et al. 2012) have resulted in brain images becom-
ing increasingly complicated at the mesoscopic level.
Additionally, the advent of the terabyte-scale (TB-scale)
mouse brain dataset (Landhuis 2017) has promoted the need
for a stable and reliable high-throughput automatic registra-
tion method suitable for these large datasets.

Image registration is a fundamental image processing prob-
lem (Zitova et al. 2003) in that has been widely studied in
brain science (Niedworok et al. 2016). In particular, a series
of representative and effective registration algorithms have
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been developed for macro MRI images (Klein et al. 2009).
However, for mesoscopic optical images, different types of
neurons exhibit different image characteristics in different
brain regions and diverse labeling strategies are applied; there-
fore, feature-based registration methods are widely used
(Fiirth et al. 2018; Jin et al. 2019; Ni et al. 2018; Ohnishi
et al. 2016). For instance, Ohnishi et al. registered two-
dimensional (2D) micro-optical images to an MRI image by
manually locating the feature points (Ohnishi et al. 2016).
Fiirth et al. registered microscopy images to a reference brain
atlas by interactively selecting feature points (Fiirth et al.
2018). Ni et al. performed three-dimensional (3D) registration
of cellular optical images to a standard brain space using a
number of manually acquired nuclei regional features (Ni
et al. 2018). However, in these schemes, feature acquisition
is still heavily dependent on interactive manual methods and
experience; moreover, these approaches are typically expen-
sive and are inefficient for addressing large-scale image
datasets. Current studies of neural circuits and cell censuses
have produced hundreds of whole-brain samples in large-
scale, high-throughput projects (Cyranoski 2017); thus, the
lack of effective and efficient registration methods seriously
limits comparative brain research at the mesoscopic scale.
Artificial intelligence techniques (Szolovits 2019), espe-
cially deep learning methods (Litjens et al. 2017), have grad-
ually been applied to increasingly complex registration tasks
(Haskins et al. 2019) because of the ability of deep learning
models to automatically extract fine-grained features from
high-dimensional images hierarchically (Cheng et al. 2018).
Due to the lack of sufficient registered ground truth brain
images, the initial unsupervised methods serve only as sub-
stitutions for statistical similarity metrics during the image
registration process (Cheng et al. 2018; Krebs et al. 2017;
Wang et al. 2016). However, the subsequent emergence of
a spatial transformation network (STN) (Jaderberg et al.
2015) facilitated the embedding of the deformation process
into several unsupervised algorithms based on deep learning
networks (Balakrishnan et al. 2018; de Vos et al. 2019, 2017,
Li and Fan 2017; Sheikhjafari et al. 2018; Zhang 2018).
Nonetheless, the effects of unsupervised methods are highly
dependent on the image signals in the brains (Fan et al. 2019),
and it is difficult to ensure the registration accuracy when
large gaps (such as different image modalities, qualities and
large deformations) occur between the corresponding
datasets. The supervised methods (Cao et al. 2018; Rohé
et al. 2017; Yang et al. 2017) are improving along with the
increasing number of registration datasets. Among them, ful-
ly convolutional network (FCN) (Shelhamer et al. 2017)
models are effective predictors of the deformation field. For
example, Rohé et al. (2017) and Yang et al. (2017) developed
FCN-based methods to predict deformation parameters in
their entirety (Hu et al. 2018; Rohé et al. 2017; Stergios
et al. 2018) or in partial form (Ding et al. 2017; Xiao et al.
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2017; Yang et al. 2016, 2017) form; these methods have been
used to perform registration of heart and human brain MRI
images. By selecting training sets via a sliding window and
predicting individual pixels, other patch-based methods have
also achieved satisfactory registrations with CT (Sokooti et al.
2017) or MRI (Cao et al. 2018) images. However, training an
FCN is time-consuming and is not applicable for larger 3D
image data (Shen et al. 2019a, b). Although patch-based
methods overcome this problem, different optically labeled
images have different characteristics, and even patch-based
methods have difficulty training various samples for each
optical image with specific labeling methods. These factors
restrict the training process of supervised methods. Therefore,
we need to customize a training strategy that can both expand
the trainable data and acquire a more accurate model from
limited samples.

Here, we present a method, called DeepMapi, which is
based on a convolutional neural network (CNN) to predict
the deformation field corresponding to each pair of images
and used to automatically register mesoscopic micro-optical
imaging datasets to a reference atlas. Within DeepMapi, we
used a self-feedback training strategy to accurately capture
training samples of varying difficulty levels for “special train-
ing”. This strategy is able to obtain a better model from a
limited training set. Additionally, inspired by data distillation
(Radosavovic et al. 2018), which automatically generates
training labels to significantly improve model performance,
we design a dual-hierarchical training strategy to improve
the model’s applicability to both large and small deforma-
tions. By combining these two strategies, DeepMapi enables
fully automated registration of mesoscopic optical images and
even macroscopic MRI datasets while achieving accuracy
levels comparable to those of manual registrations by anatom-
ical experts.

Methods
Overview

The goal of 3D brain image registration is to match a moving
image to a reference image by transformations to achieve an-
atomical correspondence (Zitova et al. 2003). The optimal
transformations can be obtained through multiple iterations
(Eq. 1 and 2).

F=M-g, (1)

¢ = argmin,S(¢; F, M) + R(¢), (2)

where F is the reference image, M is the moving image, S is
the similarity metric, @ represents the transformation param-
eters and R is a regularization term. Here, we focus primarily
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on nonlinear registration and seek to obtain the nonlinear pa-
rameter (¢) automatically and accurately.

In this paper, we customize the deep learning method based
on a patch-based network (Fig. 1), which seeks to train a better
model from a limited number of samples that can adapt to both
large and small deformations. Then, we predict the deformation
parameter (¢) automatically from pairs of input brain images.

Fixed image

Patch samples

First, we need to choose a reference image and manually
register it accurately to the standard brain space. This shifts the
goal from how to register other datasets to the reference im-
age. Second, we train a patch-based network (Fig. 1a) and
then present a self-feedback strategy that allows us to improve
the model’s performance by adjusting the proportion of train-
ing samples (Fig. 1b). Finally, a dual-hierarchical CNN
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Fig. 1 The complete workflow for DeepMapi registration. a In the
training stage, the training samples are selected according to a fixed
step size and window size. These are input into the convolutional neural
network to obtain the pretrained model. b The first level corrects the large
deformations in the brain. Then, the self-feedback training stage reselects
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model. ¢ In the second level, the prediction results obtained from the first
level are used as training sets to correct the remaining small deformations
and obtain the fine registration results. Each step is marked with Roman
numerals
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training strategy is designed in which the first network (Fig.
lab) is used to learn the large deformations in the brain sam-
ples, and the second network (Fig. 1c) is used to learn the
remaining small deformations, further fine-tuning the uncor-
rected parts. All the animal experiments followed procedures
approved by the Institutional Animal Ethics Committee of
Huazhong University of Science and Technology, and this
study was also specifically approved by that ethics committee.
All the methods were conducted in accordance with the rele-
vant guidelines and legislation. We present the details in the
following sections.

Data Sources

1) Source of optical imaging datasets: We obtained 23 datasets
of mouse brain images to verify DeepMapi. The datasets were
captured by the fMOST (Gong et al. 2016) system, which
outputs resin-embedded dual-color labeled C57BL/6 J mouse
whole brain datasets. Generally, the resin-embedded samples
introduce additional deformations (Gong et al. 2016). The
colocalized fluorescent-labeled neurons and counterstained
cell bodies dataset in the brain-wide images are acquired at a
2 wm axial resolution and a 0.32 um horizontal resolution. We
adopt the propidium iodide (PI) channels of the datasets dur-
ing the experiments.

2) Reference brain atlas space: We choose the common
coordinate framework (Allen CCF v3) (Dong 2008,
Goldowitz 2010; Kuan et al. 2015) from the Allen Institute
as the standard brain space. This standard represents an aver-
age brain obtained by the continuous registration of 1657 STP
datasets and it provides well-segmented brain region annota-
tion files. Four resolution levels (100 pm, 50 um, 25 um, and
10 wm) are available (http://download.alleninstitute.org/
informatics-archive/current-release/mouse_ccf/annotation/).

3) The temporary reference dataset (fixed image): We se-
lected one brain dataset from the abovementioned optical im-
ages and aligned the other datasets to this fixed image.

4) Division of training and validation data and data aug-
mentation: To learn the large and small deformations individ-
ually, we classify and augment the remaining 22 datasets to
obtain more training sets, which prevents overfitting. These
datasets are prealigned to the standard brain space by an au-
tomatic linear registration algorithm. Finally, we apply a
histogram-matching operation to the datasets using a fixed
image to normalize their gray values to values in the range
0-1.

Train_datal: This group includes 10 sets of datasets. The
images are isotropically downsampled to a 25 pm resolution
(size: 456 x 360 x 528 pixel’) and manually registered to the
fixed image (BrainsMapi (Ni et al. 2018), achieves good reg-
istration results for optical images by segmenting and map-
ping the regional features). Then, the obtained deformations
are shifted once in the negative direction (-Warp) and twice in
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the positive direction (2*Warp) (Supplementary Fig. 1). These
new deformations are applied to the moving images to aug-
ment the data. These augmented datasets are used when train-
ing the first level, which is a coarse registration process that
learns the initial large deformations in the brain samples.

Train_data2: This group includes 7 sets of datasets. These
images are also isotropically downsampled to a 25 pm reso-
lution (size: 456 x 360 x 528 pixel3). First, we use the trained
model from the first level to predict and deform Train_data2.
Second, the warped results are registered to the fixed image by
BrainsMapi to correct remaining deformations. Finally, the
obtained deformations are half-shifted (1/2*Warp)
(Supplementary Fig. 1) and applied to the moving image to
augment the data. These samples are used during the second-
level training, which is a fine registration process that learns
the remaining small deformations in the brain samples.

Validation data: This group includes 5 sets of datasets
used to verify the accuracy of the proposed method. These
data are also processed using the BrainMapi method.

Registration of Fixed Image to Standard Brain Space

Since the micro-optical images and reference brain atlas are
completely different modal datasets, it is very difficult to map
them directly. Therefore, we need to select a good quality
micro-optical imaging data as a temporary reference to reduce
the modality and deformation differences and then use the
BrainsMapi method to register the images to the standard
brain space. Subsequently, we can automatically register other
newly input datasets to indirectly achieve registration to the
standard brain space.

We complete the registration of the fixed image to the
Allen CCF v3 brain space using the BrainsMapi method.
Supplementary Fig. 2 shows some examples of
BrainsMapi’s good registration results.

The Self-Feedback Strategy

In deep learning image classification or segmentation tasks,
the number of training samples is generally the same for each
class, and the samples are randomly distributed. In contrast,
brain image registration is relatively complicated. First, it is
not a simple classification problem. Second, the brain sample
deformations are nonuniform across the entire brain range,
and the degrees of deformation of different anatomical struc-
tures are also different. For regions with large deformations or
complex structures, sampling at a random or a fixed step size
(Fig. 1a, black dot) will not guarantee that the complex defor-
mations will be fully learned. Therefore, it is necessary to
design a new sample selection strategy to adjust the samples
during the training process and obtain a better model.

The self-feedback strategy is based on the predicted results
from a pretrained model trained at a fixed step size. We predict
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the training set using this model and acquire the predicted
displacement field (P); and then, we calculate the distance
errors between the true displacement field (G) and the predict-
ed displacement field (P) to obtain a distance map (Eq. 3). The
distance map is presented in both 3D and 2D (Fig. 1b, distance
map), where the darker areas indicate larger differences be-
tween the predicted and true values. We find that prediction
deformation fields with large values or complex structures,
such as the cerebellum (CB), are fairly error-prone (Fig. 1a,
moving image). Hence, we selectively create more training
samples from these regions indicated by the yellow rendering
of the distance map, for focused training (Fig. 1b, red dots).
Next, we calculate the value of each distance from 1-n, where
n is the max distance in DMap and C is a counting function
(Eq. 4) that counts the frequency of each distance. Then, the
samples are reselected by using Eq. 5 to determine the number
of samples that needs to be selected for each distance. Here, S
refers to the number of training samples selected for each
distance, and A refers to the number of additional samples
selected during the self-feedback stage. « is a tunable param-
eter whose value can be 1/2, 1/4, 1/8, 1/16, etc., based on a
square root operation. The smaller the value of « is, the more
balanced the samples selected from the distance map are.

Gx(v)ipx(v)
DMap,) = || Gyo) =Py ||» (3)
Go)~Pyv)
N(i) = C(Dmap, i), i€[1,n], (4)
()
S(i) = —"0)__sp e[l ). (5)

()

To ensure that the trained model is not biased, we retain the
older samples selected at a fixed step size and use all the
samples to fine-tune the previously trained model.

The Dual-Hierarchical Training Network

The implementation is based on dual inputs of 64 x 64 x 64
image patches that correspond to the local small blocks ex-
tracted from the fixed and moving images, while the outputs
are three 9 x 9 x 9 deformations in the X, y and z directions in
the center of the blocks. Unlike a typical patch-based network,
which predicts only a single value, we increase the output size
slightly to improve the prediction efficiency.

The gray area in Supplementary Fig. 3 shows the network
architecture of DeepMapi. Initially, we input two image
blocks from the fixed and moving images and pass them
through an InputConv unit independently. The InputConv
unit consists of a convolution layer (kernel: 5 x 5 x 5, stride:
1 x1x1, padding: 2 x2 x2) and a PReLU activation layer
(Ketkar 2017). Next, the learned features pass through three
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Encoder units. Each Encoder unit is composed of a convolu-
tion layer (kernel: 3 x 3 x 3, stride: 1 x 1 x 1, padding: 1 X 1 x

1), a PReLU activation layer and a pooling layer (kernel: 3 %

3 x3, stride: 2 x2x2, padding: 1 X% 1x 1). The number of
feature maps doubles after each Encoder unit, and we concat-
enate the feature maps from the two branches. Then, Decoder
units are used to process the three output branches, which
correspond to the deformations in the x, y and z directions.
Each branch is composed of three consecutive Decoder units
and one OutConn unit. A Decoder unit is the same as an
Encoder unit, while the specific purpose of the OutConn unit
is to transform the output vector of length 729 into the 9 x 9 x

9 output. We also apply dropout to prevent overfitting during
training. The location is indicated in the red box in
Supplementary Fig. 3. Moreover, since this is a patch-based
method, we can obtain many training samples, which also
helps avoid overfitting.

We use Train_datal to train the network (Fig. 1a) and fine-
tune the pretrained model using the self-feedback strategy
(Fig. 1b). Based on the trained model, Train_data?2 is predict-
ed, and the registration results are obtained at the first level.
Then, we use BrainsMapi to map the registered Train_data2 to
the fixed image and perform the data augmentation. The new
training set is used to train another new model to achieve the
fine registration results (Fig. lc, fine result), and the self-
feedback strategy is used during the retraining stage (Fig. Ic,
III, retraining). Both levels use the same variant of the patch-
based network, but correspond to different datasets with large
and small deformations, respectively. In particular, the small
deformation datasets are adaptively derived from the first-
level model.

Implementation

(1) Training: We use PyTorch (Ketkar 2017) to implement our
method and train a total of two models. In the first model, the
input window size is 64, the step size is 32, the output size is 9,
the batch size is 64, and the number of feature maps in the first
layer is 4. The training set for the first level is Train_datal.
The training parameters of the second level are consistent with
those of the first level, but the corresponding training set is
Train_data2. In addition, we reset the step size to 48 and add
approximately 2000 new pairs of samples per set of datasets,
as discussed in the feedback training section. The learning rate
for both models is 0.0001, and the number of iterations is 200.
We use Llloss (Yang et al. 2017) as the loss function and
Adam (Ketkar 2017) as the optimization algorithm.

(2) Prediction: We use a 64 X 64 x 64 sliding window and
9 x 9 x 9 steps to traverse the fixed and moving images. The
obtained image blocks are input into the model and used pre-
dict the results. We add the prediction results to an empty 3D
matrix based on the corresponding coordinates, as shown in
Eq. 6, and obtain the temporary displacement field, ¢_temp.



Neuroinform (2021) 19:267-284

400

300

200

Patch number

100

0 L
0 5 10 15 20
Distance error (Voxel)

3 | T T T

—— Epoch 1-200

= Epoch 200-400

—— Feedback epoch 200-400

L1 Loss / 3 pixels
[EEN
Ul

Fig. 3 The performance of the self-feedback strategy under different
parameter settings. a The change in the number of samples for each distance
error under different o values. The smaller o is, the more balanced the
number becomes. b The loss curves of different o« values corresponding to
(a). The red line shows the results of retaining the old patches, and the gray
dotted line is the loss value of the pretrained model. The loss curves of the

273

42 |
2
2
'S 3.8
[ep]
S~
(%]
(%)
S 34
—
-

3.0

Keep old patches
b 200 250 300 350 400
Epoch
v‘ T T T
3.7 —— Epoch 1-200 ]

= Epoch 200-400

.UJ
(03]
T
1

Feedback epoch 200-400

L1 Loss / 3 pixels
,U“‘ w
[ w
T T

B
©
T

Predicted [ x10 um ]

100 15 20
Ground Truth [ x10 pm ]

Predicted [ x10 um ]

10 15 20 25
Ground Truth [ x10 um ]

training set (¢) and validation set (d) with (red line) or without (green line) the
self-feedback strategy are shown. The visualized prediction results (left,
coronal planes) and correlation plots (right, dot plots) before (e) and after (f)
the self-feedback strategy are shown. The registration results are presented by
the three coronal planes and the corresponding enlarged views of the local
regions in the bottom right corer

@ Springer



Neuroinform (2021) 19:267-284

274

¢temp = ¢(0) + ¢id7 (6)
W= Wgq + Wi, (7)
§ = Lo (8)

w

Simultaneously, we use an empty 3D matrix to record the
number of superpositions (W) for each voxel (Eq. 7). By di-
viding these two matrices, we can obtain the final deformation
field ¢ (Eq. 8). Additionally, we perform mean filtering on the
deformation field to smooth it.

The prediction process also involves two levels. Suppose
that the result obtained from the first level is calculated by the
function G(x), and the result of the second level is calculated
by the function H(x); then, the final output result will be M’ =
H(G(M)). That is, the output of the first level is used as the
input to the second level to obtain the final prediction results.

Registration Methods Used for Comparisons

Affine: We use the ANTs tool (Klein et al. 2009) to perform
linear registration, including rotation, scaling, translation, and
shear transformations. The linear registration results provides
the initial values for a nonlinear registration.

LD-Demons (Vercauteren et al. 2008): A nonlinear regis-
tration algorithm based on the log-domain demons
diffeomorphic and symmetric local correlation coefficient
(LCC) similarity metrics to perform the nonlinear
transformation.

SyN (Avants et al. 2008): A nonlinear registration algo-
rithm based on the symmetric diffeomorphic normalization
transformation (ANTSs tool, version 2.x) and several similarity
metrics.

QuickSilver (Yang et al. 2017): A nonlinear registration
algorithm based on a convolutional neural network to predict
the momentum of the corresponding image pairs in a
blockwise FCN method that is then converted to displacement
to achieve nonlinear registration.

VNet (Milletari et al. 2016): A 3D FCN method commonly
used in medical image segmentation. We set the number of
input channels to two and the number of output channels to
three for image registration applications.

Here, we mainly focus on comparing DeepMapi with the
above traditional and supervised deep learning methods.
Moreover, we also compare DeepMapi with several recent
unsupervised deep learning methods, including VoxelMorph
(Balakrishnan et al. 2019; Dalca et al. 2019), AVSM (Shen
et al. 2019a) and RDMM (Shen et al. 2019b). In fact, due to
the larger data size and lack of training sets (one brain is one
sample), these unsupervised methods are not particularly suit-
able for optical brain datasets. Hence, we first downsample the
datasets to the size required by these methods and then con-
duct training.
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Quantitative Evaluation Method

We choose two measurements to comprehensively assess
DeepMapi. The first is L1loss, which is the absolute error.
This relationship can be represented by a correlation plot.
We use the two axes to represent the displacements of the true
deformation and the predicted deformation and plot them in
the form of a dot plot.

Another metric commonly used in image registration is the
Dice score (Dice 1945), which reflects the voxel overlap. The
higher the Dice score is, the higher the overlap rate is, which
means more accurate results. We use the registration results of
the BrainsMapi method as the gold standard for the
Validation data datasets to quantitatively assess DeepMapi.

We also evaluate the diffeomorphic property of DeepMapi
displacement. Because tissue folding is anatomically impossi-
ble, we evaluated the topology of the obtained displacement
field by using the Jacobian determinant (de Vos et al. 2019).
The Jacobian determinant (Eq. 9) captures the Jacobian for
every voxel p in the displacement field:

a9y o
Ox gx O
.. 61 j ak
det(J(i,},k)) = 3 a_; 3 9)
4o 4
0. 0. 0

A Jacobian >0 indicates that the local deformation is
diffeomorphic, both invertible and orientation-preserving,
while a Jacobian <0 indicates a location where folding occurs
(de Vos et al. 2019).

Computing Environment

We used two different computing platforms to train and test
the proposed method, a graphic workstation and a GPU-
equipped server. The graphic workstation is configured with
an Intel (R) Xeon(R) E5-2699 v4 CPU @ 2.20 GHz with
1 TB of memory, while the GPU server equipped with a
Quad Tesla-V100 GPU card.

Results

Performance Analysis and Optimization of Neural
Network

Limited by GPU memory capacity, we perform prediction
block by block, which involves two strategies, the FCN and
the patch-based methods. We design a patch-based deep neu-
ral network and five other models (Supplementary Fig. 3,
Supplementary Table 1) to optimize the model selection and
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patch sizes. The FCN models are designed following the
QuickSilver (Yang et al. 2017) method by adding residual
modules similar to UNet (Ronneberger et al. 2015). The
FCN models are tested by fixing the input and output sizes
(16, 32 and 64). The patch-based models are based on the
model proposed in the Methods section; we test these models
under a variety of input sizes (16, 32 and 64) and output sizes
(3, 5and 9). For detailed information on the model design and
training parameter settings, please refer to the Methods section
and Supplementary Table 1.

Figure 2ab shows both the training and validation loss
curves during training. A smaller loss value indicates more
accurate registration results. We find that the loss value of
Model 6 is the lowest for both the training and validation sets
(Fig. 2ab, red line, Supplementary Table 2), and that general-
ly, the accuracies of the patch-based models are better than
those of the FCN models with the same input size (Fig. 2b).
We use three coronal planes to check the registration accuracy
of the six models (Fig. 2c) and illustrate some interesting
regions, such as the corpus callosum (cc), hippocampal region
(HIP) and CB. We find that Models 1-5 show distortions in
some areas (Fig. 2c, purple arrow) and that the Model 6 is
better than the other five models.

Additionally, the right panel of Fig. 2c shows correlation
plots of the six models. The distance from the points to the
midline indicates the accuracy, and darker colors indicate
more concentrated points and better continuity of the defor-
mation field. Regardless of whether the model is an FCN (Fig.
2¢, Model 1-3) or patch-based (Fig. 2¢, Model 4-6), the pre-
dicted results become more accurate as the input patch size
increases. Moreover, the points of Model 6 are closer to the
midline and more aggregated than those of Model 3, which
suggests that the accuracy and continuity of Model 6 are the
best. To prove this, we randomly selected 750 points (150
points from each of the five datasets) from their correlation
plots and then calculated the absolute values of the predicted
and true values. Subsequently, we performed a paired statisti-
cal analysis. The statistics indicate that the results of Model 6
are significantly better than those of the other five models
(Wilcoxon signed-rank test, P <0.05; from 5 datasets, 150
points/set) (Supplementary Table 3). We also provide quanti-
tative results of 10 brain regions in the whole brain for six
models (Supplementary Table 4) using Dice scores and then
performed a paired statistical analysis. The statistics show that
the Dice scores of Model 6 are significantly better than those
of'the other four models (Wilcoxon signed-rank test, model 1—
2 and model 4-5, P <0.05; from 5 datasets, 10 regions/set)
and that there are no significant differences between Model 6
and Model 3 (Wilcoxon signed-rank test, P=0.080; from 5
datasets, 10 regions/set) (Supplementary Table 3).

It is also worth mentioning the comparisons of training and
prediction times for the different models (Supplementary
Table 2). Although the FCN provides faster results, its

accuracy is lower. Among the patch-based methods, the pre-
diction time of Model 6 is the fastest; it requires only approx-
imately 5 mins, which is acceptable. Moreover, regarding
training time, the number of parameters in the FCN model is
much larger and the network architecture is more complicated;
therefore, training the FCN takes longer (e.g., Model 3, re-
quired approximately 2 weeks), which makes it inefficient
during training and testing.

Effectiveness of the Self-Feedback Strategy

This section mainly analyzes the effectiveness of the self-
feedback strategy. According to the description in the
Methods section, it is necessary to obtain a pretrained model
using a specific step size in the first 200 epochs. Based on this
model, different o values of 1/2, 1/4, 1/8, 1/16, and 1/32 are
selected for the fine-tuning model and testing the perfor-
mance. As the value of o decreases, the samples selected from
the distance map become more balanced (Fig. 3a). Based on
the new samples, the pretrained model is fine-tuned for anoth-
er 200 epochs but the previous samples are not added. As the
samples became more balanced, the validation loss continued
to decrease (Fig. 3b). However, the loss value is still higher
than the loss of training at a fixed step size (Fig. 3b, gray
dotted line). But if we choose 1/32 for the « value and retrain
the previous samples, the loss value decreases significantly
(Fig. 3b, red line).

It is also worth mentioning how to choose the appropriate
number of epochs to improve the training efficiency. First, we
need to carefully watch the loss changes of the training and
validation sets during training. Especially for the validation
loss, when we trained for 100 ~200 epochs at a fixed step
size, the loss value dropped very slowly (Fig. 3d). Hence,
we can set the number of epochs to about 200. Second, when
an additional 50 ~ 100 epochs are used for training during the
self-feedback stage, the loss value of the validation sets starts
to fluctuate and no longer declines (Fig. 3d); thus, we can also
set a large number of epochs for observation. Hence, we
adopted 200 epochs for both training processes.

We compare the trends of the training and validation loss
values before and after self-feedback (Fig. 3 cd). As the train-
ing time increases, the loss decreases gradually, but its rate of
decline slows (Fig. 3 cd, blue line). Compared to continuous
training without a feedback strategy (Fig. 3 cd, green line),
both the training and validation loss decrease after applying
self-feedback (Fig. 3 cd, red line). The direct benefit of this
mechanism is that both the accuracy and continuity of the
results improve, as reflected in the correlation plots (Fig. 3ef,
right). The dots are darker, more focused and closer to the
midline after applying self-feedback (Fig. 3f, right). We ran-
domly select 750 points (150 points from each of the five
datasets) from their correlation plots and then calculated the
absolute values of the predicted and true values; then, we
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performed a paired statistical analysis. The statistics show that
after applying self-feedback, the results are significantly better
than those before self-feedback (Wilcoxon signed-rank test,
P=0.001; from 5 datasets, 150 points/set).

In addition, we selected several coronal planes from the
entire brain to check the registration effects before and after
self-feedback (Fig. 3ef). Intuitively, mean filtering is not ap-
plied to the displacement field. According to the enlarged
views of several representative nuclei (cc, HIP, CB), we find
that the registered images have obvious stitching artifacts be-
fore applying self-feedback (Fig. 3e) but that these artefacts
are greatly reduced after self-feedback (Fig. 3f, purple arrow).
This result suggests that the feedback mechanism increases
the consistency of the deformation fields.

For quantitative evaluation of the self-feedback strategy,
we computed the Dice scores for 10 brain regions in the whole
brain before and after self-feedback (Supplementary Fig. 4,
Supplementary Table 5). The results show that the feedback
strategy effectively increases the registration accuracy of these
brain regions. We performed a paired statistical analysis on
the Dice scores and found that the registration accuracy after
self-feedback was significantly better than that before self-
feedback (Wilcoxon signed-rank test, P=2.231e-7; from 5
datasets, 10 regions/set).

Effectiveness of the Dual-Hierarchical Strategy

Inspired by the data distillation process (Radosavovic et al.
2018), which generates training labels automatically, a coarse
deformation model is obtained at the first level; subsequently,
the coarse model is applied to other datasets to derive small
deformation training sets to improve the adaptability of the
model to large and small deformations. To accomplish this,
we design a dual-hierarchical training network that learns the
large deformations first, followed by the remaining smaller
deformations.

We analyze and compare the registration results of these
two levels and present the fusion of the coronal, sagittal and
horizontal planes of the registered and fixed images before
and after registration (Fig. 4, purple, fixed image; green,
moving image). The comparison of the linear registration re-
sults (Fig. 4a) shows that the coarse registration in the first
level is able to correct the large deformations (Fig. 4b) while
the fine registration in the second level further adjusts the
remaining small deformations (Fig. 4c). Enlarged views of
several nuclei (CB, HIP, cc) are also presented; and the regis-
tration results of these nuclei are well fused after the two
registration levels (Fig. 4).

To evaluate the dual-hierarchical strategy, we also conduct-
ed a quantitative assessment of the registration results at both
levels. Because the second level corrects the small deforma-
tions, we selected several smaller brain regions and nuclei
from the whole brain to evaluate DeepMapi. The Dice scores
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of these brain regions and nuclei improve after the second
level registration (Supplementary Fig. 5, Supplementary
Table 6). To prove this, we performed a paired statistical anal-
ysis on the Dice scores which showed that the registration
accuracy of the second level registration is significantly better
than that of the first level registration (Wilcoxon signed-rank
test, P=5.837¢-6; from 5 datasets, 10 regions/set).

Comparison of Different Registration Methods to the
Reference Brain Atlas

Neuroscientists are generally more concerned with whether
they can achieve an accurate registration to the standard brain
space. Using the proposed method, the results of registration
to the reference brain atlas are presented. These results were
acquired by four continuous parameter transformations: (1)
the linear parameter, (2) the coarse registration in the first level
(nonlinear parameter), (3) the fine registration in the second
level (nonlinear parameter), and (4) the BrainsMapi method
(Ni et al. 2018) (the fixed image to the brain atlas nonlinear
parameter). As a result, we can automatically register brains to
the standard brain atlas and obtain brain spatial localization
information after the above four transformations.

We registered the testing dataset to the Allen CCF v3 stan-
dard brain space for demonstration purposes and compare the
registration effects of the proposed method with those of other
traditional or deep learning methods. In this study, five tradi-
tional registration methods and supervised deep learning reg-
istration methods were specifically selected for the compari-
sons (Methods section).

Figure 5 shows the effects of the five registration methods
and DeepMapi. The left half of each subfigure shows the
Allen CCF v3, and the right half shows the outlines of the
Allen brain atlas superimposed on the registered images.
The enlarged views on the left corresponding to the white
box on the right are also presented. The linear registration
results clearly result in inaccurate brain contours for several
large brain regions (Fig. 5a), including the cc, cerebral cortex
(CTX) and CB. The LD-demons (Vercauteren et al. 2008) can
map the boundaries of brain regions and some nuclei, such as
the texture of cc, HIP and CB, but they are not sufficiently
robust across the entire brain and sometimes produce violent
deformations, as shown by the enlarged regions (Fig. 5b) of
the CTX, thalamus (TH) and CB. The SyN algorithm (Avants
et al. 2008) can correct small deformations in some brain
regions, such as cc and HIP, but yields inaccurate deformation
results for more complex regions with larger deformations,
such as the CB regions (Fig. 5c). We also present the registra-
tion results using the deep learning registration methods, such
as QuickSilver (Yang et al. 2017) (Fig. 5d) and VNet
(Milletari et al. 2016) (Fig. 5e). The results of DeepMapi on
the cc, HIP, CB and fastigial nucleus (FN) are more accurate
than those of the two deep earning methods (Fig. 51).



Neuroinform (2021) 19:267-284

277

Fig. 4 The performance of the
dual-hierarchical strategy. The
reconstructions of sagittal,
horizontal and coronal planes of
the linear (a), first level (b), and
second level (c¢) registration re-
sults are the fused results of the
fixed image (purple) and the
moving image after registration
(green). The projection thickness
is 10 um. The enlarged views of
the local regions shown on the
right correspond to the white
boxes on the left. Scale bars:

1 mm, detail 0.5 mm
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To conduct a comprehensive assessment, we quantita-
tively evaluated the registration results of the above five
methods and DeepMapi by selecting 5 datasets and 140
brain regions or nuclei from the whole brain. The evalua-
tion covers a total of 11 large brain regions: the isocortex,
olfactory areas (OLF), hippocampal formation (HPF), cor-
tical subplate (CTXsp), striatum (STR), pallidum (PAL),
TH, hypothalamus (HY'), midbrain (MB), pons (P) and me-
dulla (MY). The Dice scores for the 140 regions were cal-
culated using these different registration algorithms and
visualized in different colors. The final results are shown
as a heat map (Fig. 6). As Fig. 6 shows, the results of the
proposed DeepMapi are notably better than those of the
other methods. According to the Dice scores listed in

Horizontal

Horizontal

Supplementary Table 7, DeepMapi achieves the highest
accuracy in most regions.

Moreover, we also present the registration results of three
unsupervised methods: VoxelMorph, AVSM and RDMM
(Supplementary Fig. 6) and perform a paired statistical analy-
sis with the Dice scores of DeepMapi and other methods. The
results prove that DeepMapi is significantly better than the
other methods (Wilcoxon signed-rank test, P <0.05; from 5
datasets, 140 regions/set) (Supplementary Table 8).

Performance Benchmark

We benchmarked the prediction speed of the above four non-
linear registration methods and DeepMapi, and compared the
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Fig. 5 Comparisons of different
registration methods. Three
coronal sections. The left part of
the image is the Allen CCF v3,
while the right part of each image
shows the white dotted line of the
Allen CCF v3 superimposed on
the registered image. Enlarged
views of the local regions are
presented on the left,
corresponding to the white boxes
on the right. a Affine. b LD
demons. ¢ SyN. d QuickSilver. e
VNet. f DeepMapi. The region
lines is from the Allen CCF v3, ©
2004 Allen Institute for Brain
Science. Allen Mouse Brain
Atlas. Available from: atlas.brain-
map.org

(a) Affine

(b) LD demons

(d) QuickSilver (c) SyN

(e) VNet

(f) DeepMapi

efficiency of DeepMapi on a GPU server (Fig. 7). The results
indicate (Fig. 7a) that QuickSilver and VNet provide substan-
tially faster prediction times due to their FCN strategy. Among
the traditional registration methods, SyN is the slowest (30
mins), while LD-demons is faster, achieving times similar to
those of DeepMapi. In contrast, DeepMapi takes only approx-
imately 10 mins even when running on a single GPU, which is
clearly acceptable compared with the traditional SyN method
or the manual BrainsMapi method (1 day). In other words, we
need only wait 10 mins to achieve accurate and fully automat-
ic registration, while both avoids painstaking manual opera-
tions and achieves higher accuracy than previous methods.
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We also tested the DeepMapi model using multiple GPUs
to predict the results in parallel, which further reduces the
prediction time (Fig. 7b) to 7 mins when 4 GPUs are used
for prediction.

DeepMapi includes two operations that guarantee the
smoothness of the displacement field. The first is soft super-
vision, which learns the smooth characteristics from the input
deformation field. In addition, in post-processing, we perform
mean filtering on the deformation field to smooth it. This can
be achieved simply by using convolution operations in the
neural network (Methods section) to ensure the smoothness
of the displacement field. We calculated the Jacobian


http://atlas.brainap.org
http://atlas.brainap.org

Neuroinform (2021) 19:267-284

279

~ Mos*
Mop*
Aid*
Aiv*
Aip*
ORBI*
ORBm
ORBvI
ACAv
ACAd*
PL*

ILA
GU*
SSp*
SSs*
visc*
AUDd*
AUDp*
AUDv*
PERI*
ECT*
TEa*
RSPagl*
RSPv*
RSPd*
VISpm*
VISp*
ViIsL*
— MOB
AOB*
AON*
TT*
DP*
PIR*
NLOT*
COA*
— PAA*
—  CA*
DG*
ENT*
PAR*
POST*
PRE*
L SuB*
— CLA*
Epd*
LA*
BLAa*
BLAp*
BLAV*
BMA*

Isocortex

HPF OLF

CTXsp

— ACB*
oT*
Lsx* |
BA*
CEA*
MEA*
IA*
L AAA*
— Gpe*
BST*
SI
MA*
NDB*
L wms
— SPFm*
SPFp*
SPA
MG*

STR

PAL

Fig. 6 Quantitative evaluations of different registration methods. Heat
map of 140 brain regions or nuclei. The applied metric is Dice scores.
The closer a color is to red, the lower the registration accuracy is, and the
closer a color is to blue, the higher the registration accuracy is.
Quantitative evaluations of Affine (0.493 +0.200), LD demons (0.637

determinant of the 3D displacement field obtained by
DeepMapi on the validation sets and found no voxels with
negative Jacobian values (Supplementary Fig. 7). In addition,
we also provided the Jacobian determinant for Model 1-5,

0.8

0.7

0.6

0.3

0.2

+0.136), SyN (0.756 £0.106), QuickSilver (0.728 £0.103), VNet
(0.740+0.122) and DeepMapi (0.825+0.081) are presented.
Additionally, an asterisk (*) is used to mark the regions with the
highest DeepMapi values

before/after self-feedback and with/without dual-hierarchical
(Supplementary Fig. 8) and found that the smooth character-
istics were well learned (zeros voxels with negative values)
after the self-feedback and dual-hierarchical strategies.
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Fig. 7 Performance comparisons.
a The prediction times of different 30|
registration methods are
presented in the bar chart, where
blue indicates the conventional
registration methods, and brown
indicates the deep learning
methods. b The graph shows the
change in the prediction time of
DeepMapi as the number of
GPUs increases

201

10

Predicted time [min]

Validation Using MRI Datasets

In addition to optical brain images, DeepMapi can also be ap-
plied to register MRI datasets. We tested the performance of
DeepMapi using public MRI datasets (LONI LPBA40)
(Shattuck et al. 2008) by selecting one dataset as a reference,
using 30 datasets as training sets, and treating the remaining 9
datasets as validation sets. The gold standard training labels were
obtained from the displacement field obtained by the SyN meth-
od. Using this setup, we trained a new DeepMapi model on
LONI LPBAA40.

In Fig. 8a, we show the moving image, fixed image, SyN
registration results and DeepMapi registration results. Clearly,
the results of DeepMapi are very similar to the results of the
SyN method. Furthermore, we predicted the 9 validation datasets
and computed the Dice scores of 56 brain regions. The results are
shown as a box plot (Fig. 8b). The accuracy scores of the
DeepMapi method and the gold standard (SyN) are almost iden-
tical. We performed a paired statistical analysis on the Dice
scores of DeepMapi and SyN, grouped the Dice scores by dif-
ferent methods and found no significant differences between
DeepMapi and the gold standard (SyN) (Wilcoxon signed-rank
test, P=0.191; from 9 datasets, 56 regions/sct).

DeepMapi is a fully supervised method. Compared with
unsupervised or semisupervised methods, the accuracy of
DeepMapi does not exceed the gold standard provided during
training, but it does ensure the stability of the registration
results which is particularly important. Here, small and uni-
form gray MRI datasets are used to demonstrate that
DeepMapi can learn the features sufficiently and obtain a fine
model. The accuracy of the registration results depend heavily
on the training sets provided to the network.

Discussion

The recently developed deep learning registration methods
have concentrated on improving the loss function and refining
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model architectures (Fan et al. 2019; Yang et al. 2017; Zhang
2018); however, for more complex mesoscopic optical imag-
ing datasets, applying such inherent strategies are not particu-
larly effective. Based on the deep learning methods from pre-
vious works, we focus on the processes of training sample
selection and the training process itself. The result is a fully
automatic deep learning registration method for 3D brain im-
age datasets. Our targeted modifications include the
following.

(1) We design a feedback training strategy that adjusts the
weights of the training samples, making it possible to
accurately select regions with larger and more complex
deformations for additional “special training”. We fur-
ther compared of the results of the self-feedback strategy
by simply sampling more patches with smaller step sizes.
We reduced the step size from 32 to 16 by intervals of 4
and found that while p value is increased, it was still less
than 0.05; moreover, the training time increased sharply
to approximately 21 days (Supplementary Table 9). The
redundancy in the training samples will greatly reduce
the efficiency during application. The results also prove
that the proposed self-feedback strategy can exactly
solve the contradiction between training efficiency and
accuracy.

(2) We further employed a hierarchical registration frame-
work that is not only able to solve the small deformation
registration problems but is also appropriate for large
deformations. The complicated sample preparation pro-
cess used during in vitro imaging leads the brain sample
deformations, which is the main reason why registration
is necessary.

Using this method, we built a fully automatic registra-
tion method for mesoscopic scale optical images that pro-
duces accurate registration results in minutes that are con-
sistent with manual registration. We also demonstrate that
DeepMapi generalizes well to other data modes, such as
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Fig. 8 The performance and quantitative assessment of SyN and
DeepMapi on the LONI LPBA40 datasets. a The registration results of
SyN (ground truth) and DeepMapi. Three standard anatomical planes are
presented from left to right and the four columns correspond to the
moving image, fixed image, SyN registration results and DeepMapi

registration results, respectively. The brown boxes represents the same
spatial position for the comparisons. b Quantitative assessment of 56
brain regions. The Dice scores of nine brain datasets are presented in a
box plot. Brown: DeepMapi. Black: SyN. The regions where DeepMapi
achieved a higher median value than SyN are marked with an asterisk (*)
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MRI datasets. As long as sufficient training sets are avail-
able, we expect DeepMapi to be suitable for registration
tasks on other mesoscopic optical image datasets, includ-
ing zebrafish, monkeys, and even human brains.
Additionally, the proposed self-feedback strategy is prom-
ising for situations where samples have nonuniform dis-
tributions, including tasks such as image denoising and
image restoration.

Due to the large variety of application-specific optical
labeling methods (Fiirth et al. 2018; Gong et al. 2016; Lin
et al. 2018) in modern neuroscience, the characteristics of
image datasets differ widely; thus, it is difficult to achieve
accurate registration based directly on the original signals
characteristics. To solve this problem, we used PI-stained
cytoarchitectural information (Gong et al. 2016) for reg-
istration. In neuroscience research, tissue sections with
nucleic acid staining (e.g. PI, DAPI) are often used to
localize specific labeled neural circuits (Gong et al.
2016). In fact, we expect our method to be able to register
almost all datasets that show the anatomical features of
brain regions or nuclei, such as Nissl staining (Li et al.
2010), autofluorescence (Niedworok et al. 2016), and
MRI images (Johnson et al. 2010).

Advances in brain sciences and technologies have resulted
in the accumulation of large numbers of brain datasets
(Landhuis 2017), especially 3D whole brain datasets at the
mesoscopic level, which are more conducive to studying re-
lationships between structure and function. These intricate,
spatiotemporal and scattered brain datasets could form a com-
prehensive brain spatial information system if they existed in a
common brain space (Boline et al. 2008). Brain registration
provides spatial coordinate information to bridge these
scattered datasets; however, these massive datasets place high
demands on good registration methods in terms of accuracy,
automation and speed. The DeepMapi method proposed here
is well-matched to these challenges; users can easily execute
the program and obtain accurate registration results for a stan-
dard brain space in minutes.
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