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that inactivates glucocorticoids, increases anxiety- and de-
pressive-like behaviour in mice; however, in this case the 
phenotype is not accompanied by overt perturbation in the 
HPA axis but, intriguingly, alterations in serotonergic and 
catecholamine pathways are maintained in this program-
ming model. This review addresses one of the potential ad-
verse effects of glucocorticoid overexposure in utero, i.e. in-
creased incidence of affective behaviours, and the mecha-
nisms underlying these behaviours including alteration of 
the HPA axis and serotonergic and catecholamine pathways. 

 Copyright © 2011 S. Karger AG, Basel 

 Developmental Programming 

 Low birth weight and other indicators of reduced fetal 
growth are associated with adult cardio-metabolic and 
psychiatric diseases. This association is the result of ‘de-
velopmental programming’, whereby a stimulus during a 
sensitive period of early development exerts permanent 
effects on structure, physiology or metabolism  [1] . The 
environmental mechanisms of developmental program-
ming identified so far can be simplified into two major 
groups: fetal stress exposure and maternal nutrition, al-
though changes in glucocorticoids appear to underpin 
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 Abstract 

 Fetal glucocorticoid exposure is a key mechanism proposed 
to underlie prenatal ‘programming’ of adult affective behav-
iours such as depression and anxiety. Indeed, the glucocor-
ticoid metabolising enzyme 11 � -hydroxysteroid dehydro-
genase type 2 (11 � -HSD2), which is highly expressed in 
the placenta and the developing fetus, acts as a protective 
barrier from the high maternal glucocorticoids which may 
alter developmental trajectories. The programmed changes 
resulting from maternal stress or bypass or from the inhibi-
tion of 11 � -HSD2 are frequently associated with alterations 
in the hypothalamic-pituitary-adrenal (HPA) axis. Hence, cir-
culating glucocorticoid levels are increased either basally or 
in response to stress accompanied by CNS region-specific 
modulations in the expression of both corticosteroid recep-
tors (mineralocorticoid and glucocorticoid receptors). Fur-
thermore, early-life glucocorticoid exposure also affects se-
rotonergic and catecholamine pathways within the brain, 
with changes in both associated neurotransmitters and re-
ceptors. Indeed, global removal of 11 � -HSD2, an enzyme 
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the programming effects of both  [2–4] . In many mam-
mals, including mice and humans, there is an increased 
exposure of the developing fetus to glucocorticoids late in 
pregnancy, as they have a crucial role in the structural 
development and functional maturation of fetal organs. 
However, glucocorticoid overexposure of the fetus can be 
detrimental as glucocorticoids cause a shift from cell pro-
liferation to differentiation. Therefore, exposure to excess 
glucocorticoids in utero alters fetal organ growth and 
maturation patterns, which can result in adverse conse-
quences in later life. In humans, the actions of glucocor-
ticoids are exploited for preterm births to advance fetal 
lung maturation  [5] , although this may set the stage for 
adverse effects in later life  [6–16] . This review addresses 
one of the potential adverse effects of glucocorticoid over-
exposure in utero, i.e. increased incidence of affective be-
haviours, and the mechanisms underlying these behav-
iours including alteration of the hypothalamic-pituitary-
adrenal (HPA) axis and serotonergic and catecholamine 
pathways.

  The Feto-Placental Glucocorticoid Barrier: 

11 � -Hydroxysteroid Dehydrogenase Type 2 

 As glucocorticoids are highly lipophilic, they readily 
diffuse across biological membranes and, therefore, con-
trol of intracellular levels of bioactive glucocorticoids is 
critical. This control arises from the enzyme 11 � -hy-
droxysteroid dehydrogenase (11 � -HSD) which intercon-
verts the active glucocorticoids cortisol and corticoste-
rone with their biologically inactive forms, cortisone and 
11-dehydrocorticosterone, respectively. There are two 
distinct forms of 11 � -HSD: 11 � -HSD1 is a low-affinity, 
NADP(H)-dependent bidirectional enzyme, although in 
vivo it appears to act predominantly as an 11 � -oxoreduc-
tase to enhance glucocorticoid activity. 11 � -HSD2 is a 
high-affinity NAD-dependent enzyme which exhibits 
exclusive 11 � -dehydrogenase activity (conversion of cor-
ticosterone to 11-dehydrocorticosterone) to reduce glu-
cocorticoid potency. 11 � -HSD2 is highly expressed in al-
dosterone-selective target tissues such as the distal neph-
ron  [17] , colon  [18] , salivary glands  [19]  and skin  [20] , thus 
serving to confer aldosterone specificity on the mineralo-
corticoid receptor (MR) to which both corticosterone and 
aldosterone can bind. Importantly, 11 � -HSD2 does not 
always colocalise with MR, such as within placental and 
fetal tissues, and so its function has expanded beyond its 
involvement in the electrolyte transport to include regu-
lation of corticosteroid action.

  During much of normal pregnancy, circulating levels 
of glucocorticoids in the fetus are substantially lower 
than in the mother. This difference arises in part from the 
high expression of 11 � -HSD2 in both the placenta and 
fetus, and this 11 � -HSD2 expression serves as a ‘gluco-
corticoid barrier’, thus enabling a tight regulation of the 
materno-fetal glucocorticoid transfer. Within the placen-
ta, 11 � -HSD2 is highly expressed at the interface between 
maternal and fetal circulations, in the syncytiotropho-
blast in humans  [16]  and the labyrinthine zone in rodents 
 [21] . In the rodent, 11 � -HSD2 expression within the lab-
yrinth zone of the placenta falls during late gestation, 
which may facilitate glucocorticoid passage to the fetus 
and thus lung maturation  [22, 23] .

  Within fetal tissues, 11 � -HSD2 is broadly expressed, 
particularly within the brain  [23] . 11 � -HSD2 is abundant 
in the neuroepithelium throughout mid-gestation and 
then strikingly and rapidly declines, coinciding with the 
terminal stage of neurogenesis  [23, 24] . Similar patterns 
of expression occur in the human fetal brain, with 11 � -
HSD2 silenced between gestational weeks 19 and 26  [25] . 
Thus, this abundance and expression pattern of 11 � -
HSD2 suggests that 11 � -HSD2 acts to protect immature 
mitotically active brain cells from premature exposure to 
the maturational effects of glucocorticoids. After birth, 
high levels of 11 � -HSD2 are localised in mice to only the 
proliferating external granular layer of the cerebellum 
and in several nuclei of the thalamus  [26, 27] . Therefore, 
in the early postnatal period the cerebellum is sensitive to 
glucocorticoid-induced remodelling caused either by ex-
ogenous administration or in response to the stress in-
duced by maternal separation  [28–30] .

  The high expression of 11 � -HSD2 in placenta and fetal 
tissues and the growth retarding and maturational effects 
of glucocorticoids on the fetus  [31]  have led to the pro-
posal that variations in feto-placental 11 � -HSD2 may 
underlie developmental programming. Thus, placental 
11 � -HSD2 activity correlates with birth parameters in 
rodents and, less consistently, in humans  [7, 32, 33] , sug-
gesting that normal variation in fetal exposure to mater-
nal glucocorticoids may impact on fetal growth. Numer-
ous studies have shown that inhibition, deficiency or by-
pass (poor substrate steroids such as dexamethasone 
or betamethasone) of 11 � -HSD2 in gestation in rodents 
and humans associates with alterations in pregnancy du-
ration, birth weight and programmed outcomes in the 
offspring  [7, 15, 34–45] . Furthermore, maternal stress
of rodents during pregnancy has been associated with a 
decreased expression of placental 11 � -HSD2  [46–48] .
Interestingly, in programming models involving mater-
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nal low-protein diet, there is an increase in maternal and 
fetal glucocorticoid levels  [49, 50]  in addition to a de-
crease in placental 11 � -HSD2 activity and/or expression 
 [50–52] . Moreover, dexamethasone administration dur-
ing pregnancy decreases food intake  [53] . Consequently, 
there seems to be considerable overlap in mechanisms by 
which maternal undernutrition and fetal glucocorticoid 
overexposure elicit developmental programming.

  Developmental Programming of Affective Disorders 

 The developing brain, as other fetal tissues, is extreme-
ly sensitive to glucocorticoids, which are crucial for nor-
mal cellular and biochemical maturation  [54, 55] . Thus, 
glucocorticoids initiate terminal maturation, remodel 
axons and dendrites and determine programmed cell 
death  [31] . In sheep, prenatal glucocorticoid administra-
tion retards brain weight at birth  [56] , delaying matura-
tion of neurons, myelination, glia and vasculature  [57] . 
The perinatal hippocampus is especially sensitive to glu-
cocorticoids, with consequences for subsequent memory 
and behaviour  [58–60] . Thus, antenatal treatment of rhe-
sus monkeys with dexamethasone causes a dose-associ-
ated degeneration of hippocampal neurones and reduced 
hippocampal volume which persists at 20 months of age 
 [61] . Prenatal stress (induced by repeated restraint of the 
pregnant female in the last week of pregnancy) reduces 
actively proliferating hippocampal cells and feminises 
sexually dimorphic parameters of the adult hippocam-
pus  [62] .

  A critical outcome of excess glucocorticoid exposure 
in early life is the programming of affective function. In 
the rat, central programming by glucocorticoids, be it 
from maternal administration of dexamethasone or pre-
natal stress, produces offspring that appear more anxious 
as adults. Thus, late-gestational dexamethasone exposure 
in rats impairs the offspring’s ‘coping’ behaviours in aver-
sive situations later in life, as exemplified by reduced ex-
ploration in the open field test and elevated plus maze 
 [42] . Such increase in anxiety-like behaviour is evident as 
early as postnatal week 10 in rats prenatally exposed to 
dexamethasone  [63] . In rodents, prenatal stress increases 
depressive-like symptoms with an increased immobility 
time in the forced swim test and tail suspension test and 
anhedonia  [64] , although not always  [65] . Furthermore, 
offspring of prenatally stressed rats are anxious, with less 
time spent in the anxiogenic open arms of the elevated 
plus maze  [66–68]  and altered behaviour in the open field 
test  [69–71] .

  In animal models of antenatal glucocorticoid admin-
istration, prenatal stress and maternal dietary restriction, 
these programmed changes in behaviour are frequently 
accompanied by alterations in the HPA axis. Thus, ma-
ternal dexamethasone treatment increases corticoste-
rone and adrenocorticotrophic hormone (ACTH) levels 
in the adult offspring, although, interestingly, mostly in 
males  [13, 39, 42, 72] . These effects seem to reflect a 
change in the feedback of the HPA axis at the level of 
the hypothalamus, as corticotrophin-releasing hormone 
(CRH) mRNA increases in the paraventricular nucleus, 
whereas the hippocampal MR and glucocorticoid recep-
tor (GR) both decrease  [41, 73] . Furthermore, the HPA 
axis period of hyporesponsiveness in early postnatal life 
is abolished in adult rats exposed to prenatal stress  [74] , 
whilst normal age-related HPA axis dysfunction is accel-
erated by prenatal stress  [75] . In sheep, a single injection 
of betamethasone on gestational day 104 alters the HPA 
axis function in offspring at 1 year of age, with elevated 
basal and stimulated plasma cortisol concentrations  [76] . 
In contrast, repeated maternal betamethasone injections 
elevated the offspring’s ACTH responses to a CRH/argi-
nine vasopressin challenge in addition to increased basal 
ACTH levels but decreased basal and stimulated cortisol 
levels  [76, 77] . In primates, offspring of mothers treated 
with dexamethasone during late pregnancy have elevated 
basal and stress-stimulated cortisol levels  [78, 79] .

  Moreover, prenatal stress and alterations in the off-
spring’s HPA axis function have also been associated in 
humans. Thus, children of mothers present at or near to 
the World Trade Center atrocity on 9/11, who themselves 
developed symptoms of post-traumatic stress disorder 
(PTSD), had lower cortisol levels  [80] . Importantly, these 
changes were most apparent in babies born to mothers 
who were in the last 3 months of their pregnancies when 
the trauma occurred, suggesting these observations can 
be attributed to developmental programming phenome-
na rather than to a genetic susceptibility or the presence 
of PTSD per se  [80] . Such effects may transmit into sub-
sequent generations, since healthy adult children of Ho-
locaust survivors with PTSD (and therefore lower plas-
ma cortisol levels) themselves have lower cortisol levels 
though no PTSD  [81] . This appears to be confined to the 
children of Holocaust-exposed mothers with PTSD  [81] . 
In contrast to PTSD, maternal anxiety and depression 
seem to elevate cortisol in the child  [82, 83] . Therefore, 
the mechanisms of prenatal stress programming HPA 
axis function in humans seem complex, with possibly 
different pathways involved. Intriguingly, in Finland, 
women who voluntarily ingest liquorice-containing 
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foodstuffs (that potently inhibit placental 11 � -HSD2 
 [84] ) in pregnancy have somewhat shorter gestations and 
their 8-year-old offspring show altered cognitive func-
tion, affective disturbances (notably markedly increased 
rates of attention-deficit/hyperactivity disorder), HPA 
axis hyperactivity and sleep disturbances  [85, 86] . How-
ever, while it is tempting to conclude that an altered HPA 
axis response is the underlying mechanism to anxiety-
related behaviour, it is important to note that these be-
havioural changes can occur in the absence of HPA axis 
alteration  [70, 87] .

  Gaining Functional Insight: Genetic Modifications of 

11 � -HSD2  

 As 11 � -HSD2 appears to be a hub for eliciting pro-
gramming effects, genetically modified mouse models 
have provided useful insight into underlying mecha-
nisms. An initial mouse model of targeted 11 � -HSD2 dis-
ruption on an outbred MF1 background revealed mice 
with an apparently normal phenotype at birth; however, 
within 48 h, 50% exhibit motor deficiencies, perhaps due 
to hypokalaemia, and die  [88] . Survivors are fertile, but 
exhibit severe hypertension, hypokalaemia and polyuria 
 [88] , all typical characteristics of apparent mineralocor-
ticoid excess and, thus, apparent mineralocorticoid ac-
tions of corticosterone were revealed by 11 � -HSD2 defi-
ciency. Interestingly, these mice did not exhibit reduced 
fetal weight, although this was clearly apparent in later 
studies on a 11 � -HSD2 knockout model congenic on a 
C57BL/6J background  [35] . In assessing the relevance of 
11 � -HSD2 in developmental programming, two separate 
breeding approaches have been taken. In homozygous 
breeding experiments, male and female mice null or 
wild-type for 11 � -HSD2 are mated, although this exper-
imental model is complicated by the potential effects that 
life-long loss of 11 � -HSD2 has on maternal care of off-
spring. To eliminate these effects, a heterozygous mating 
approach has also been taken and has been the main 
method for assessing the importance of 11 � -HSD2 in de-
velopmental programming.

  With regard to neurodevelopment, cerebellar size is 
reduced in homozygously bred 11 � -HSD2 –/–  mice in ear-
ly postnatal life due to a decrease in the molecular and 
internal granular layers  [89] . This associates with a delay 
in the attainment of neurodevelopmental landmarks 
such as negative geotaxis and eye opening  [89] . Thus, the 
timing of exposure of the developing brain to glucocorti-
coids seems to be tightly regulated by the presence of local 

11 � -HSD2 and the cell-specific patterns of its downregu-
lation during maturation.

  As adults, 11 � -HSD2 –/–  offspring generated from ei-
ther a homozygous or heterozygous mating approach ex-
hibit increased anxiety. Thus, exploration of the anxio-
genic open arm of the elevated plus maze is reduced in 
11 � -HSD2 –/–  offspring in comparison to wild types  [35] . 
Additionally, open field exploration is altered in the ho-
mozygously bred 11 � -HSD2 –/–  offspring, with them be-
ing more reluctant to explore the anxiogenic central field 
 [35] . Interestingly, open field exploration is unaltered in 
heterozygously bred 11 � -HSD2 –/–  offspring, which im-
plies that aspects of adult behaviour are influenced by 
maternal factors in this model  [35] . The behavioural phe-
notype of heterozygously bred 11 � -HSD2 –/–  offspring has 
been subsequently extended with the observation that 
11 � -HSD2 –/–  offspring exhibit depressive-like behaviour. 
Indeed, 11 � -HSD2 –/–  offspring spent a greater percentage 
of total time immobile during the tail suspension test 
(11 � -HSD2 +/+ : 52.73  8  3.5% vs. 11 � -HSD2 –/– : 70.92  8  
3.7%; p  !  0.05, unpaired t test; unpubl. data) and the 
forced swim test (11 � -HSD2 +/+ : 54.98  8  2.4% vs. 11 � -
HSD2 –/– : 68.88  8  4.8%; p  !  0.05, unpaired t test; unpubl. 
data), both indicating increased depressive-like behav-
iour. However, it is unknown if similar behaviour is ex-
hibited by homozygously bred 11 � -HSD2 –/–  offspring. 
Support of the notion that altered 11 � -HSD2 activity con-
tributes to affective behaviour has also been found clini-
cally. Thus, measurements of urinary glucocorticoids 
and their metabolites in depressed patients reveal chang-
es in the intracellular regulation of glucocorticoid activ-
ity, in particular 11 � -HSD2, in comparison to healthy 
controls  [90, 91] . It is unclear, however, if this alteration 
in steroid metabolism is a consequence or cause of de-
pression.

  Interestingly, despite increased anxiety, the HPA axis 
activity of 11 � -HSD2 –/–  offspring appears unaffected, 
perhaps a reflection of the additional effects of attenuated 
HPA axis reactivity due to the reduced glucocorticoid 
clearance in the absence of renal 11 � -HSD2  [35] . How-
ever, as predicted, adrenal size is reduced and hence reset-
ting of the HPA axis may have occurred during develop-
ment. This, together with a decreased degradation of cor-
ticosterone, means that less corticosterone needs to be 
produced. Consistent with this, 11 � -HSD2 –/–  mice exhib-
it no differences in the limbic expression of GR, MR or 
CRH during adulthood, but there are some transient 
changes within the postnatal period. In homozygous 
matings of 11 � -HSD2 –/–  mice, transient elevations in the 
GR transcript were observed in situ in all hippocampal 
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subfields of 11 � -HSD2 –/–  offspring at postnatal day 14 
 [92] . Similar transient changes were observed with MR, 
Sgk1, Fkbp5 and BDNF  [92] . It should be noted though 
that while no overt changes in adult HPA axis function 
are apparent, as 11 � -HSD2 is widely expressed in the 
CNS during development, it still remains to be deter-
mined if the observed behavioural effects are mediated 
by local fine-tuning of glucocorticoids.

  Placental 11 � -HSD2 Is More than Just a 

Glucocorticoid Barrier 

 As described above, placental 11 � -HSD2 may under-
pin aspects of developmental programming by allowing 
excess glucocorticoid passage from the ‘high’ glucocorti-
coid maternal circulation to the ‘low’ glucocorticoid fetal 
environment  [93]  and, thus, impair fetal growth by direct 
effects of glucocorticoids on the fetus. Fetal growth is, 
however, dependent on an array of maternal, placental 
and fetal endocrine signals, and glucocorticoid-mediated 
fetal growth retardation must also be related, at least in 
part, to disturbances in placental growth and function. 
Indeed, maternal treatment with dexamethasone impairs 
normal vascular growth in the rat placenta and has 
marked effects on the amino acid and glucose transport 
 [94] . Furthermore, an elegant recent study has revealed 
that the placenta is a source of serotonin for the fetal fore-
brain  [95] , which, while yet to be investigated in the 11 � -
HSD2 –/–  model, could also potentially impact on the de-
velopment of adult affective behaviours. Nonetheless, the 
current data provide a convincing argument that while 
maternal glucocorticoids could play a direct role in pro-
gramming the fetus, notably its brain, placental develop-
ment and function additionally play a key role. It must 
be noted, however, that until tissue-specific knockouts of 
11 � -HSD2 in placenta and fetal tissues are developed, the 
differential significance of feto-placental 11 � -HSD2 for 
development cannot be elucidated.

  A Role for Altered Neuronal Serotonergic and 

Catecholamine Pathways? 

 In addition to altered HPA axis function, early-life glu-
cocorticoid exposure can also affect serotonergic and cat-
echolamine pathways. Indeed, in a mouse model of pre-
natal stress, a depression-like phenotype was accompa-
nied by increased serotonin (5-HT) output and decreased 
reuptake, as indicated by reduced 5-HT transporter levels 

in the hippocampus and a trend for decreased trypto-
phan hydroxylase-2 expression in the dorsal raphe  [96] . 
In contrast, another model of strong prenatal restraint 
stress increased both serotonin and tryptophan hydroxy-
lase expression within the dorsal raphe nuclei  [97] , whilst 
others have shown prenatal stress to decrease hippocam-
pal 5-HT 1A  receptor binding in young male offspring 
 [98] . Neonatal handling, a model of early-life stress, in-
creases hippocampal 5-HT levels and turnover  [99, 100] . 
Maternal separation also has dramatic effects on the 
adult offspring, with an increase in the inhibitory effect 
of the 5-HT reuptake inhibitor citalopram on serotoner-
gic neuron firing frequency in the dorsal raphe  [101] , a 
reduced sensitivity of 5-HT 1A  receptors in the dorsal ra-
phe  [102]  and layer II/III cortical pyramidal neurons 
 [103] . Furthermore, perinatal glucocorticoid exposure 
increases the size and alters the distribution of adult do-
paminergic populations within the substantia nigra pars 
compacta and the ventral tegmental area  [104] , while ma-
ternal dexamethasone treatment reduces serotonin turn-
over in the offspring  [72] . Maternal protein restriction 
also alters serotonergic and dopaminergic systems, with 
the normal rise in dopamine following restraint stress of 
adult offspring being dampened and serotonin release 
enhanced  [105] . Interestingly, there is evidence for sero-
tonergic involvement in programming of the HPA axis. 
Thus, serotonin, via 5-HT 7  receptors, is involved in me-
diating the permanent upregulation of GR following neo-
natal handling  [106, 107] . Furthermore, in the rat, allelic 
variations in the serotonin transporter alter the changes 
in hippocampal GR mRNA and corticosteroid stress re-
sponse that occur during postnatal stress  [108] .

  Preliminary data suggest that altered 5-HT and cate-
cholamine pathways in 11 � -HSD2 –/–  adult brains may be 
responsible, at least in part, for anxiety-related behaviour 
[C.S.W., M.C.H., unpubl. obs.]. Thus, levels of 5-HT and 
its metabolite 5-hydroxyindole acetic acid were measured 
using high-performance liquid chromatography, as was 
dopamine and its metabolites dihydroxyphenylacetic 
acid, homovanillic acid and noradrenaline in homoge-
nates of the cortex, hippocampus, hindbrain and dien-
cephalon of 8-month-old male mice from 11 � -HSD2 het-
erozygous matings. Significant changes were found with-
in the diencephalon region only, with levels of 5-HT 
increased by 1.6-fold in 11 � -HSD2 –/–  offspring in com-
parison to 11 � -HSD2 +/+  littermates (p  !  0.05), with no 
change in metabolites, suggesting increased 5-HT synthe-
sis and/or impairment of 5-HT breakdown ( fig. 1 ). Fur-
thermore, in the same region increases in the dopamine 
metabolites dihydroxyphenylacetic acid (1.5 fold; p  !  
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0.05), homovanillic acid (1.6 fold; p  !  0.05) and noradren-
aline (1.4 fold; p  !  0.05), yet no alteration in dopamine, 
were found in 11 � -HSD2 –/–  offspring, indicative of in-
creased dopamine release and/or breakdown ( fig. 1 ). The 
significance of these results, particularly given that the 
changes were observed in the diencephalon, is currently 
uncertain but is suggestive of increased 5-HT synthesis 
and/or impaired 5-HT breakdown in addition to increased 
dopamine release and/or dopamine breakdown. However, 
these results need to be followed up with further studies to 
place these current findings in context, in particular, char-
acterising dopamine and serotonin transporters, recep-
tors and enzymes. Furthermore, while the observed mono-
aminergic changes in 11 � -HSD2 –/–  offspring are unac-
companied by alteration in the HPA axis function, this 
does not discount a direct role for glucocorticoids in alter-
ing monoamines, as local, intracellular glucocorticoid 
regulation has yet to be investigated in this model.

  Conclusions 

 In summary, prenatal exposure to glucocorticoids ex-
erts long-term effects on the offspring, altering affective 
behaviours. While changes in the HPA axis are often at-

tributed to underlying these altered behaviours, changes 
also occur within the serotonergic and catecholamine 
pathways. Furthermore, the development of mice in the 
absence of 11 � -HSD2 has proven instrumental in ascer-
taining the significance of 11 � -HSD2 for the develop-
ment of affective disorders. It is interesting that a com-
mon pathway altered in the developmental programming 
of affective disorders, the HPA axis, is in fact marginal-
ly affected in the 11 � -HSD2 –/–  mouse. However, prelimi-
nary data suggest that changes in serotonergic and cate-
cholamine pathways may, at least in part, underlie the 
altered behaviour of 11 � -HSD2 –/–  mice. It should be not-
ed though that these findings are potentially not just a 
consequence of feto-placental 11 � -HSD2 loss but also of 
life-long renal 11 � -HSD2 loss. Therefore, the develop-
ment of tissue-specific knockouts of 11 � -HSD2 will aid 
in eliminating this confounder.
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  Fig. 1.  Levels of serotonin (5-HT;  a ), dihy-
droxyphenylacetic acid (DOPAC;  b ), ho-
movanillic acid (HVA;  c ) and noradrena-
line (NA;  d ) in the diencephalon of 11 � -
HSD2 +/+ ,  +/– , and  –/–  adult male mice. Data 
are expressed as means  8  SEM and anal-
ysed by one-way ANOVA followed by post 
hoc Tukey’s test; n = 7–10 per group;  *  p  !  
0.05.   
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