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Abstract
The diagnosis of Parkinson’s disease relies heavily on the subjective assessment of
physicians, which depends on their individual experience and training, potentially leading
to inconsistent diagnostic results. Therefore, developing an objective and efficient diag-
nostic method is essential to improve the accuracy and timeliness of Parkinson’s disease
diagnosis. In this study, we utilized the PhysioNet dataset, a time-series dataset compris-
ing data from 93 Parkinson’s patients and 73 healthy individuals. The dataset contains
vertical ground reaction forces recorded from 16 sensors (8 per foot) during a 2-minute
test at a sampling rate of 100 Hz. To address challenges such as limited dataset size,
high labeling noise, and high intra-class variability, we performed data preprocessing and
applied various data augmentation techniques, including jittering, scaling, rotation, per-
mutation, magnitude warping, time warping, cropping, and linear residuals. These meth-
ods were evaluated using one-dimensional-convolutional neural network (1D-ConvNet)
and one-dimensional Transformer networks. By conducting 10-fold cross-validation, we
observed significant improvements in classification performance. The best data augmen-
tation strategy achieved 90.8% accuracy, 92.0% precision, 91.0% recall, and a 91.0% F1
score in assessing disease severity. These results highlight the importance of selecting
appropriate data augmentation techniques for time-series data to improve model general-
ization and diagnostic reliability, while also offering new insights for researchers working
with sensor device data. Our results demonstrate that data-enhanced methods can sig-
nificantly boost the performance of machine-learning models in the field of Parkinson’s
disease diagnosis.

1 Introduction
Wearables are smart devices worn on the human body that utilize sensors and communica-
tion technologies to monitor and collect data on the user’s physiology, movement, environ-
ment, and other related aspects. Parkinson’s disease (PD) is one of the most common neu-
rodegenerative diseases, typically diagnosed through clinical evaluation and neuroimaging
techniques [1]. However, traditional diagnostic methods often suffer from subjectivity and
delays, making early diagnosis challenging. Wearable sensors [2] such as accelerometers,

PLOS ONE https://doi.org/10.1371/journal.pone.0319826 April 2, 2025 1/ 26

https://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0319826&domain=pdf&date_stamp=2025-04-02
https://doi.org/10.1371/journal.pone.0319826
https://doi.org/10.1371/journal.pone.0319826
https://creativecommons.org/licenses/by/4.0/
https://physionet.org/content/gaitpdb/1.0.0/
https://physionet.org/content/gaitpdb/1.0.0/
https://orcid.org/0000-0001-9545-5443
mailto:pacific_huo@126.com
https://doi.org/10.1371/journal.pone.0319826


ID: pone.0319826 — 2025/4/2 — page 2 — #2

PLOS ONE Efficient quantification of Parkinson’s disease severity using augmented time-series data

gyroscopes, pressure sensors, magnetometers, and electrophysiological sensors can capture
large amounts of motion data and continuously monitor the patient’s condition without real-
time intervention from doctors. These devices can detect subtle changes in movement with-
out the patient’s direct awareness, [3,4] providing strong support for the early diagnosis of
PD. With the advancement of science and technology, the development of high-sensitivity
wearable devices has further promoted research into PD [5]. Traditional PD diagnosis relies
on subjective assessment, whereas the combination of deep learning (DL) and wearable sen-
sors offers new avenues for objective and accurate diagnostic and monitoring tools [3]. Dig-
ital biomarkers have shown significant potential in assessing disease severity and monitor-
ing treatment outcomes, with sensor technologies greatly improving the precision of disease
monitoring [6]. Wearable devices have enhanced the timeliness and accuracy of monitoring,
while digital technologies show great promise in disease tracking, personalized treatment, and
remote management [7]. Additionally, digital biomarkers hold broad prospects in quantifying
symptom severity and evaluating treatment effectiveness [8]. Since PD is a progressive con-
dition, its symptoms are often subtle in the early stages. Automated severity estimation can
help detect changes in the condition early, especially when symptoms worsen. Inertial data,
such as accelerometer and gyroscope readings, is typically used to measure overall movement
changes, but it cannot provide detailed information about the specific contact between the
foot and the ground. Therefore, pressure data from the feet offers more direct and detailed
feedback [9] in gait analysis.

However, despite the progress brought by digital biomarkers and wearable technologies,
challenges remain, such as sample and methodological heterogeneity and the lack of public
datasets [10]. Current major challenges include insufficient data standardization, small sam-
ple sizes, algorithm interpretability, and device consistency [3]. Another challenge is to design
fast and accurate modeling algorithms to fine-tune the analysis of data generated by wear-
able devices, especially when dealing with the correlation between different sensors and tim-
ing considerations. Therefore, our research focuses on how to utilize the limited resources
of plantar pressure time-series data acquired by the sensor for Data Augmentation (DA) to
obtain more usable data for gait analysis, especially in the context of grading the severity of
PD. Augmentation methods for image data [11] (e.g., brightness adjustment, panning, flip-
ping, etc.) have been widely used in computer vision, and these methods improve the training
effect and generalization ability of the model by increasing the diversity and quantity of data.
However, similar DA methods have been applied less in sensor-acquired time series data,
even though these methods could theoretically improve the performance of time series mod-
els by introducing diversity as well. This imbalance may be due to the unique continuity and
dependency of time series data, making traditional image augmentation methods difficult to
apply directly. Consequently, it is important to explore and develop augmentation methods
applicable to time series data, especially in areas that require high accuracy and robustness,
such as health monitoring and disease diagnosis.

We aim to explore DA methods for footwear time series data to provide more reliable input
for the model. Another challenge is creating simplified, effective network models. Current
models are complex, and we seek ways to reduce their complexity while maintaining accu-
racy. Simplifying the model reduces computation and training time, improving efficiency
in real-world applications. By optimizing the model structure and reducing parameters, we
hope to maintain good performance with plantar pressure data, which is important for early
Parkinson’s diagnosis.CNNs [12] capture local features but struggle with time series data. In
contrast, Transformers [13] handle long-range dependencies well and perform better with
long sequences. The multi-head attention mechanism enhances efficiency, allowing the model
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to handle larger datasets. Therefore, we chose Deep CNN and Transformer models to process
plantar pressure data and validated the DA method through experiments.

Our contributions in this paper are mainly as follows:

• DA: For the time series data acquired by wearable devices, we used multiple DA methods
based on a limited dataset to verify its validity in a single or combined form.

• Feature Selection:We performed feature selection for plantar data sensors to facilitate later
feature selection, thereby reducing unnecessary data information and minimizing model
redundancy.

• Excellent Performance: By introducing a new DA method to process the plantar data of
Parkinson’s patients and normal people, we achieve efficient PD severity grading. Exper-
iments have demonstrated that our proposed method performs excellently in terms of
performance and achieves significant results.

• Simplified Model:We verified that a single model can also achieve optimal results through
DA techniques. This finding not only reduces the complexity of the model, but also simpli-
fies the overall architecture, improving operational efficiency and practicality.

The structure of our paper is as follows: Sect 2 reviews the latest advancements and related
work in DL for PD research. Sect 3 introduces the DA methods and experimental models
used in our study. Sect 4 presents and analyzes the experimental results. Finally, Sect 5 sum-
marizes the strengths and weaknesses of our work and outlines future research directions.

2 Related works
2.1 Wearable sensors in health monitoring
In recent years, the impact of load measurement, training adaptation, and injury prevention
strategies in sports has been the subject of extensive research, particularly the impact of mon-
itoring and analyzing training loads in athletes on optimizing performance, reducing injury
risk, and aiding in the recovery process [14,15]. Many studies have focused on using wear-
able devices for real-time monitoring and assessment of gait and tremor in PD patients. For
example, study [16] developed a smartphone-based measurement method to assess the sever-
ity of PD, symptom fluctuations, and the response to dopaminergic treatment. Using a smart-
phone application, patients remotely completed five tasks: voice, finger tapping, gait, balance,
and reaction time. Bamberg et al. [17] developed an long-lasting wearable system “Gaitshoe”
and used it to provide quantitative gait analysis beyond the scope of a traditional sports labo-
ratory. GaitShoe was analyzed and validated to have a strong ability to detect heel strike and
toe-off, as well as estimate foot orientation and position. In [18], wearable devices (such as
accelerometers, gyroscopes, and other sensors) were used to collect patients’ motion data,
particularly gait and tremor symptoms. DL methods, such as CNN and Recurrent Neural Net-
works (RNN), were applied to analyze the collected sensor data. The DL models are capable of
extracting important features from the raw data, and subsequently predicting the severity of
the patient’s condition. By using DL models to process motion data in real-time, this approach
enables the monitoring and assessment of PD severity in patients. The study [19] used 16
biomedical speech features as the input dataset, with the total UPDRS (Unified Parkinson’s
Disease Rating Scale is a tool used to assess the severity of PD symptoms. It helps doctors
evaluate the patient’s motor skills, daily functions, and other symptoms to monitor the dis-
ease’s progression) score as the output variable. The classification accuracy for the training
and test sets were 94.44% and 62.73%, respectively.
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Although these methods show potential in assessing the severity of PD, they face various
challenges, including reliance on data quality, individual differences, and computational
resources. Therefore, expanding the dataset has become a key factor in improving the effec-
tiveness of these methods.

2.2 Foot pressure analysis in Parkinson’s disease
The feasibility and applicability of objective gait measurements based on wearable sensors in
PD have been demonstrated to reach a relatively mature processing technique in both large-
scale clinical studies and individual patient care. Schlachetzki et al. [20] analyzed a cross-
sectional study of 190 patients with PD and 101 age-matched patients and revealed significant
spatiotemporal gait parameter differences and corresponding their results to physician scores
successfully demonstrated the clinical applicability of wearable sensor-based gait analysis,
providing high biomechanical resolution for gait disorders in PD.

With the development of machine learning (ML), researchers have also designed a vari-
ety of different models to process Parkinson’s plantar time series data, which are designed
to improve the accuracy of detection and prediction of the disease, thus helping patients to
get better treatment and management. Among these models, CNN, Transformer, and LSTM
have been widely used and studied due to their powerful ability to process time series data
and capture complex patterns. Imanne El Maachi et al. [21] used a 1D-ConvNet to construct
a DNN classifier. The model processes 18 one-dimensional signals of vertical ground reac-
tion forces (VGRF) measured from foot sensors. Their algorithm validated the model on the
UPDRS grading scale, which is the first model to utilize the UPDRS scale to classify the sever-
ity of PD. Due to the need for large datasets in DL algorithms, the study divides each walking
session into segments of 100 time steps, with a 50% overlap between segments. Each segment
is labeled with the corresponding class for training. The segmentation process is carried out
within each fold, and segments from the same subject are not shared between the training and
validation sets. The final classification accuracy for disease severity is 85.3%, with a total of
64,468 segments in the dataset. Duc Minh Dimitri Nguyen et al. [22] devised a Transformer-
based spatial-temporal network structure to process Parkinson’s plantar gait data, and proved
them to be effective in extracting relevant features from one-dimensional signals extract-
ing relevant features is effective. Structurally they decoupled temporal and spatial informa-
tion to minimize the complexity of the model. Their architecture uses a temporal converter,
a dimensionality reduction layer to reduce the dimensionality of the data, as well as a spatial
converter, two fully connected layers, and an output layer for final prediction.

Moreover, the study [23] introduces a spatio-temporal capsule network to classify Parkin-
son’s disease severity using gait data. The experiment used a Ga dataset with dimensions
19×100, where 19 represents features and 100 represents time steps. The model achieved
100% accuracy for healthy individuals and 82% for patients with severity level 3. The model
proposed by Aşuroğlu, Tunç, et al. [24] combines CNN and locally weighted random forests,
using GRF sensors with a 100 Hz sampling rate. Data preprocessing removed the initial
and final portions of the data and outliers were eliminated using a median filter, improv-
ing the accuracy of gait feature representation. The final model achieved a correlation coef-
ficient of 0.897, root mean square error (RMSE) of 3.009, and root mean square (RMS) of
4.556. Shcherbak et al. [25] proposed a method based on wearable sensors and ML to dis-
tinguish between healthy controls and patients with PD stages 1 and 2. The study designed
11 common movements and collected data using commercial accelerometer, gyroscope, and
magnetometer sensors from 113 participants. By applying ML techniques (feature extrac-
tion, dimensionality reduction, and classification) to analyze the data, the accuracy of early
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PD diagnosis was significantly improved. The best results showed F1 scores of 0.78 and 0.88
for PD stages 1 and 2, respectively. This study [26] combines ML methods to classify PD and
essential tremor (ET) based on balance and gait features collected through wearable sensors.
The ML model achieved an F1 score of 0.48 for PD classification, demonstrating the practi-
cality of this approach in distinguishing different motor disorders. In study [27], 74 patients
visited the laboratory every three months, completing a total of seven visits. Data on walk-
ing (2 minutes) and postural sway (30 seconds, eyes closed) were collected using six iner-
tial measurement unit sensors. Based on this data, the MDS-UPDRS-III scale was estimated.
The performance of each model was evaluated using the average RMSE on the validation
set through five-fold cross-validation analysis. The results showed that the best-performing
model achieved an average RMSE of 10.02. However, due to the small size of the Ga dataset,
we believe the results of this study may be influenced by the limited data volume, thus lacking
broader applicability to real-world scenarios.

Although existing studies have made progress in assessing PD severity using gait and
motion data, challenges such as limited sample size, feature extraction constraints, model per-
formance limitations, and individual variability remain. To address these issues, we exper-
imented with eight DA methods to capture complex spatiotemporal features and enhance
model generalization. Our study not only overcomes the limitations posed by small datasets
but also provides new insights into time-series DA, laying a solid foundation for the practical
application of PD severity assessment.

2.3 Time series data angmentation techniques
DA is an essential preprocessing step for achieving optimal performance in DL methods
[12,28]. In image processing, common techniques include rotation, flipping, cropping, scaling,
and adding noise [29]. In speech recognition, frequently used methods involve time warp-
ing, frequency masking, adding background noise, and pitch shifting [30]. These approaches
effectively increase data diversity, enhancing the model’s generalization and robustness. How-
ever, the application of DA methods for time series is still relatively limited, primarily focus-
ing on basic techniques such as time warping, jittering, and cropping. While these methods
improve model performance to some extent, there remains significant room for development
compared to image [11] and speech [19] processing. Therefore, exploring richer and more
effective augmentation techniques for time series data is crucial for improving model per-
formance. In order to better utilize sensor data, there is an urgent need to develop DA tech-
niques that can handle complex temporal patterns and multivariate features to improve the
generalization ability and robustness of models.

With the increasing application of generative adversarial networks in the field of image
generation, some researchers have also focused the method on time series data. For exam-
ple, Li et al. [31] proposed a Transformer-Based Time-Series Generative Adversarial Net-
work (TTS-GAN), a generative model, a Transformer-based Generative Adversarial Net-
work (GAN) model for synthesizing virtual data with the same length as the original time
series. Subsequently, Yoon et al. [32] developed TimeGAN, a generative method for multi-
variate time series data. Through experimental validation, TimeGAN shows better results
in maintaining data diversity and accuracy compared to other GAN. However, despite the
advantages demonstrated by GAN networks in certain time series tasks, the core challenge
in generating data is to ensure that the generator and discriminator reach a Nash equilib-
rium [33]. This equilibrium is sometimes difficult to achieve consistently in the presence of
insufficient data, leading to inconsistent quality of data generated by the model. In addition,
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due to the complexity of the GAN training process, its stability is often difficult to ensure,
making the generated virtual data may deviate from the desired results.

Window cropping or slicing is a time series DA technique. [34] proposed a method to gen-
erate new samples by extracting continuous subsequences from the original series. [35] com-
pared it to cropping in computer vision, where adjustable-length slices are randomly extracted
from the original series for classification. The labels of the slices are the same as those of
the original series, and majority voting is used for classification during testing. A perturba-
tion and ensemble-based method is proposed in [36], which generates new time series using
Dynamic Time Warping (DTW) and performs ensemble via a weighted version of Barycen-
tric Averaging (DBA) algorithm. This method improves classification performance on some
UCR datasets. Alle et al. [37] designed LPGNet, which pre-processes time-series data with
down-sampling, normalization, and linear predictive analysis, after which linear predictive
residuals (LPRs) are used to extract discriminative patterns from gait recordings, and a 1D-
ConvNet and depth-separable CNN is used to diagnose class recognition. However, these
processes may lead to the loss of valuable information, especially when the data is noisy or
the sampling frequency is low, and the performance of the model may be degraded. Terry
T. Um et al. [38] studied wearable sensor data and proposed DA methods based on signal
transformation. They used these augmentation methods in conjunction with CNNmodels
to classify the motor states of PD patients. Experimental results show that appropriate DA
improves the classification performance from 77.54% to 86.88%, validating the effectiveness of
the DA methods. In study [39], which evaluated the impact of using HOAs (Hand Optimiza-
tion Algorithms) to expand the training dataset and transferring weights from unsupervised
pretraining on classification performance. The results showed that after expanding the dataset
and pretraining on hand movement tasks, the model’s accuracy improved by 12.2%. This
indicates that DA and pretraining effectively enhanced the model’s classification performance.

These methods have achieved certain successes in time series DA, but there are still some
limitations. Techniques like DTW and DBA perform well on some datasets, but their applica-
bility is narrow and cannot be widely used for complex or multivariate time series data. These
methods are computationally expensive, require long training times, and may not be suit-
able for real-time or large-scale data applications. Meanwhile, many augmentation techniques
have limited capabilities in modeling spatiotemporal features, failing to effectively capture
the complex dynamic changes in the data. Finally, some methods are optimized for specific
models and lack universality, resulting in significant performance variations across differ-
ent models. Therefore, we aim to explore more flexible and diverse augmentation methods
to better adapt to complex data structures and noisy environments, enhancing the model’s
generalization ability and stability.

3 Methods
In our study, we focused on how to accurately assess the severity of PD in patients based on
plantar sensor data. This study utilized a publicly available dataset that recorded VGRF data
from subjects walking on a flat surface at their natural gait for approximately 2 minutes. These
data were obtained from 16 sensors on the soles of the feet, and the output signals from each
sensor were digitized and recorded at a sampling rate of 100 times per second. To fully char-
acterize gait, two composite signals were recorded, each representing the sum of outputs from
eight sensors on each foot. This approach ensures precise motion capture while providing a
rich dataset for analysis. Using various DA methods, we significantly enhanced the model’s
performance on a limited time series dataset. Our DA process is illustrated in Fig 1.The meth-
ods included Jittering, Scaling, Rotation, Permutation, Mag_Warping, Time_Warping, and
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Fig 1. This figure shows seven DAmethods we have adopted, namely Jittering, Scaling, Rotation, Magnitude_warping, Permutation, Time_warping, and
Random_sampling, note that these methods can be freely combined.

https://doi.org/10.1371/journal.pone.0319826.g001

Cropping. Additionally, we examined the impact of linear prediction residuals (LPR) at differ-
ent scales. By comparing residuals across scales, we better evaluated their influence on model
training and predictions. This study not only highlights the role of residuals in DA but also
refines the analytical framework, ensuring the model’s robustness and accuracy. The code can
be found in here.

3.1 DAmethods
This paper introduces eight DA methods for wearable sensor data, laying a foundation for
future research. These methods are based on seven independent techniques that can be flex-
ibly combined to achieve DA. As shown in Fig 1, we employ seven independent methods for
time series DA, which can be used in any combination. Below is a brief description of our
specific implementation of DA:

• Jittering: Using a normal distribution to generate random noise, with a mean of 0 and a
standard deviation controlled by the parameter sigma, the noise is added to the original
data to produce the augmented data. Then, the function is applied to the data for augmen-
tation, with sigma set to 2 to control the noise intensity.

• Scaling: By generating a random scaling factor that follows a normal distribution and apply-
ing it to the original data, each row of data is multiplied by this scaling factor. The mean of
the scaling factor is 1, and the standard deviation is controlled by sigma, which defaults to
0.1, thus controlling the degree of variation when augmenting the data.
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• Rotation:The average value of each feature group is calculated as the rotation axis vector,
which is then normalized to a unit vector. A random rotation angle is generated, and based
on this axis vector and angle, a rotation matrix is created. The rotation matrix is applied to
each feature group to obtain the rotated data.

• Magnitude Warping:The function generates random control points in the feature dimen-
sion of the data (based on a normal distribution), and then uses these control points to
generate random curves. These curves apply deformation to the feature data through inter-
polation. The parameter sigma controls the magnitude of the curve’s variation, while knot
determines the number of control points for the curve.

• Permutation:The function first randomly divides the input data into multiple segments,
with the number of segments determined by the nPerm parameter, and the minimum
length of each segment controlled by the minSegLength parameter to ensure each segment
is sufficiently long. Then, these segments are randomly shuffled, and the rearranged data is
returned.

• Time Warping:The time steps of the data are distorted by generating random curves and
applying cubic spline interpolation. First, random control points are generated for each
feature, and cubic spline interpolation is used to construct curves based on these control
points, with the variation of the control points controlled by the sigma parameter. Then,
the cumulative sum of these curves is used to convert them into cumulative time steps,
simulating different time deformations.

• Random Sampling:The function generates random time indices for each column of the data
and ensures that the starting and ending time steps are valid. Then, the function uses these
randomly generated time steps to resample the data, applying linear interpolation to realign
the data to the new time steps.

Among these, each DA method has its unique advantages. Jittering, by adding random
noise, improves the model’s generalization ability and reduces the risk of overfitting. Scaling
helps the model adapt to data changes of different magnitudes, enhancing its ability to han-
dle various data scales. Rotation increases data diversity by altering the time order of the data,
enabling the model to better cope with sequence changes in time series. Magnitude warping
enhances the model’s robustness by nonlinearly adjusting the data’s magnitude, allowing it
to adapt to fluctuations of different amplitudes. Permutation increases data diversity, helping
the model handle changes in the order of the data. Time warping improves the model’s ability
to adapt to time variations by simulating changes in time scales. Random sampling enhances
data diversity by selecting different segments from the time series, helping the model recog-
nize and process different parts of the data.

The use of these methods can significantly enhance the effectiveness of model training,
enabling it to handle more complex and variable time series data, and improving the general-
ization ability and robustness of the model. In addition, the DA method we have taken is LPR.
This is a concept in signal processing and time series analysis where the signal is predicted by
using a linear model and then analyzing the difference between the original signal and the
predicted value. This method helps in capturing and understanding the fine structure in the
signal. The LPR is the difference between the original signal and its estimated value using a
linear prediction model. The linear prediction model estimates the future values of a signal
based on its past values using the following formula:

x̂ (n) =
p

∑
k=1

akx (n – k) (1)
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Fig 2. Based on our time series data(first from the left), the visualizations of linear residual predictions under different decimation rates (next three) show that
as the decimation rate decreases, the range of residual variations also becomes smaller.

https://doi.org/10.1371/journal.pone.0319826.g002

where x̂ (n) is the predicted value of the signal at time n, akis the linear prediction coefficient,
x (n – k)is the past value of the signal, and p is the order of the model. The LPR is the differ-
ence between the original signal and its predicted value. The residual formula is as follows:

e (n) = x (n) – x̂ (n) (2)

where e (n)is the linear prediction residual at time, x (n)is the value of the original signal at
time. And x̂ (n)is the predicted value of the linear prediction model at time. In summary, the
linear prediction residual formula can be expressed as:

e (n) = x (n) –
p

∑
k=1

akx (n – k) (3)

Eq 3 shows that the LPR is the difference between the original signal and its estimated
value by a linear prediction model. By analyzing the residuals, nonlinear components and
anomalies in the signal can be revealed, which is important for signal processing, time series
analysis, and various application areas. As shown in Fig 2, this is the visualization of our data
after LPR processing. We first loaded the original gait data file and extracted the data using an
extraction factor (decimationRate) of 4, 2 and 1, respectively.

Specifically, for each dataset, we first apply mean filtering and smoothing to the data from
each sensor, then perform normalization and decimation. After that, we compute the pre-
dicted values using linear prediction coefficients and generate the prediction residual matrix.

3.2 Model based on CNN
Next, we verify the effectiveness of our DA using two classical network models respectively.
Firstly, the detailed structural design of our 1D-ConvNet is shown in Fig 3. This 1D-ConvNet
accepts input data of shape (100, 1), and passes sequentially through two convolutional layers
(with 8 and 16 filters, respectively, and kernel size of 3, using the SELU activation function,
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Fig 3. We designed a 1D-ConvNet model.This model consists of four convolutional layers and two max-pooling layers. Each channel uses this convolutional network
to process the information features of different channels.

https://doi.org/10.1371/journal.pone.0319826.g003

as Eq 4), one max pooling layer (with a window size of 2), and then another two convolu-
tional layers (with 16 and 1 filters, respectively, and kernel size of 3, using the SELU activation
function) and one max pooling layer (with a window size of 2).

SELU (x) = 𝜆 ⋅ { x if x > 0
𝛼 (ex – 1) if x ≤ 0 (4)

Subsequently, the multidimensional feature maps are flattened into one-dimensional vec-
tors through a flattened layer, and finally, a 50-dimensional feature vector is output through a
fully connected layer with 50 neurons (using the SELU activation function). The whole design
aims to extract important features in the input data through convolution and pooling layers
to simplify the dimensionality of the data and reduce the computational complexity, and inte-
grate the features through a fully connected layer to generate the final feature representation.
During the training process, to obtain more data, we segmented the data at the individual
level, and each walk was divided into 100 time-step segments with 50% overlap, which also
allowed us to adopt a majority voting mechanism through segment classification to ultimately
determine the severity level of PD.

3.3 Model based on transformer
Model two (shown in Fig 4) begins with a variety of DAs and preprocessing of the data. Fig 5
shows the visualization results for one channel (the left foot total force channel as an exam-
ple) that was processed with LPR. Next, the data was split into 18 (16 sensor channels + 2
additional channels) parallel inputs into the network. Each sensor channel is first processed
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Fig 4. The overall architecture design of the time-spatial transformer involves the following steps. After applying various DA, the different sensor channels are fed
into the time series encoder. The vectors from each channel are then fused via a fully connected layer and sent to the spatial encoder to extract higher-level features.
Finally, the output is obtained through two fully connected layers (DA means Data Augmentation).

https://doi.org/10.1371/journal.pone.0319826.g004

through a time encoder to capture temporal dependencies. The specific design of our encoder
is shown in Fig 6. First, the input data is processed through layer normalization, which helps
ensure that each feature maintains consistent statistical properties during processing. Next,
using the MultiHeadAttention mechanism, the encoder is able to simultaneously attend to
information at different locations in the input data and perform a dropout operation after cal-
culating the attention weights to enhance the generalization ability of the model. The atten-
tion output is then summed with the original input through residual connections, a step that
helps mitigate the gradient vanishing problem and allows for a smoother transfer of infor-
mation between different layers. After completing the attention mechanism, layer normal-
ization is again performed to prepare the data for subsequent Dense layer processing. This
feedforward network usually consists of fully connected layers containing activation functions
for nonlinear transformation and feature extraction of the data. Eventually, the results of the
feedforward processing are added to the input of the residual connection to obtain the output
of the encoder. This design not only improves the performance and efficiency of the model,
but also helps to capture complex relationships and features in the input data, thus laying the
foundation for accurate execution of subsequent tasks.

This split-channel design maintains the independence of each channel and ensures that the
data inputs obtained from different sensors are theoretically sound. After the data processing
is completed, considering the importance of positional information in the plantar pressure
sensors, we employ a spatial encoder design to further process and fuse the extracted feature
data. This helps to capture and understand the deep information and complex patterns in
the plantar pressure data, thus reflecting the dynamic changes of the plantar more accurately.
Ultimately, by connecting two linear layers, we obtain the output of the multiclassification
hierarchy.

It is worth mentioning that the DA processes (including data impact factors and sampling
rates) in Model 1 and Model 2 are identical, ensuring that both models receive the same input
data. However, in terms of preprocessing, Model 2 differs fromModel 1 in that the encoder of
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Fig 5. Visualization after linear residual prediction for one channel. It can be seen that the linear residual prediction compresses the range of pressure values in the
time series data, reducing the range of residual fluctuations.

https://doi.org/10.1371/journal.pone.0319826.g005

Fig 6. The specific implementation of the encoder’s internal structure.The structure is the same in both the time encoder and the spatial encoder.
The difference lies in the fact that in the process of processing the spatial encoder, we introduce positional information to enable it to capture the
interrelation between different sensors.

https://doi.org/10.1371/journal.pone.0319826.g006

Model 2 incorporates position encoding. By introducing position encoding, Model 2 is bet-
ter able to capture the temporal features of the time series, thereby enhancing its ability to
model temporal dependencies. This improvement helps the model to more accurately cap-
ture the relationships between different time steps when processing time-series data with tem-
poral patterns. During the validation process, a specific approach was adopted to ensure the
independence of subjects. When dividing the training set and the validation set, the data was
distinguished into a control group and a Parkinson’s disease group. Based on the specified
number of folds, a portion of subjects was selected, and then the range of corresponding seg-
ments of these subjects was determined. All the records of the selected subjects were either
entirely included in the validation set or the training set, avoiding the dispersion of records
from the same subject into different sets. Finally, the cumulative number of segments in the
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validation set and the training set was calculated. In this way, in each fold of cross - valida-
tion, all the gait records of the same subject could be ensured to be assigned to the same set,
effectively avoiding result biases and poor model generalization ability caused by randomly
allocating different records of the same subject to the training set and the validation set. For
the data of the control group and the Parkinson’s disease group, a portion of patients was
selected at a ratio of 1/10 respectively. All the data segments of these selected patients were
integrally included in the validation set, while the data segments of the remaining patients
were included in the training set. This division method effectively ensured that all the data
records of the same subject would only appear in either the training set or the validation
set, avoiding potential result biases caused by the dispersion of different records of the same
subject in two sets, thus ensuring the independence of subjects.

4 Experiments and results
In the next sections, we will describe our experimental procedure in detail and analyze and
interpret its results. First, we will introduce the dataset used and analyze the gait feature
information of the dataset through visualization to show the differences between Parkinson’s
patients and healthy subjects more clearly. Second, we will try multiple DA methods on dif-
ferent models to validate their effectiveness. Subsequently, we will explore the detailed debug-
ging work performed during the training of the models. Finally, to reduce the complexity of
the model, we try to perform feature selection based on the importance of the channels in
order to simplify the model. This step helps to improve the interpretability and generalization
of the model and provides a valuable reference for future model design.

4.1 Datasets and metrics
In this study, we used the publicly available dataset PhysioNet [40]. This dataset was con-
tributed by several researchers including Yogev et al. [41], Hausdorff et al. [42] and Frenkel-
Toledo et al. [43].The PhysioNet dataset covers data from three different gait patterns includ-
ing walking on flat ground, rhythmic auditory stimulation (RAS) walking and treadmill walk-
ing. Detailed descriptions of these datasets are shown in Table 1. Divided by the number of
steps walked, as in Table 2, a total of 306 gait records were collected, of which 214 (70%) were
from PD patients and 92 (30%) were from healthy individuals. Table 3 shows the total number
of healthy individuals and PD patients in each dataset and their corresponding severity levels,
which were determined according to the H&Y (Hoehn-Yahr) scale.

In Fig 7, we visualize the magnitude of the VGRF over time in the left and right foot for PD
patients versus controls. With these visualizations, we can clearly see that the VGRF signals of

Table 1. Statistics of participants across the three datasets.
Dataset Group Subjects Male Female Age (years) Height

(meter)
Weight (Kg)

Mean ± SD Range
Ga [41] PD 29 20 9 61.6 ± 8.8 36–77 1.67 ± 0.07 71.3 ± 12.7

Control 18 10 8 57.9 ± 6.7 37–70 1.68 ± 0.08 74.2 ± 12.7
Ju [42] PD 29 16 13 66.80 ±

10.85
44–80 1.87 ± 0.15 75.1 ± 16.89

Control 26 12 14 39.31 ±
18.51

20–74 1.83 ± 0.08 66.8 ± 11.07

Si [43] PD 35 22 13 67.2 ± 9.1 61–84 1.66 ± 0.07 70.3 ± 8.4
Control 29 18 11 64.5 ± 6.8 53–77 1.69 ± 0.08 71.5 ± 11.0

https://doi.org/10.1371/journal.pone.0319826.t001
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Table 2. Statistics of walking counts between Parkinson’s patients and the healthy control group.
Groups Total walks Normal walk Dual task walk

Si Ga Ju
PD walks 214 35 104 75
Control walks 92 29 25 38

https://doi.org/10.1371/journal.pone.0319826.t002

Table 3. Statistics of the number of individuals at different disease severity levels based on the H&Y scale across
the three datasets.
Dataset Healthy Severity2 Severity2.5 Severity 3
Ga 18 15 8 6
Ju 26 12 13 4
Si 29 29 6 0

https://doi.org/10.1371/journal.pone.0319826.t003

Fig 7. Changes in total force on the left and right feet over time for Parkinson’s patients and the healthy control group revealed that Parkinson’s patients tend to
exhibit longer durations of high-pressure values. Compared to healthy participants, Parkinson’s patients spend more time on the pressure plate, which aligns with
their characteristic slow gait.

https://doi.org/10.1371/journal.pone.0319826.g007

PD patients and control subjects differed significantly in peak value, amplitude, shape, and
timing. Specifically, the VGRF signals of the control subjects showed a more organized and
consistent pattern. These signals had stable amplitudes and regular shapes with predictable
timing. This consistency suggests that control subjects have good gait symmetry and stability
during gait. However, the situation is different in PD patients. As the severity of PD increased,
the deviations in their VGRF signals became more pronounced, as shown in Fig 8. These sig-
nals show greater variability in peak, amplitude, and timing, and tend to exhibit greater asym-
metry. For example, there is a significant difference in the VGRF signal between the patient’s
left and right feet, and the force exerted by the right foot may be significantly less. This asym-
metry and variation not only reflects gait abnormalities, but may also result in significant
impairment of the patient’s mobility in daily life.

This increase in VGRF signal deviations may be due to the lack of stability and coordina-
tion during gait in patients with PD, causing their gait patterns to become more irregular. As
the disease worsens, these deviations may be further exacerbated, resulting in a greater neg-
ative impact on the patient’s daily life and functional abilities. To cope with these changes,
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Fig 8. Visualization of total force on the left and right feet at different disease severity levels.

https://doi.org/10.1371/journal.pone.0319826.g008

patients with PD may require more intensive treatment and management to help them main-
tain a better quality of life and mobility.

We used Precision, Recall, F1, and Accuracy to evaluate our model, where the control
group was identified as the negative (N) group and the Parkinson’s group was identified as the
positive (P) group, and the following are the formulas for the four metrics that we used:

Precision = TP
TP + FP

(5)

Recall = TP
TP + FN

(6)

F1 = 2 × Precision × Recall
Precision + Recall

(7)

Accuracy = TP + TN
TP + TN + FP + FN

(8)

Where,

• TP: The number of true positives
• TN: The number of true negatives
• FP: The number of false positives
• FN: The number of false negatives
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4.2 Parameter analysis experiment
We conducted experiments on various parameter configurations for 1D-ConvNet, see Table 4.
The results indicate that the configuration of Model 1 performs best: Conv1D settings are
(8,3), (16,3), (16,3), (1,3), with SELU as the activation function, dropout set to 0.1, learning
rate at 0.01, and batch size of 200. Under this setup, the model achieves Precision, Recall, and
F1 scores of 0.85, 0.84, and 0.84, respectively, demonstrating excellent classification ability and
generalization performance.

In comparison, Model 5, which uses larger convolution kernels, expands the range of fea-
ture extraction but shows slightly lower performance. This suggests that excessively large ker-
nels may hinder effective capture of local features. Additionally, Model 6, which uses Tanh
as the activation function, experiences a significant drop in F1 score to 0.74, further sup-
porting SELU’s suitability for this task. The batch size analysis also confirms that a setting of
200 outperforms smaller batch sizes, leading to more stable gradient updates and improved
model performance. In summary, the parameter configuration of Model 1 outperforms other
combinations, highlighting its strong adaptability and advantages for the given task.

We also conducted experiments on various parameter configurations for temporal-spatial
transformer. The experimental results (see Table 5) clearly indicate that the hyperparameter
combination we selected (Num_blocks = 1, Key_dim = 100, Num_heads = 2, Drop_rate = 0.3,
LR = 0.01, Batchsize = 100) significantly outperforms other configurations. In terms of per-
formance metrics, this combination achieved a precision of 0.82, recall of 0.79, and F1 score
of 0.79, all of which are higher than those of other setups. Compared to multi-layer Trans-
formers (e.g., Num_blocks = 2), the single-layer Transformer is more efficient at capturing
key features, avoiding overfitting, and saving training time. The choice of feature dimension
(Key_dim = 100) and the number of attention heads (Num_heads = 2) strikes a good balance
between model complexity and data suitability. Higher feature dimensions (e.g., Key_dim =
256) may lead to performance degradation. The selected dropout rate (Drop_rate = 0.3) effec-
tively reduces overfitting while maintaining the model’s learning capacity. A lower learning
rate (LR = 0.01) ensures smoother optimization, while a larger batch size (Batchsize = 100)
enhances training efficiency and model stability.

Compared to other parameter combinations, our choice simplifies the model structure and
optimizes hyperparameter settings, significantly improving the model’s generalization ability
and stability. This results in the best overall performance with a limited sample size, further
demonstrating the importance of appropriate parameter selection for model optimization.

Table 4. Experimental analysis of 1D-ConvNet under various parameter settings.
Model Conv1D(1) Conv1D(2) Conv1D(3) Conv1D(4) Activation FC Drop_rate LR Batchsize Precision Recall F1-score
1 (8,3) (16,3) (16,3) (1,3) selu (100,20) 0.1 0.01 200 0.85 0.84 0.84
2 (8,5) (16,5) (16,5) (1,5) 0.83 0.79 0.81
3 (8,7) (16,7) (16,7) (1,7) 0.02 100 0.79 0.78 0.79
4 (4,3) (8,3) (8,3) (1,3) 0.03 150 0.82 0.81 0.82
5 (16,3) (32,3) (32,3) (1,3) 0.05 150 0.81 0.80 0.79
6 tanh 50 0.77 0.73 0.74
7 relu 0.02 150 0.67 0.66 0.64
8 (200,20) 0.84 0.78 0.80
9 (100,10) 0.02 100 0.66 0.65 0.64
10 0.2 100 0.79 0.78 0.81
11 0.5 0.02 150 0.78 0.79 0.79

https://doi.org/10.1371/journal.pone.0319826.t004
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Table 5. Experimental analysis of time-spatial transformer under various parameter settings.
Model Num_blocks Key_dim Num_heads Drop_rate LR Batchsize Precision Recall F1-score
1 1 100 2 0.3 0.01 100 0.82 0.79 0.79
2 2 0.80 0.77 0.78
3 64 50 0.79 0.76 0.78
4 128 50 0.81 0.80 0.79
5 256 50 0.80 0.81 0.79
6 4 0.76 0.75 0.76
7 0.5 0.02 0.79 0.77 0.78
8 2 64 4 0.5 0.82 0.81 0.79
9 2 128 4 0.5 0.78 0.79 0.77
10 2 256 4 0.5 0.79 0.75 0.76

https://doi.org/10.1371/journal.pone.0319826.t005

4.3 Results on different models
Results on CNN: To evaluate the effectiveness of the DA methods, we used eight different
augmentation techniques and performed a detailed comparison of the performance of these
methods with the designed 1D-ConvNet model based on four core metrics, namely Precision,
Recall, F1 value and Accuracy. The results of the DA experiments are shown in Table 6, which
underlines the best results for each label (e.g., health status and different disease severity) on
each metric.

Overall, the augmented model significantly outperforms the unaugmented data on all
labels and assessment metrics, with the Jittering method performing the best with an accu-
racy of 89.6%. This technique adds random noise to the data to increase the perturbation,
which improves the model’s generalization ability and makes it more stable when dealing with
unknown data.Scaling performs very close to the same performance, achieving an accuracy
of 86.3%. By scaling the data, Scaling helps the model to better adapt to changes in the data
at different scales Magnitude Warping, another effective augmentation strategy, achieves an
accuracy of 85.8%. This method improves the diversity by adjusting the magnitude of the data
to enhance the robustness of the model. Permutation and Time Warping methods perform
less well, permutation increases the diversity of the data by disrupting the temporal order of
the data, but with a slightly lower accuracy. Time Warping achieves a similar effect by non-
linearly distorting the timeline, which improves the robustness of the model, but its overall
performance is still not as good as that of Jittering and Scaling. Jittering and Scaling. Rotation
method performs the worst, with an accuracy of 69%. Rotation, as a time-series DA method,
performed poorly, possibly because it disrupted the temporal relationships in the data. Addi-
tionally, when applied to multi-axis signals, rotation might not accurately reflect the changes
in the data, potentially introducing distortion and reducing the model’s performance. In addi-
tion, the table shows the results of Random Sampling and three different strengths of regu-
larization (lp_25, lp_50, and lp_100). The regularization treatment provides limited improve-
ment in model performance, while Random Sampling fails to significantly outperform the
other augmentation methods.

In summary, there are significant differences in the effectiveness of different DA strategies
in improving model performance. Among them, Jittering, Scaling and Magnitude Warping
are the best performers in several indicators, especially in accuracy and F1 value. In contrast,
Rotation and other methods fail to improve the model performance effectively because they
change the feature pattern of the data. This suggests that the choice of different DA strategies
is crucial for model performance on time series data.
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Table 6.The performance of our designed 1D-Convnet model with different DA across various metrics (DAmeans data augmentation).
Metrics Lables Without

DA
Jittering Scaling Rotation Magnitude_

warping
Permutation Time_

warping
Random_
sampling

lp_25 lp_50 lp_100

Precision Healthy 0.75 0.90 0.76 0.66 0.80 0.93 0.53 0.76 0.76 0.74 0.74
Severity2 0.84 0.88 0.83 0.67 0.84 0.82 0.85 0.80 0.83 0.89 0.84
Severity2.5 0.87 0.91 0.93 0.65 0.89 0.84 0.92 0.95 0.87 0.85 0.91
Severity3 0.90 0.91 1.0 0.77 0.95 0.89 0.90 0.88 1.0 0.86 0.88
Weighted
Avg

0.85 0.90 0.87 0.69 0.86 0.84 0.84 0.85 0.86 0.85 0.86

Recall Healthy 0.90 0.93 0.93 0.63 0.93 0.90 0.93 0.87 0.87 0.93 0.97
Severity2 0.86 0.93 0.90 0.80 0.89 0.89 0.79 0.92 0.87 0.86 0.90
Severity2.5 0.86 0.85 0.79 0.68 0.84 0.81 0.81 0.82 0.85 0.82 0.84
Severity3 0.67 0.80 0.81 0.40 0.69 0.64 0.70 0.56 0.79 0.80 0.56
Weighted
Avg

0.84 0.90 0.86 0.69 0.86 0.84 0.80 0.84 0.85 0.85 0.85

F1 Healthy 0.82 0.92 0.84 0.64 0.86 0.92 0.67 0.81 0.81 0.82 0.84
Severity2 0.85 0.90 0.87 0.73 0.87 0.85 0.82 0.85 0.85 0.87 0.87
Severity2.5 0.87 0.89 0.86 0.77 0.86 0.82 0.86 0.88 0.86 0.84 0.87
Severity3 0.77 0.85 0.89 0.53 0.80 0.74 0.79 0.68 0.88 0.83 0.68
Weighted
Avg

0.84 0.90 0.86 0.68 0.86 0.84 0.81 0.84 0.85 0.85 0.85

Accuracy - 0.84 0.896 0.863 0.69 0.858 0.842 0.841 0.842 0.850 0.850 0.850

https://doi.org/10.1371/journal.pone.0319826.t006

Results on Transformer: As shown in Table 7 are the experimental results of the encoder
based model. It can be observed from the table that the baseline model without using DA
methods achieves 79% accuracy in Accuracy. In contrast, most of the DA methods we used
outperform the baseline model in Accuracy, Precision, Recall, and F1. Specifically:

• JitteringThe model is 89.6% accurate after processing. Jittering is a technique that adds
small amounts of noise to the raw data, which helps to increase the robustness of the model
and makes it better able to handle noisy data in a real-world environment.

• Scaling processing resulted in 82% accuracy of the model. The scaling technique improves
the generalization ability of the model by adjusting the magnitude of the data so that it is
trained on different scales.

• After Permutation processing, the model has the highest accuracy of 90.83%. Permutation
techniques can improve model accuracy by increasing data diversity through changing the
order of the data, particularly in multi-axis signals. By modifying the sequence of the data,
permutation allows the model to learn different combinations, helping it identify new pat-
terns. In time-series data, permutation not only enhances the data diversity but also helps
the model discover dependencies in different orders, thus improving generalization and
accuracy.

• In the Random Sampling processing stage, the model’s accuracy was 81.5%. Random Sam-
pling allows the model to better cope with data imbalances by randomly selecting a subset
of the original data for training.

However, not all DA methods significantly improve model performance. For example:

• After Rotation and Time Warping processing, the model fails to process the data efficiently
and performs poorly. Rotation increases the diversity of the data by rotating it, but in some
cases may destroy the original structure of the data. Time Warping distorts the data on the
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Table 7.The performance of our time-spatial transformer model with different DA across various metrics (DAmeans data augmentation).
Metrics Lables Without

DA
Jittering Scaling Rotation Magnitude_

warping
Permutation Time_

warping
Random_
sampling

lp_25 lp_50 lp_100

Precision Healthy 0.58 0.84 0.82 0.48 0.78 0.79 0.56 0.58 0.71 0.65 0.67
Severity2 0.82 0.85 0.84 0.71 0.79 0.89 0.75 0.84 0.80 0.80 0.84
Severity2.5 0.88 0.92 0.79 0.78 0.79 1.0 0.91 0.91 0.88 0.94 0.96
Severity3 0.90 0.95 0.84 0.88 0.92 0.86 1.0 0.92 0.94 0.94 0.85
Weighted
Avg

0.82 0.88 0.82 0.72 0.80 0.92 0.80 0.84 0.83 0.81 0.86

Recall Healthy 0.97 0.90 0.90 0.60 0.83 1.0 0.83 0.90 0.80 0.80 0.86
Severity2 0.81 0.90 0.87 0.81 0.82 0.96 0.88 0.84 0.85 0.83 0.88
Severity2.5 0.71 0.88 0.80 0.75 0.85 0.85 0.69 0.80 0.86 0.82 0.84
Severity3 0.73 0.75 0.57 0.16 0.46 0.75 0.38 0.65 0.59 0.62 0.73
Weighted
Avg

0.79 0.88 0.82 0.70 0.80 0.91 0.76 0.82 0.82 0.80 0.85

F1 Healthy 0.72 0.87 0.86 0.54 0.81 0.88 0.67 0.70 0.75 0.72 0.75
Severity2 0.82 1.0 0.85 0.75 0.81 0.92 0.81 0.84 0.83 0.82 0.86
Severity2.5 0.78 0.88 0.79 0.76 0.82 0.92 0.79 0.85 0.87 0.83 0.90
Severity3 0.82 0.84 0.68 0.40 0.61 0.80 0.56 0.76 0.73 0.74 0.79
Weighted
Avg

0.79 0.88 0.82 0.69 0.79 0.91 0.76 0.82 0.82 0.80 0.85

Accuracy - 0.790 0.879 0.820 0.700 0.795 0.908 0.765 0.815 0.820 0.800 0.851

https://doi.org/10.1371/journal.pone.0319826.t007

time axis by making it change in the time dimension, but this change may result in the loss
of the temporal characteristics of the data.

• In Magnitude Warping processing, the model performance is the same as the baseline
model, and there is no significant advantage. Magnitude Warping increases the diversity
of the data by changing its magnitude, but this method retains less of the data features, and
therefore fails to improve the model performance significantly.

To summarize, through different DA methods, we can significantly improve the perfor-
mance of the model, but we need to pay attention to choosing the appropriate method to
avoid performance degradation in some cases. This suggests that in practical applications,
the selection of DA techniques should be optimized with specific tasks and data features and
different models to achieve the best results.

Results with Other Methods:This Table 8 demonstrates the performance comparison
of different models in terms of prediction accuracy. The model we designed with DA and
Spatio-Temporal Transformer techniques achieves an accuracy of 90.8%, which is a significant
improvement compared to other models.

Specifically, Caramia et al.’s SVM-RBF model achieved 75.6% accuracy on the H&Y scale,
which is the lowest result in the table. The Artificial Neural Network (ANN) model used by
Veeraragavan et al. achieved 87.1% accuracy, while El Maachi et al.’s 1D-ConvNet under the
UPDRS rating system achieved 85.3%, and 85.3% F1-score. Safwen Naimi et al. achieved
87.89% accuracy by combining CNN with Transformer architecture and performed well on
H&Y grading, and 88.0% F1-score.

Compared to these models, our DA + spatio-temporal Transformer model shows an
extremely high accuracy of 90.8% on the H&Y grading system, and 91.0% F1-score. This
suggests that our approach not only fully utilizes DA strategies (e.g., Jittering, Scaling, etc.),
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Table 8.The performance comparison of different models in terms of accuracy.
Algorithm Database Preprocessing Strategy Stages Accuracy

(%)
F1-score (%)

Caramia et al.
[44]

SVM-RBF Hospital
General Uni-
versitario
Gregorio
Marañon

- - H&Y Scale 75.6 n/a

Veeraragavan
et al. [45]

ANN Physionet - 15-fold H&Y Scale 87.1 n/a

El Maachi et
al. [21]

1D-ConvNet Physionet 50% overlap 10-fold UPDRS 85.3 85.3

Safwen Naimi
et al. [46]

Hybrid
ConvNet-
transformer

Physionet 50% overlap 10-fold H&Y Scale 87.9 88.0

Ours (without
DA)

Time-spatial
transformer

Physionet 50% overlap 10-fold H&Y Scale 79.0 79.0

Ours DA+Time-
spatial
transformer

Physionet 50% overlap 10-fold H&Y Scale 90.8 91.0

https://doi.org/10.1371/journal.pone.0319826.t008

but also better captures temporal and spatial features in the data by introducing the spatio–
temporal Transformer model. This performance enhancement illustrates the value of com-
bining DA with advanced modeling structures and provides strong support for further explo-
ration of similar applications.

We present the confusion matrix results for two models in Figs 9 and 10. In a confusion
matrix, the diagonal elements represent the number of samples correctly predicted by the
model for each class, while off-diagonal elements represent misclassifications where one
class is predicted as another. It can be observed that our models demonstrate high prediction
accuracy across various classes.

Moreover, to verify the stability of the model’s performance, we conducted an independent
samples t-test on the results before and after DA. The p-value we obtained from the test was
0.0326, which is less than the commonly used significance level of 0.05, indicating that there
is a significant difference in the predicted values between augmented and non-augmented
data. Specifically, the DA method had a significant impact on the model’s prediction results.
This means that, after using DA, the model’s prediction performance significantly differs from
when DA was not used. The result suggests that DA may have improved the model’s robust-
ness and accuracy when handling different variations in the data, thereby enhancing the
model’s generalization ability.

To ensure the reliability of our conclusions, we further visualized the distribution of the
predicted values for augmented and non-augmented data, as shown in Fig 11. The blue bars
represent non-augmented data, the red bars represent augmented data, and the purple area
represents the overlap between the two. From the graph, it can be seen that, for the mild
Parkinson’s prediction values (i.e., early and middle stages), the red bars (augmented data) are
generally higher than the blue bars. This indicates that, after DA, our model performs better at
identifying misclassifications in the non-augmented data, particularly in cases where healthy
data is misclassified as disease data. DA likely improved the model’s prediction frequency and
coverage, especially for low-frequency categories, further optimizing the overall performance
of the model.
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Fig 9. Confusion matrix based on CNNmodel with DA (DAmeans data augmentation).

https://doi.org/10.1371/journal.pone.0319826.g009

4.4 Implementation details
The parameters of each factor of the DA method we used are shown in the Table 9, and in
linear residual prediction we used decimationRate extraction factors of 1, 2, and 4 for the
experiments, respectively. The parameter settings of the 1D-ConvNet are shown in Fig 3.

We set the learning rate to 0.0002 during training and enabled the EarlyStopping mecha-
nism. This callback function checks the monitored metric (val_loss) at the end of each train-
ing cycle. Training is stopped if the metric does not improve significantly (i.e., the improve-
ment is less than min_delta) within the specified PATIENCE period. This helps prevent the
model’s performance from deteriorating on the validation set and avoids overfitting. We chose
the Nadam (Nesterov-accelerated Adaptive Moment Estimation) optimizer, a variant based
on the Adam optimizer that combines the advantages of the Nesterov-accelerated gradient
and Adam.The specific parameters are 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 1e – 7. a

To ensure the independence of subjects, we guarantee that each subject’s data appears
only in either the training set or the testing set, avoiding information leakage. During cross-
validation, the data of each subject is appropriately assigned to different subsets, ensuring that
the subjects in the training and validation sets are completely independent, thereby improving
the reliability of model evaluation.
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Fig 10. Visualization of the independent samples t-test results before and after DA (DAmeans data augmentation).

https://doi.org/10.1371/journal.pone.0319826.g010

Table 9. Setting of parameter factors for different methods of DA in experiments (DAmeans data
augmentation).
Factor Jittering Scaling Rotation M_warping Permutation T_warping R_Sampling
sigma 2 0.1 - - - 0.2 -
knot - - - 4 - 4 -
nPerm - - - - 4 - -
minSeLength - - - - 100 - -
nSample - - - - - - 1000

https://doi.org/10.1371/journal.pone.0319826.t009

4.5 Feature selection experiment
We observed some interesting phenomena when we conducted ablation experiments on the
data from eighteen sensors. Specifically, we compared sensors symmetrically located on the
left and right feet. As can be seen from Table 10, the experimental results show that L2&R2
have the lowest accuracy, which suggests that the second sensors on both the left and right
feet are the most important, likely containing critical discriminative feature information.
Additionally, the accuracy of L5&R5 and L8&R8 also decreased, indicating that these sen-
sors play a crucial role in the model, and thus these features should be given special atten-
tion during modeling. In contrast, L3&R3 have the highest accuracy, and their absence has
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Table 10. Ablation experiments on the impact of different sensors on overall performance.The first col-
umn represents the experimental results after removing each sensor (The bold text indicates a higher level of
importance).
VGRF inputs Precision Recall F1 ACC (%)
L1&R1 0.870 0.858 0.856 0.858
L2&R2 0.831 0.829 0.829 0.829
L3&R3 0.878 0.875 0.874 0.875
L4&R4 0.870 0.863 0.860 0.863
L5&R5 0.863 0.854 0.852 0.856
L6&R6 0.860 0.858 0.856 0.858
L7&R7 0.866 0.863 0.861 0.863
L8&R8 0.861 0.854 0.851 0.854
Total VGRF(L&R) 0.865 0.823 0.861 0.863

https://doi.org/10.1371/journal.pone.0319826.t010

minimal impact on overall performance, suggesting that the third sensors on both feet are of
lower importance. Considering the computational resource constraints of the model, it will
be worth considering removing these two features or reducing their weight in the model to
optimize both computational efficiency and performance.

5 Conclusion and future work
In this study, we experimented with various DA methods, such as permutation, jittering, scal-
ing, and other techniques for plantar time series data, and the experimental results showed
that the use of appropriate DA can significantly improve the robustness and generalization
ability of the model. We chose 1D-ConvNet and spatio-temporal combined one-dimensional
encoder as the experimental test models, and the results show that our data preprocessing
design not only reduces the cost of computational resources, but also shortens the training
time, which makes the model efficiently transferable to real-time applications. Through the
experiments with the above methods, our model achieves an accuracy of 90.8% on the H&Y
grading scale, and realizes a precision of 92.0%, a recall of 91.0%, and an F1 score of 91.0%.
Clearly superior to existing state-of-the-art techniques, this demonstrates the validity and
strength of our method. Unlike in the past, we achieve high precision while still maintain-
ing the simplicity of the model design, which means that the model is easier to deploy and
maintain in real-world applications.

In addition, we conducted a feature selection study for different sensors, aiming at effec-
tive feature screening. This study not only provides important data support for our current
work, but also provides valuable inspiration for future directions. By delving deeper into these
data, we will be able to identify and eliminate redundant information, enabling more accu-
rate extraction of useful features. This will significantly enhance the model’s performance
and efficiency, making it more reliable and effective in practical applications. Additionally,
by optimizing the feature selection process, we will build more concise and efficient models,
providing clinicians and researchers with more valuable insights and support.

Although the proposed method achieves remarkable results in feature selection and model
optimization, it still has some limitations. For instance, the dataset has limited coverage, sug-
gesting the need for broader data collection in the future. Moreover, since the dataset is pri-
marily derived from controlled environments, the model’s generalizability is restricted. Addi-
tionally, its adaptability to dynamic changes in environments or data collection conditions
requires further improvement. Compared to previous studies, this work incorporates DA
techniques, which not only enhance the processing speed but also maintain overall efficiency.
Unlike traditional approaches that directly use full-scale features or build complex models,
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this study employs a systematic feature selection process, providing valuable references and
insights for future research on feature selection. In terms of computational cost, the simplified
single-model approach demonstrates significant advantages: by reducing model complexity
and parameters, it markedly lowers computational resource requirements and runtime while
remaining resource-friendly and easy to maintain. This enables the model to operate reliably
on low-performance devices, offering a more efficient and dependable solution for primary
healthcare and resource-constrained settings.
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