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Abstract

The tetrapod double cone is a pair of tightly associated cones called the “principal” and the “accessory” mem-
ber. It is found in amphibians, reptiles, and birds, as well as monotreme and marsupial mammals but is absent
in fish and eutherian mammals. To explore the potential evolutionary origins of the double cone, we analyzed
single-cell and -nucleus transcriptomic atlases of photoreceptors from six vertebrate species: zebrafish, chicken,
lizard, opossum, ground squirrel, and human. Computational analyses separated the principal and accessory
members in chicken and lizard, identifying molecular signatures distinguishing either member from single cones
and rods in the same species. Comparative transcriptomic analyses suggest that both the principal and accessory
originated from ancestral red cones. Furthermore, the gene expression variation among cone subtypes mirrors
their spectral order (red → green → blue → UV), suggesting a constraint in their order of emergence during
evolution. Finally, we find that rods are equally dissimilar to all cone types, suggesting that they emerged before
the spectral diversification of cones.

1 Results

Eight types of photoreceptors have been identified
across the retinas of extant vertebrates: rods, four types
of single cones (red, green, blue, UV), “blue rods”,
and the two members of the double cones (DCs)1.
Rods and single cones are ubiquitous across verte-
brates, and therefore were likely present in the retina
of the common vertebrate ancestor ∼500 million years
ago (MYA)2–4. In contrast, DCs and blue rods likely
emerged later (∼390 MYA), around the beginning of
vertebrate life on land1. The DC is so called be-
cause it is composed of two tightly associated photore-
ceptors, the principal (DC-P) and the accessory (DC-
A)5,6. DCs can be quite numerous, comprising up to
40% of the cones in some avian retinas7. Like ances-
tral red cones, DCs express the long-wavelength sen-
sitive (LWS) opsin and are, therefore, expected to be
broadly tuned for long wavelengths8,9. However, their
larger size and absence in the fovea of some raptorial
birds suggests they may support fast achromatic pro-
cessing10,11. Additionally, DCs have been proposed

to mediate light-dependent magnetoreception and/or
polarized light sensing because they express the mag-
netically sensitive protein cryptochrome 412 and form
highly ordered arrays13,14. However, to our knowl-
edge, outside of salamanders8,9, DCs have never been
directly recorded from in an intact retina.

The presence of DCs in birds, reptiles, amphib-
ians, monotremes, and marsupials, but not in fish and
other mammals suggests that they arose in the com-
mon ancestor of tetrapods and were later lost in eu-
therian mammals1,4. While their evolutionary origin
is debated, the phylogeny of DCs (Figure 1A) suggests
they may have evolved from ancestral vertebrate single
cones. One hypothesis – based on morphological simi-
larity to pairs of red and green cones in fish retinas15

– is that DC-P evolved from the ancestral red cone
and DC-A evolved from the ancestral green cone1. Al-
ternatively, because both DC-P and DC-A express the
LWS opsin, it has been suggested that both DC mem-
bers may have evolved from the ancestral red cone8,10.
However, neither of these hypotheses has been tested
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rigorously.

1.1 Comparative analysis of photoreceptor
atlases

We addressed this question through a comparative
transcriptomics approach, hypothesizing that similar-
ity in gene expression might reveal the evolutionary
relationships between vertebrate ciliary photoreceptor
types. To this end, we analyzed published single-cell
(sc) and single-nucleus (sn) RNA-sequencing (RNA-
seq) atlases from six vertebrate species: zebrafish
(D. rerio)16, chicken (G. gallus)17, brown anole lizard
(A. sagrei)18, opossum (M. domestica)18, thirteen-lined
ground squirrel (I. tridecemlineatus)18, and human (H.
sapiens)19 (Figure 1). By applying dimensionality re-
duction and clustering to each species atlas, we identi-
fied transcriptomic clusters corresponding to rods, sin-
gle cones, and putative double cones (Figure 1B, Table
S1). As expected, zebrafish, chicken, and lizard con-
tained rods and the full complement of single cones
(red, green, blue, UV), while opossum, squirrel, and
human contained rods and only two types of single
cones (red and UV). Note that we annotated mam-
malian cones based on their ancestry rather than spec-
tral sensitivity (see Methods). For instance, although
humans possess both a red and a green cone, these
are both derived from the ancestral red cone, result-
ing in nearly identical transcriptomic profiles20. While
the two types of cones have been separated using su-
pervised approaches elsewhere20, we choose to retain
them as a single cluster in this study. Furthermore,
the human blue cone is derived from the ancestral UV
cone and expresses a blue-shifted UV opsin4. Similarly,
squirrel green cones express a green-shifted red opsin,
and are thought to have derived from red cones4.

1.2 Molecular identification of double
cones

Beyond rods and single cones, we found two addi-
tional clusters in chicken and lizard representing pu-
tative double cone members (Figure 1B). These two
clusters expressed OPN1LW, the gene encoding the
LWS opsin, but unlike the single cones in chicken
and lizard, they did not express ZEB2 (Figure 1C).
In addition, these clusters were present in approxi-
mately a 1:1 stoichiometric ratio in chicken and lizard
(Figure 1D). One of these clusters was enriched for
the red cone marker THRB22,23, while the other se-
lectively expressed STBD1. We hypothesize that
the OPN1LW+THRB+STBD1− cluster represents DC-
P and the OPN1LW+THRB−STBD1+ cluster represents
DC-A (see Methods), and refer to these as DC-P and
DC-A respectively hereafter. We note that, unlike
chicken and lizard, fish do not contain additional clus-
ters corresponding to DCs (also, see Discussion).

We performed fluorescence in situ hybridization
chain reaction (HCR)24 for OPN1LW and STBD1 in
anole lizard retinal sections, which confirmed that the
relative abundance of photoreceptors with these ex-

pression patterns are consistent with the sc/snRNA-
seq data (Figure S2A-D). In opossum, we identified
a cluster separate from the red cone cluster that was
OPN1LW+ZEB2− and expressed low levels of THRB,
suggesting that these cells may represent DCs, but
there were not enough cells to resolve DC-P and DC-
A separately (Figure 1B). As expected, zebrafish and
the two eutherian mammals (squirrel and human) each
contained a single OPN1LW+ cluster corresponding to
red single cones. Taken together, these results are con-
sistent with the notion that double cones evolved with
or after the first emergence of vertebrate life on land
and were later lost in eutherian mammals1.

The relative abundances of photoreceptor types
within each species were consistent across biologi-
cal replicates and were comparable to previous re-
ports7,25–27 (Figures 1D, S2E,F). Double cones are the
most prevalent photoreceptor type in chicken (∼45%)
and the second-most prevalent type in lizard (∼20%),
but were quite rare in opossums (<1%). Rod frequen-
cies exhibit the highest variation, being >90% in the
nocturnal opossum and <1% (but not absent) in the di-
urnal lizard.

1.3 Correspondence between ancestral
photoreceptors

Before investigating the evolutionary origin of double
cones, we first asked whether we could recover the
long-suspected evolutionary relationships of the ances-
tral photoreceptors, i.e. single cones and rods. We
began with an integration approach that relies on 1:1
orthologous genes18,28, but this method failed to fully
separate the different cone types (Figure 2A). There-
fore, we applied an alternative approach, SAMap,
which incorporates complex gene homology relation-
ships and iterative refinement29. SAMap recovered
the expected photoreceptor homologies among ze-
brafish, chicken, and lizard photoreceptors, each of
which have the full complement of single cones and
rods. The mammalian photoreceptor types correctly
co-clustered with their non-mammalian counterparts
(Figure 2C,D). The conserved transcriptional signa-
tures for the five ancestral photoreceptors included
their respective opsins - RHO in rods, OPN1LW in
red cones, OPN1MW in green cones, OPN2SW in blue
cones, and OPN1SW in UV cones - as well as known
photoreceptor genes such as GNGT1, PDE6B, PDE6H,
and THRB30,31, demonstrating SAMap’s ability to cor-
rectly identify functional orthologs (Figure 2D, S3).
Additionally, SAMap also identified several paralo-
gous relationships among genes that may represent du-
plication events – as is the case for several genes in
zebrafish (Figure S3), which has an additional whole
genome duplication relative to other vertebrates32.

1.4 Molecular relationship of double cone
members to single cones

Having confirmed the validity of the cross-species
mapping approach for single cones and rods, we next
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Figure 1: Single-cell atlases of photoreceptors across six vertebrate species. A) Phylogenetic tree showing the
putative evolutionary history of photoreceptor types in the six studied vertebrates. B) 2D Uniform Manifold Ap-
proximation (UMAP)21 embeddings of single-cell atlases. Each subpanel (row) represents data from a different
species. Colors correspond to photoreceptor types as in panel A. C) Dot plots showing expression of marker genes
corresponding to panel B. Color shows average expression scaled for each gene across photoreceptor types. Circle
size corresponds to the percentage of cells in the cluster that express that gene. See the legend on bottom left. D)
Relative proportion of photoreceptor types. Points correspond to biological replicates. The original chicken atlas
had a third cluster composed of DC-P and DC-A doublets, which is not shown here (see Figure S1).
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Figure 2: Cross-species integration of ancestral photoreceptors. A) 2D visualization of single cone types and
rods from six species integrated using Seurat v428, resulting in the intermixing of cone types. B) Same as panel A,
but with integration performed using SAMap29, which preserves cone type identity. C) Heatmap of SAMap align-
ment scores for photoreceptor types. Alignment scores represent averaged similarity in the k-nearest neighbor
graph between two clusters (see Methods). Evolutionarily related photoreceptors have high alignment scores. D)
Heatmap of scaled gene expression showing the top conserved transcriptional signatures of ancestral photorecep-
tor types. Since genes can have multiple homologs, each column represents a unique combination of homologous
genes across species. Gray values indicate that no gene homolog was found for that species. Only key genes are
highlighted; for all gene names, see Figure S3.

analyzed the transcriptional relationships between the
DCs and the single cones. We hypothesized that each
member would exhibit the highest transcriptional sim-
ilarity to the single cone with whom it shares a com-
mon ancestor. We first used SAMap to compare the
chicken and lizard atlases. All photoreceptor types,
including DC-P and DC-A, aligned in a 1-to-1 fash-
ion (Figure 3A), indicating that the double cone mem-
bers of chicken and lizard are transcriptionally homol-
ogous. Interestingly, DC-P exhibited a weak affinity to
the red cone, foreshadowing the results presented be-
low.

Next, we conducted a series of computational ex-
periments to determine the closest ancestral photore-
ceptor counterpart(s) of the DC members. To begin,
we repeated the chicken/lizard mapping, but this time,
we removed the DCs from one species – either chicken
or lizard. Although our method allows multi-mapping
between clusters, we found that in either case DC-P

and DC-A each mapped specifically to the red sin-
gle cone in the other species (Figure 3B). Next, we
aligned chicken and lizard atlases to the zebrafish at-
las, which lacks DCs (Figure 3C); again, both DC mem-
bers mapped to the zebrafish red cone. Finally, we
aligned all five species, including squirrel and human
(Figure 3D). All the photoreceptor types aligned nearly
exclusively to each other except red cones, DC-P and
DC-A, which formed a block of high alignment scores
with each other. Sporadic instances of cross-mappings
were observed between red cones and green cones and
between blue cones and UV cones, although these were
consistently weaker than the DC-P → red and DC-A
→ red mappings. Notably, rods exhibited no cross-
mappings with cone types and were the most distinct
photoreceptor type.

We also analyzed within-species cell type similar-
ity by calculating the expression correlation among all
photoreceptor types (Figure S4A). In both chicken and
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Figure 3: Transcriptomic similarity of DC-P and DC-A with the red cone suggests a shared evolutionary his-
tory. A) Sankey diagram showing SAMap alignment scores between chicken and lizard when aligning all pho-
toreceptors. B) Like A, but with the removal of chicken double cones (left) or lizard double cones (right). C)
Alignment of chicken with zebrafish (left) and lizard with zebrafish (right). D) Heatmap of SAMap alignment
scores when aligning photoreceptors across zebrafish, chicken, lizard, squirrel, and human. E) Top conserved
genes of DC-A and DC-P, shown as a heatmap of scaled gene expression.

lizard, DC-P was transcriptionally most similar to the
red cone. On the other hand, DC-A was most simi-
lar to DC-P, followed by the red cone. Together, these
findings indicate that both DC members are most tran-
scriptionally similar to the red cone out of all the ances-
tral photoreceptors. Correlations with the green cone
had consistently lower values, followed by blue and
UV cones, and then rods. The expression correlation
values were also inversely proportional to the number
of differentially expressed genes (DEGs) among types
(Figure S4B).

As shown in Figure 3E, DC-P is characterized by
high expression of THRB, FSTL5, ARR3, ELFN1, and
PDE6H, a signature that is highly similar to that of red
cones (Figure 3E). DC-A has a more distinct signature
(Figure 3A) and is marked by the conserved expression
of STBD1, MYLK, and TMEM132C (Figure 3E). To fur-
ther investigate the molecular characteristics of DCs,
we conducted differential expression tests to identify

markers that distinguish the two DC members from
each other and the DC members from red cones within
each species (Figure S5). We found several conserved
signatures, reported in Table S2. For instance, both
chicken and lizard DC-P are SOX5+/SPOCK3- while
both DC-A are SOX5-/SPOCK3+. However, only one
gene, ZEB2, distinguishes DCs from red cones in both
species (Figure S5 and Table S2).

1.5 Cone gene expression mirrors their
spectral order

In zebrafish, chicken, and lizard, we observed that
the transcriptional relationships between photorecep-
tor types mirror their spectral arrangement: blue
cones are most similar to UV cones and green cones,
while green cones are most similar to blue and red
cones (Figure S4). Using principal component analysis
(PCA), we confirmed that the second principal compo-
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nent (PC2) reliably captures the spectral order of the
various cone types (Figure 4A). The genes driving this
principal component in zebrafish were reproducible in
two separate datasets16,31 (Figure S6). Furthermore,
the PCA revealed that DC-P and DC-A are most prox-
imal to the red cone and lie in the “infrared” region of
PC2 (Figure 4A).

1.6 Rods are equally dissimilar to all cones

Rods have long been speculated to have evolved
from cones2,35. The protein sequence similarity be-
tween rhodopsin and the green-sensitive opsin has
been used as evidence to suggest that rods evolved
from green cones2,36,37, whereas molecular signatures
suggest a UV cone origin38,39. As an attempt to dis-
tinguish between these scenarios, we examined the
transcriptional similarity of rods and different cone
types. We found that rods are highly dissimilar to
all cone types and have no consistent affinity towards
any cone type across zebrafish, chicken, and lizard
(Figure S4). In all PCAs, the first PC, which captures
the highest variance, always separated rods and cones
(Figure 4A). Moreover, SAMap alignment scores be-
tween rods of different species were high (>0.6), but
alignment scores between rods and cone types were
negligible (<0.05) (Figures 2C, 3D). These results sug-
gest that rods may not be evolutionarily derived from
any specific cone type. Instead, it suggests that an-
cestral rods diverged from ancestral cones prior to the
spectral diversification of cones.

2 Discussion

In this study, we integrated single-cell atlases across
vertebrate species that span the emergence and loss
of DCs in the tetrapod lineage. We provide molecu-
lar markers for the principal and accessory members
of the tetrapod double cone and, through comparative
analyses, suggest they evolved from the red cone. Our
main contributions are as follows:

Transcriptomic atlases of photoreceptors: Through clus-
tering analyses, we identified rods and single cones
in each species and pinpointed clusters correspond-
ing to DCs in opossum, lizard, and chicken. We
isolated the principal and accessory member of the
DC in chicken and lizard, but we were unable to do
so in the opossum because of their low abundance.
Cross-species orthology among photoreceptor types
has been long-posited based on opsin expression alone
(Figure 2C). Our whole-transcriptome comparisons
corroborate these orthologies, and, moreover, furnish
additional markers reported that may help verify the
molecular identity of photoreceptors in other species
(Figure 2D, S3, 3E).

Comparisons of cell type composition across
species show that while DCs are highly abundant in
birds, they are less frequent in reptiles, and quite rare
in marsupials (Figure 1D). In all six species, the relative
abundance of red and green cones is higher than the
blue and UV cones. Furthermore, while the classical

literature has largely regarded diurnal reptiles as rod-
less40,41, we find that anole lizards have a very small
population of rods (Figure 1B-D). The wide variations
in photoreceptor composition likely reflect the differ-
ences in the diverse ecological habitats of these species
and their distinct evolutionary histories42.

Evolutionary origin and molecular identity of the DC:
Our integrative analyses suggest that both DC-P and
DC-A arose from a duplication of ancestral red cones.
This conclusion is based on the higher degree of tran-
scriptomic similarity between DC-P and DC-A with
the extant red cone compared to the other single cone
types. Furthermore, the experimental observation that
zebrafish cones arise from symmetric terminal divi-
sions of dedicated precursors33,34,43 suggests the fol-
lowing scenario for the genesis of DCs: during the be-
ginning of vertebrate life on land, a mutated version of
the red cone precursor arose, whose daughter cells did
not separate at birth. Over evolutionary time scales,
these two daughter cells developing distinct character-
istics and became the modern-day principal and acces-
sory members of the double cone (Figure 4B). Develop-
mental scenarios that produce a conjoined red/green
cone seem unlikely, as asymmetric terminal divisions
have, to our knowledge, not been observed in fish.
We provide genes that distinguish the DC members
from each other and from cones in lizard and chicken
(Figures 3E, S5 and Table S2). In addition to en-
abling DCs to be labeled and manipulated experimen-
tally, these genes may be useful in understanding their
function (Figures 3E, S5). Compared to DC-P, DC-A
is more distinct from the red cone (Figure S4). Genes
enriched in DC-A include those involved in calcium-
dependent cell-cell adhesion (PCDH15, CDH18), pro-
tein kinase A activity (SPHKAP, AKAP9), and myosin-
related proteins that are highly expressed in muscle
cells (MYLK, MYO18A/B, MAP2, STBD1). The expres-
sion of muscle-related genes may reflect high metabolic
demands and/or the need to traffic molecules (e.g.
retinal) intracellularly at high rates. A candidate of
particular interest is STBD1, which co-localizes with
glycogen stores and is thought to bind glycogen and
anchor it to membranes44. Given that STBD1 is ex-
pressed specifically in DC-A and not in other photore-
ceptors (Figure 1C), it may be associated with the en-
larged paraboloid (glycogen-containing organelle) that
is unique to DC-A13,41,45. This may point to the DC-
A serving a metabolic function in addition to its visual
role. We note that our annotation of the DC clusters
as DC-P and DC-A is tentative and remains to be fully
validated.

Fish “double cones”: One long-standing confusion
concerns the putative presence of “double cones” in
the retinas of teleost fish, such as zebrafish. Like many
surface-dwelling and diurnal fish, adult zebrafish have
a crystalline photoreceptor mosaic with fixed 2:2:1:1
(R:G:B:U) cone stoichiometry. These are arranged into
alternating rows of R/G and B/U cones, with R/G
cones arranged into intimate pairs, often with gap junc-
tions in between them15. This anatomical arrangement
of the R/G pairs has long been taken as a signature
of double cones, incorrectly linking them to the “true”
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Figure 4: Transcriptomic variation among photoreceptors mirrors their spectral relationships. A) PCA embed-
ding of photoreceptors in zebrafish, chicken, and lizard separately and in the joint expression space derived from
SAMap. To reduce species-specific noise, we binarized the scaled expression values as 0 (not expressed) or 1 (ex-
pressed) based on a set threshold (see Methods). Photoreceptors lie on a gene expression manifold that mirrors
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double cones of tetrapods. However, teleost R/G pairs
and tetrapod double cones are distinct sets of photore-
ceptors46.

Perhaps the simplest way to ascertain this may be
during early development: fish retinas grow through-
out life, and in their early larval stages, the crystalline
mosaic is not yet formed, despite the spatially indepen-
dent presence of all four single cone types in the eyes of
many larval fish15. Over developmental time, this “lar-
val patch” gradually transitions towards the adult mo-
saic, such that the transition from unpaired to paired
R/G single cones becomes “inscribed” into the retinal
anatomy of adult fish (i.e. with the larval patch be-
ing located near the optic disc). For further discussion,
see46. The independent transcriptomic clusters formed
by tetrapod single and double cones found in all non-
eutherian tetrapods tested (e.g. Figure 1) further ce-
ment this notion.

Molecular relationships among photoreceptor types:
Molecular similarities across the four ancestral single
cones add further credence to the prevailing notion
that all cones share a common origin. Within this
group, we find that molecular similarities of cones
across species consistently follow their spectral order:
red → green → blue → UV. This relationship sug-
gests that spectrally neighboring cones are evolution-
arily related, which may provide a potential explana-
tion for “spectral block wiring” – the finding that spec-
trally neighboring cones have an above-chance ten-
dency to co-wire into postsynaptic circuits4,45,47–49. Al-
ternatively, though arguably less plausibly, cones with
shared spectral sensitivity may have acquired similar
gene expression patterns through convergent evolu-
tion. Finally, it remains unclear which cone type came
first. Their spectral (and molecular) order hints that
it could either be the red or UV cone. The earliest
photoreceptors, long predating eyes, were likely UV-
sensitive since retinal by itself (with no opsin) is UV-
sensitive50. On the other hand, the red cone is con-
sidered to be the most functionally critical photorecep-
tor4,51, and the pineal organ also has red-cone-like re-
ceptors52. Thus, arguments can be made for both the
red and the UV cones emerging first.

Lastly, we find no molecular evidence that rods are
related to green cones (Figure 3D, 4A, S4), as the pro-
tein sequence similarity of opsins might suggest2,36,37.
It is possible that the rod simply diverged beyond
molecular recognition from its hypothetical cone pre-
decessor. However, the fact that rods are equally dis-
similar to all cone types suggests that rods diverged
prior to the spectral diversification of cones.

3 Methods

3.1 Choice of species

To investigate the evolution of DCs, we needed to sam-
ple 1) species that diverged before the emergence of
DCs, 2) species with DCs, and 3) species that have since
lost DCs:

For 1), we used zebrafish, which possesses the

ancestral photoreceptor complement (rods plus red,
green, blue, and UV cones). We attempted to include
photoreceptors from goldfish (another teleost fish)53,
but we were unable to identify blue and UV cones, pos-
sibly due to low sampling and/or poor opsin annota-
tion.

For 2), we used chicken, lizard, and opossum,
which contain DCs4. We attempted to include the am-
phibian Xenopus54, which also has DCs. Although we
were able to identify several red cone clusters in Xeno-
pus – indicating the likely presence of red cones and
DCs – the overall cell count was too low for a compre-
hensive annotation.

For 3), we used two eutherian mammals: hu-
man19 and squirrel18. We had first attempted to
use mouse. However, some mouse cones are known
to co-express both OPN1MW and OPN1SW along a
dorsoventral gradient with OPN1SW enriched in the
ventral retina42,55. Due to this, we were unable
to identify discrete populations of single-opsin cones
(i.e. OPN1MW+ or OPN1SW+) across multiple mouse
atlases56,57, instead observing a single cluster with
graded opsin expression. Thus, we decided to use
squirrel, in which we could easily distinguish the two
cone clusters (Figure 1B).

3.2 Alignment of sc/snRNA-seq data

We retrieved pre-processed count matrices from pub-
lished studies for zebrafish16,31, chicken17, brown
anole lizard18, opossum18, squirrel18, and human19.
However, we noticed that the lizard transcriptome
did not contain annotations corresponding to the
green and the blue opsin. Therefore, we re-aligned
the raw sequencing data from lizard18 to a newer
transcriptome assembly, Anolis sagrei v2.1, available
on NCBI (https://www.ncbi.nlm.nih.gov/datasets/-
genome/GCF 025583915.1/). Table S1 lists the gene
names corresponding to opsins in each species. As
we could not identify DC components in opossum,
we also attempted to re-align the opossum raw data
to a newer NCBI assembly (mMonDom1.pri 2023) but
this yielded similar results to the original ENSEMBL-
aligned data18. This suggests that more opossum cells
be needed to resolve DC-P and DC-A.

3.3 Annotation of cell atlases

To ensure high-quality annotations, we applied a con-
sistent pipeline to assemble the photoreceptor atlas
for each species. This involved reclustering the orig-
inal dataset, filtering doublets, and annotating clus-
ters based on the expression of opsin genes (Table S1).
Clusters were annotated as rods, single cones (red,
green, blue, UV) and putative double cone principal
and accessory members. As noted in the main text,
mammalian cone types were annotated based on their
ancestry. Thus, the human red and green cones, which
are both derived from ancestral red cones, were an-
notated together as “red cones” ; human blue cones,
derived from the ancestral UV cone, was annotated
“UV cones”; and squirrel green cones, derived from
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ancestral red cones, were annotated as “red cones”
(Figures 1B,C).

For zebrafish, Ogawa and Corbo31 described an ad-
ditional cone cluster defined by the coexpression of
opn1mw4 and opn1lw1 opsin genes (opn1mw4/opn1lw1+
cones) in their scRNA-seq data. The authors hypoth-
esized that this cluster might represent a unique sub-
population within the commonly observed R/G cone
pairs in teleosts (see Discussion). Ogawa and Corbo
also noted the graded expression of opn1lw1/2 and
opn1mw1/2/3/4 in the red and green cones, consistent
with the presence of region-specific subpopulations.

Encouragingly, we were able to reproduce Ogawa
and Corbo’s observations in the adult zebrafish
snRNA-seq dataset of Lyu et al.16 (Figures S7). How-
ever, we could not detect opn1mw4/opn1lw1+ cones in
larval zebrafish at 4/5 days post fertilization, suggest-
ing that opn1mw4/ opn1lw1+ cones may arise at later
developmental stages (Figures S7A,B). Finally, we
note that the appearance of opn1mw4/opn1lw1+ cones
as a single cluster in both scRNA-seq and snRNA-seq
datasets suggests that they represent a subpopulation
of single cones rather than true double cones.

3.4 Identification of intact double cones

In their scRNA-seq atlas of the chicken retina, Yama-
gata et al.17 identified three putative double cone clus-
ters - DCa, DCb, and DCc. We hypothesized that one
of these may represent intact DCs, with the other two
being dissociated DC-P and DC-A cells. To test this,
we used linear regression to fit the expression vector
of each cluster based on the other two clusters (for
e.g., DCb ≈ αDCa + βDCc + γ), where DCi is the
gene expression vector (i = a, b, c), α and β are re-
gression coefficients, and γ is the bias. We found that
DCb ≈ 0.5DCa + 0.56DCc (p < 10−3, Figure S1C),
suggesting that DCb represents the intact double cone
and DCa and DCb are its members. Consistent with
this result, modeling either DCa or DCc as a linear
combination of the other two clusters yielded subtrac-
tive combinations (Figure S1C), again consistent with
DCb representing full double cones. Thus, we rean-
notated DCb as full intact DCs and omitted it from
downstream analysis. Notably, clusters correspond-
ing to intact DCs were found only in scRNA-seq data
not snRNA-seq data. We used chicken as the basis
for annotation of the less-studied anole lizard. We hy-
pothesized that the DC cluster expressing the red cone
marker THRB represents DC-P because of the morpho-
logical similarity between DC-P and red cones, leaving
the THRB−STBD1+MYLK+ cluster as the putative DC-
A.

3.5 Cross-species photoreceptor alignment
using SAMap

SAMap analysis was run as follows. 1) An ini-
tial SAMap object was instantiated and the resulting
BLAST homology graph was saved for later use, as this
is the slowest step. 2) h5ad count files exported from
Seurat were preprocessed using SAM58 with 100 PCs,

k=20 nearest neighbors, and 3000 genes. 3) SAMap was
run pairwise for 3 iterations, with computing neighbor-
hoods from keys set to true. 4) Alignment scores (aver-
age scores from the kNN graph) were extracted using
the get mapping scores function in SAMap. We also
used the function GenePairFinderwith default param-
eters to identify conserved gene markers for photore-
ceptors in Figure 2D and Figure 3E.

Due to the large differences in photoreceptor type
frequency across species, we downsampled each pho-
toreceptor type within each species to 100 cells. This
inherently introduces randomness in the mapping, so
we repeated SAMap experiments 10 times with differ-
ent random samples and took the median alignment
scores across the 10 runs. This ensured that our results
were robust and reproducible across different random
samples of cells.

3.6 Differential gene expression analysis

For identifying differentially expressed genes (DEGs),
we used the R package presto. For constructing the
hierarchical clustering trees in Figure S4B, we used
an average log2 fold change cutoff of 1 and adjusted
p-value cutoff of 0.001. For exploration of DEGs dis-
tinguishing DCs from each other and from red cones
(Figure S5, Table S2), we used more permissive cutoffs
(average log2 fold change cutoff of 0.25 and adjusted p-
value cutoff of 0.01).

3.7 Hierarchical clustering and principal
component analysis (PCA)

Hierarchical clustering trees based on Pearson cor-
relations (Figure S4A) were constructed using the
pseudobulked expression of the top 2000 highly vari-
able genes. Briefly, normalized counts were aver-
aged in non-log space and then log-transformed using
the log1p function in R. Correlations were computed
across different single-cell clusters using the cor func-
tion in R.

For the PCAs within species (Figure 4A), we used
the pseudobulked expression of the top 2000 highly
variable genes to compute principal components (PCs).
Normally, PCA is preceded by scaling across features.
We observed that when computing PCs with cen-
tered and scaled expression data, the resulting PCs
were dominated by contributions from noisy, lowly ex-
pressed genes. We found two strategies to avoid this
noise. 1) We centered the data but did not scale prior
to PCA. This effectively gives highly expressed genes
more importance in the reduced dimension. 2) We re-
quire genes to be expressed above a certain threshold
in one cluster (e.g. 5-15% of cells). These two methods
led to very similar results, so we used centering with-
out scaling since it did not require arbitrary hyperpa-
rameters, and was faster.

For the joint PCA in Figure 4A, we used the ho-
mology graph from SAMap29 to transform the gene ex-
pression values of zebrafish and lizard into the chicken
gene expression space. Briefly, the homology graph A
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is an m1 × m2 matrix, where m1 and m2 are the num-
ber of genes from species 1 and species 2 respectively,
and whose entries denote the similarity between genes
across species. These similarities are initialized from
protein BLAST similarity, but then refined based on
expression similarity29. If X ∈ Rm1×n1 is the gene-
by-type expression matrix for species 1 with n1 types,
then ATX ∈ Rm2×n1 is the transformed gene-by-type
matrix in the expression space of species 2. We scaled
within each species to remove extensive batch effects
across species, then subsetted to genes that are present
across all three species (∼8000 genes), and horizontally
concatenated the three gene-by-type matrices. To mit-
igate species-specific noise, we binarized these scaled
expression values by setting genes whose expression
was above an arbitrary threshold to 1 and the rest to 0.
We used a threshold of -0.15, but other values around 0
gave similar results. We then ran PCA on the resulting
binarized gene-by-type matrix.

3.8 In situ HCR and light microscopy

All procedures were performed in accordance with the
Washington University in St. Louis, Institutional An-
imal Care and Use Committee (IACUC) guidelines.
For in situ HCR, we used female adult green anoles
purchased from Carolina Biological Supply, age un-
known. Adult lizards were humanely euthanized with
a high dose of anesthesia (Alfaxalone 60 mg/kg) sub-
cutaneous injection. After decapitation, retinal tissues
were dissected from the enucleated whole eyes by re-
moving cornea, lens and epithelial layer in 1x PBS. The
tissues were immediately fixed in 4% paraformalde-
hyde (Agar Scientific, AGR1026) in PBS for 20 min at
room temperature, followed by three washes in PBS.
The tissues were then sliced at 200 µm thickness us-
ing a tissue chopper. The standard in situ HCR was
performed according to the manufacturer’s protocol
using HCR Probe hybridization buffer, Probe Wash
buffer, and Amplification buffer (Molecular Instru-
ments). HCR probe sets and Amplifiers were custom-
designed (Table S3). Hoechst 33342 was added to vi-
sualize nuclei during the wash step after the amplifica-
tion step.

Confocal image stacks were taken immediately af-
ter the in situ HCR on a FV1000 microscope (Olympus)
with a 40x oil immersion objective (HC PL APO CS2,
Leica). Typical voxel size was 0.62 µm and 0.5 µm
in the x-y and z, respectively. Contrast, brightness
and pseudo-colour were adjusted for display in Fiji59.
Puncta were detected by thresholding the image stacks

followed by 3D Object Counter in Fiji. For OPN1LW,
nuclei with puncta signal were counted as positive.
Briefly, we used Cellpose60 to segment the nuclei, and
then used a script from the 10x Genomics Xenium
pipeline (https://www.10xgenomics.com/analysis-
guides/performing-3d-nucleus-segmentation-with-
cellpose-and-generating-a-feature-cell-matrix) to as-
sign each puncta to a nuclei. For STBD1, the density
of puncta was too low to restrict analysis to solely the
nuclei. Instead, the density of puncta at each voxel
was computed to create a density map for STBD1, and
high-density regions were counted as STBD1+ cells.

3.9 Data and Code Availability

scRNA-seq data clustering, integration and visual-
ization was performed in R v4.2.1. SAMap was
run in Python v3.9.19. R Markdown and Jupyter
notebooks required to reproduce the analyses pre-
sented here are available on our GitHub page
(https://github.com/shekharlab/ DoubleCones).
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D

Figure S1: Identification of principal, accessory, and full double cones in the chicken retinal atlas. A) 2-D
UMAP embedding of chicken retinal atlas17. Three double cone (DC) clusters annotated by the authors, labeled
DCa, DCb, and DCc, are highlighted. B) Violin plot showing the normalized and log-transformed expression
values for marker genes in the photoreceptor clusters in panel A. Shown are the rod marker RHO, the cone
marker PDE6H, the ancestral cone marker ZEB2, the double cone marker CALB1, the red cone marker THRB, and
a novel marker for DCa (STBD1). Notice that DCb expresses THRB and STBD1 at intermediate levels compared
to DCa and DCc. C) Pairwise gene expression correlations between DCa, DCb, and DCc. DCb is similar to both
DCa and DCc. Gene expression correlation of DCa, DCb, and DCc to the best-fit linear combination of the other
two clusters. Middle panel shows that DCb is an average of DCa and DCc, indicating that it represents full, intact
double cones (both principal and accessory member) entering a single 10x droplet.
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Figure S2: Analysis of photoreceptor proportions in anole lizard and chicken. A) In situ Hybridization Chain
Reaction (HCR) targeting OPN1LW in retinal cross sections of the anole lizard (left panel). RNA signal and nuclei
(Hoechst) are represented in magenta and grey, respectively. In the inset (middle), nuclei positive for OPN1LW
are highlighted in cyan (details in Methods). Right panel shows OPN1LW+ nuclei in the same field of view
as the left panel. ONL, outer nucleus layer; INL, inner nucleus layer; GCL, ganglion cell layer. B) Percentage
of OPN1LW+ nuclei in the ONL. Each circle is a biological replicate. A total of 646 nuclei were counted in the
ONL and the typical field of view was 640x540 µm. C) Same as A, but for HCR experiments targeting STBD1.
Regions of high HCR signal density are shown in cyan. D) Percentage of STBD1+ nuclei in the ONL. Each
circle is a biological replicate. A total of 407 nuclei were counted in the ONL and the typical field of view was
640x380 µm. E) Relative proportions of photoreceptor types from scRNA-seq of E18 chicken retina17. In these
calculations, we estimated the total number of double cones to be the sum of the number of intact double cones
(DCb) and the average of the numbers of the principal (DCc) and accessory (DCa) cells. F) Relative proportions
of photoreceptor types from immunostaining of P15 chicken (Figure 2B of Kram et al. 20107, reproduced using
automeris.io WebPlotDigitizer). Photoreceptor types are colored the same as in panel C. The x-axis shows the
proportions for tissue sections obtained from different quadrants of the retina: dorsonasal (DN), dorsotemporal
(DT), ventronasal (VN), ventrotemporal (VT). Differences in proportions between panels C and D may be due to
biases in cell capture in scRNA-seq or due to differences in age (E18 vs. P15), or both.
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opn1lw1/OPN1LW/LOC132767849/ENSSTOG00000024701/OPN1LW
NA/AKAP9/AKAP9/NA/AKAP9
pde6ha/PDE6H/PDE6H/NA/PDE6H
arr3a/ARR3/ARR3/NA/ARR3
gabrb3/GABRA6/GABRA5/NA/NA
gabra6a/GABRA6/GABRA5/NA/NA
gabrb3/GABRA6/GABRB3/NA/NA
gabra6a/GABRA6/GABRB3/NA/NA
gabrb3/GABRB3/GABRA5/NA/NA
gabra6a/GABRB3/GABRA5/NA/NA
ano2b/ANO2/ANO4/ANO5/NA
CDH18/CDH18/LOC132774511/NA/NA
gabrb3/GABRB3/GABRB3/NA/NA
gabra6a/GABRB3/GABRB3/NA/NA
si:dkey−92j12.5/MPDZ/NA/MPDZ/NA
pcbp4/PCBP2/NA/PCBP3/NA
opn1mw2/OPN1MSW/LOC132773706/NA/NA
opn1mw1/OPN1MSW/LOC132773706/NA/NA
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nfia/NFIB/NFIB/NA/NA
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pcdh17/PCDH17/PCDH17/NA/NA
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cnga3a/CNGA3/NA/NA/NA
camk1ga/RPS6KA2/NA/NA/NA
osbpl7/OSBPL1A/NA/NA/NA
akt3a/RPS6KA2/NA/NA/NA
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ptprfa/PTPRS/PTPRD/NA/NA
chl1a/CHL1/NA/NA/NA
nav2a/NAV2/NA/NA/NA
dclk1a/DCX/NA/NA/NA
pvrl2l/CADM2/NA/NA/NA
camk1ga/CDC42BPA/NA/NA/NA
efna1b/EFNA5/NA/NA/NA
pde6ha/PDE6H/NA/NA/NA
opn1sw1/OPN1SW/OPN1SW/OPN1SW/OPN1SW
opn6b/OPN1SW/OPN1SW/OPN1SW/OPN1SW
nrxn3a/NRXN3/NRXN3/NRXN3/NA
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rho/RHO/RHO/RHO/RHO
rhol/RHO/RHO/RHO/RHO
tmtops2a/RHO/RHO/RHO/RHO
pde6gb/PDE6G/NA/NA/PDE6G
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NA/MAFA/NA/NRL/NRL
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pde6b/PDE6B/PDE6B/PDE6A/PDE6B
pde6a/PDE6B/PDE6B/PDE6B/PDE6B
pde6b/PDE6B/PDE6B/PDE6B/PDE6B
cnga1a/CNGB1/NA/CNGA1/CNGA1
cnga1b/CNGB1/NA/CNGA1/CNGA1
cngb1a/CNGB1/NA/CNGA1/CNGA1
cnga1a/CNGB1/NA/ENSSTOG00000007496/CNGA1
cnga1b/CNGB1/NA/ENSSTOG00000007496/CNGA1
cngb1a/CNGB1/NA/ENSSTOG00000007496/CNGA1
esrrd/NR2E3/NA/NA/NR2E3
samd11/SAMD11/SAMD11/NA/SAMD11
samd7/SAMD11/SAMD11/NA/SAMD11
cnga1a/CNGB1/NA/CNGA1/CNGB1
cnga1b/CNGB1/NA/CNGA1/CNGB1
cngb1a/CNGB1/NA/CNGA1/CNGB1
cnga1a/CNGB1/NA/ENSSTOG00000007496/CNGB1
cnga1b/CNGB1/NA/ENSSTOG00000007496/CNGB1
cngb1a/CNGB1/NA/ENSSTOG00000007496/CNGB1
syne1a/SYNE2/SYNE2/ENSSTOG00000030302/SYNE2
si:ch211−207i1.2/SYNE2/SYNE2/ENSSTOG00000030302/SYNE2
hcn1/HCN1/HCN1/NA/HCN1
rom1b/PRPH2/NA/NA/ROM1
rom1a/PRPH2/NA/NA/ROM1
NA/REEP6/NA/REEP6/REEP6
cabp4/CALM2/CABP4/NA/CABP5
calm1a/CALM2/CABP4/NA/CABP5
rom1b/PRPH2/NA/NA/PRPH2
rom1a/PRPH2/NA/NA/PRPH2
epb41l5/EPB41L2/NA/EPB41L2/EPB41L2
epb41a/EPB41L2/NA/EPB41L2/EPB41L2
rdh8a/RDH8/LOC132774164/NA/NA
tenm3/TENM2/TENM3/NA/NA
pcdh2g28/PCDH7/PCDH11X/PCDH9/NA
kcnv2a/KCNB1/KCNB1/NA/NA
pcdh2g28/PCDH7/PCDH7/PCDH9/NA
pcdh2g28/PCDH9/PCDH11X/PCDH9/NA
pcdh2g28/PCDH9/PCDH7/PCDH9/NA
kcnv2a/KCNV2/KCNB1/NA/NA
celf2/CELF2/CELF4/NA/NA
celf2/CELF4/CELF4/NA/NA
tenm3/TENM2/TENM2/NA/NA
kcnv2a/KCNV2/KCND2/NA/NA
pcdh2g28/PCDH7/PCDH9/PCDH9/NA
myo3a/MYO3B/MYO3B/NA/NA
pcdh2g28/PCDH9/PCDH9/PCDH9/NA
nlgn3a/NLGN4L/NLGN1/NA/NA
casz1/CASZ1/CASZ1/NA/NA
mef2aa/MEF2C/MEF2A/NA/NA
mef2d/MEF2C/MEF2A/NA/NA
nrg1/NRG2/NRG1/NA/NA
nrg3b/NRG2/NRG1/NA/NA
slc24a1/SLC24A1/NA/SLC24A1/NA
guca1b/KCNIP4/NA/GUCA1B/NA
rcvrna/KCNIP4/NA/GUCA1B/NA
hpca/KCNIP4/NA/GUCA1B/NA
pdca/PDC/NA/PDC/NA
mink1/TNIK/NA/TNIK/NA
prkcaa/PRKCE/NA/PRKCA/NA
prkcea/PRKCE/NA/PRKCA/NA
GALNTL6/GALNT9/NA/GALNT16/NA
galnt1/GALNT9/NA/GALNT16/NA
mink1/MAP4K4/NA/TNIK/NA

-2 20
Scaled expression

Zebrafish
Chicken
Lizard
Squirrel
Human

Legend

Figure S3: Conserved transcriptional signatures for rods and single cones. Heatmap of scaled gene expression
showing the top conserved transcriptional signatures of ancestral photoreceptors (same as Figure 2D, but with
gene names shown). Gene names are in the same order as the species (zebrafish, chicken, lizard, squirrel, and
human). SAMap identified known paralogous relationships; for example, opn1mw1/2/3 in zebrafish. Missing
genes are indicated as NA.
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Figure S4: Pairwise gene expression similarity between photoreceptor types. A) Pearson correlation between
average expression levels of photoreceptor clusters within species. Normalized and log-transformed counts
were used to calculate correlations. B) Heatmaps showing number of differentially expressed genes (Benjamini-
Hochberg-adjusted p < 0.001 and log fold change > 1) between clusters for each species.
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Figure S5: Genes that distinguish the principal from the accessory and the double cones from the red cone.
Scatterplots comparing gene expression (normalized and log-transformed) between the principal and the ac-
cessory (left) or the two double cone members and the red cone (right). In cases where too many DEGs were
returned, only the top DEGs were labeled – a full list is provided in Table S2. The top row shows the results for
chicken, and the bottom panel shows the results for lizard. Note that Pearson correlation coefficients differ from
Figure S4 because only highly variable genes were considered in Figure S4, whereas all genes were considered
for DE analysis.
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Figure S6: PC2 in zebrafish is reproducible in two different datasets. A) PCA of averaged photoreceptor gene
expression profiles within three zebrafish datasets (columns). In all three cases, PC1 separates rods and cones,
while PC2 separates cone types based on their color. B) Scatterplots comparing PC2 gene loadings between pairs
of datasets in panel A.
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Figure S7: The opn1mw4/opn1lw1+ cones first described in Ogawa and Corbo 2021 are present in adult ze-
brafish but not in the developing zebrafish. A) UMAP embeddings for three zebrafish photoreceptor atlases:
1) adult scRNA-seq (Ogawa and Corbo 2021), 2) 4/5 days post-fertilization (dpf) snRNA-seq (Lyu et al. 2023),
and 3) adult snRNA-seq (Lyu et al. 2023). B) Dotplots showing the expression of the visual opsins. The yellow
cluster expresses both opn1mw4 and opn1lw1 and is adult-specific, suggesting it develops after 4/5 dpf. C) PCA
of reclustered red, green, and opn1mw4/opn1lw1+ cones from Lyu et al. adult data. The top left panel is colored by
identity like in panel B. The rest of the panels are colored by the expression of the various red and green opsins.
Notice that both the red and green opsins have a graded expression pattern, suggesting the presence of special-
ized subsets that may be enriched in some retinal regions.
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