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ABSTRACT: Bio-oil production from rice husk, an abundant Rice Husk Ash
agricultural residue, has gained significant attention as a sustainable
and renewable energy source. The current research aims to employ
artificial neural network (ANN) and support vector machine
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(SVM) modeling techniques for the optimization of operating A
parameters for bio-oil extracted from rice husk ash (RHA) through ) :;m
pyrolysis. ANN and SVM methods are employed to model and Heating e

optimize the operational conditions, including temperature, Rate
heating rate, and feedstock particle size, to enhance the yield
and quality of bio-oil. Additionally, ANN modeling is utilized to :
create a predictive model for bio-oil properties, allowing for the Bio-oil e S
efficient optimization of pyrolysis conditions. This research

provides valuable insights into the production and properties of bio-oil from RHA. By harnessing the capabilities of ANN and
SVM, this research not only aids in understanding the intricate relationships between process variables and bio-oil properties but also
provides a means to systematically enhance the production process. The predictive results obtained from the ANN were found to be
good when compared with the SVM. Several models with different numbers of neurons have been trained with different transfer
functions. R values for the training, validation, and test phases are around 1.0, i.e, 0.9981, 0.9976, and 0.9978, respectively. The
overall R-value was 0.9960 for the proposed network. The findings were considered acceptable, as the overall R-value was close to
1.0. The optimized operational parameters contribute to the efficient conversion of RHA into bio-oil, thereby promoting the use of
this sustainable resource for renewable energy production. This approach aligns with the growing emphasis on reducing the
environmental impact of traditional fossil fuels and advancing the utilization of alternative and environmentally friendly energy
sources.
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1. INTRODUCTION transforming it into a valuable and sustainable energy
resource.’ The utilization of RHA for bio-oil production not
only addresses the issue of waste management associated with
rice husk disposal but also taps into the potential of
transforming an agricultural byproduct into a renewable energy
resource.

Pyrolysis involves subjecting RHA to controlled temper-
atures, leading to the thermal degradation of its organic
components into bio-oil, biochar, and gases.5 Bio-oil, the
primary product of interest, is a complex mixture of organic
compounds that can be utilized as a potential energy source or
precursor for various chemicals.” Several factors, including

In pursuing sustainable and renewable energy sources,
converting agricultural residues into biofuels has emerged as
a promising avenue.'! Among these residues, rice husk, a
byproduct of rice milling, has garnered significant attention
due to its abundance and potential as a feedstock for bioenergy
production.”® However, it is not only the rice husk that holds
promise but also its ash, commonly referred to as rice husk ash
(RHA), which presents a valuable resource for bio-oil
production.””

RHA, rich in silica and other organic compounds, is a
residue obtained after rice husk combustion.” The ash has
unique properties that make it an intriguing candidate for

producing bio-oil through pyrolysis, a thermochemical process Received:  April 1, 2024 O
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method harnesses the inherent energy stored in the biomass,
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pyrolysis temperature, heating rate, and the presence of
catalysts, influence the characteristics of the bio-oil obtained
from RHA.” As the demand for sustainable energy intensifies
and efficient waste utilization practices grow, exploring RHA’s
conversion into bio-oil becomes a scientific endeavor and a
crucial step toward a more environmentally conscious and
sustainable future.'’

RHA is suitable for pyrolysis because it has a high
mesoporous surface area and silica content.'' The RHA
catalytic process can enhance bio-oil physical properties (acid
value, caloric value, density, and viscosity).” RHA pyrolysis
produces high bio-oil quantities at elevated temperatures
(450—500 °C). Bakar and Titiloye® recommended that RHA
could enhance gaseous product yield to 21.6 wt % at a modest
temperature of 500 °C. Abbas et al.” studied pyrolysis of RHA
and found optimal biochar and bio-oil yields of 39 and 19%,
respectively, at 500 °C. Acid values and carboxyl groups
drastically reduced at higher temperatures (700 °C), while
biochar produced at higher temperatures was highly stable.

The resultant product contains 22.5 to 31.7% of liquid
compounds, 27.7 to 42.5% of gaseous compounds, and 34.1 to
42.5% of solids. Cao et al.'” studied the synthesis of biochar to
develop an effective catalyst for chemical synthesis. Gui et al."
evaluated the fast and slow pyrolyzed bio-oil production
processes, focusing on temperature, heating rate, and yield. To
create the benchmarks, the study evaluated the coconut shells,
RHA, and 50% of each constituent. Islam et al.'* evaluated the
highest yield parameters for bio-oil synthesis utilizing solid
waste in a 500 °C fixed bed reactor. The product analysis
shows that 30% of liquid products and 33% of solid products
are produced from the pyrolysis of RHA. Furthermore, low
investment cost, ease of operation, and secondary reaction
probation make it an attractive choice.”

However, there is limited literature related to the RHA
performance for the enhancement of properties.’ Artificial
neural networks (ANNSs) and support vector machine (SVM)
are powerful machine learning techniques that have been
increasingly employed for optimizing operating parameters in
converting RHA to bio-oil."'® These techniques offer a data-
driven approach to modeling complex relationships between
input parameters and desired outcomes, enabling more
efficient and effective optimization processes.’”” ANN presents
distinct advantages, particularly in tasks requiring the modeling
of nonlinear relationships."® ANN can automatically learn
intricate patterns and features from raw data, eliminating the
need for manual feature extraction, which is especially
beneficial in domains such as image and speech recognition."”
SVM excels in high-dimensional spaces, making them suitable
for problems with many features like text classification or
image recognition.20 SVM is robust enough to overfit,
particularly in situations where the number of features
surpasses the number of samples, ensuring the generalization
of unseen data. Their versatility in kernel functions allows for
adaptation to various data distributions, providing flexibility in
capturing complex decision boundaries.”’ Leveraging the
capabilities of ANN and SVM to optimize operating
parameters in the conversion of RHA to bio-oil provides a
data-driven and efficient approach.”” These models contribute
to the ongoing efforts to enhance the efficiency and
sustainability of bioenergy production processes.”” However,
identifying the appropriate machine learning method is still
challenging in predicting the effect of the operating parameters.
This is due to the need for a large volume of accurate data for

model development. The current research compares machine
learning and statistical approaches to predict the bio-oil
production that was not previously modeled ANN and SVM
under the combined effect of temperature, heating rate, and
particle size.

This study aims to employ advanced techniques, specifically
ANN and SVM modeling, to optimize bio-oil production from
RHA through pyrolysis. The objective is to enhance bio-oil’s
yield and quality, focusing on key operational conditions such
as temperature, heating rate, and feedstock particle size. The
research uses ANN modeling for predictive analysis to
optimize pyrolysis conditions efficiently, providing valuable
insights into the relationships between process variables and
bio-oil properties. Ultimately, the study aims to systematically
improve the conversion of RHA to bio-oil, promoting the use
of this sustainable resource for renewable energy production in
alignment with environmental conservation goals.

2. MATERIALS AND METHODS

2.1. Raw Material Preparation. Rice husk is a commonly
available agricultural waste used as a feedstock for bio-oil
production through pyrolysis. Preparing rice husk appropri-
ately for pyrolysis is essential before experimentation. The rice
husk was collected and cleaned to remove any dirt, stones, or
other foreign materials that may interfere with the pyrolysis.
The rice husk was dried to reduce its moisture content to less
than 10%. Moisture content reduces the biomass’s heating
value and increases the tar produced during pyrolysis. The rice
husk was placed in a thin layer in sunlight and then dried in an
oven at 100 C for 2 h. The size of the biomass is reduced to
ensure that it can be easily fed into the pyrolysis reactor. The
size reduction was made using the milling technique, and a
particle size of 2 mm was selected for further processing. The
ground rice husk is then burned at a temperature between 500
and 700 °C. The ashing process removes the organic
components of the rice husk, leaving behind grayish ash. The
RHA is washed to remove impurities and then sieved to
remove large particles. A 200-mesh screen was sieved, and
particles passing through the sieve were selected for the reactor
feed. The RHA is stored in a dry and cool place to prevent
moisture absorption and ensure quality.

2.2. Pyrolysis Reactor and Start-Up. The pyrolysis
system contains an external heating source and a stainless-steel
reactor equipped with a mechanical stirring device, as
illustrated in Figure 1. To measure the reactor temperature,
we embedded thermocouples. Since pyrolysis is performed
without air, an inert atmosphere is ensured by continuously
supplying nitrogen gas. The flow rate is initially set at 100 mL/
min and gradually reduced. The final nitrogen flow rate is 10
mL/min to maintain an inert environment throughout the
process. An inert atmosphere facilitates the pyrolysis process
by preventing secondary reactions. A temperature controller
sets the desired temperature, allowing the reactor to reach a
steady state. RHA is placed inside the reactor, and the lid is
tightly sealed to start pyrolysis. To ensure the accuracy of the
experiments, triplicates are carried out at five different
temperatures ranging from 400 to 480 °C. After pyrolysis,
bio-oil and char are collected.

2.3. Bio-oil Characterization. Once the bio-oil is
produced, its properties are characterized. This involves an
analysis of its chemical and physical properties. The physical
properties (viscosity, density, heating value, water, and ash
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Peristalticpump  Cooling waterin Table 1. Parametric Particulars of Trained Models
Pressur

. t-sivped condenser tem (?r)ature (B) heating (C) particle size  bio-oil yield
- sr # FOC) rate (°C/min) (pum) (%)
) 1 400 80 300 8.1
| 2 480 40 300 12.5
Bio-oil Cooling water out 3 440 60 200 15.8
4 400 40 100 8.1
S 400 80 300 9.0
6 440 60 200 15.7
\ 7 373 60 200 4.5
o 8 440 60 200 159
Nagas Heating jacket 9 507 60 200 55
Reactor 10 440 60 200 15.8
biochar 11 440 60 200 15.9
Figure 1. Schematic diagram of the batch stirred reactor. 12 480 80 100 14.5
13 400 40 300 8.5
14 400 80 100 9.5
content) and chemical composition were determined using the 15 440 60 368 13.0
standard method. 16 400 40 300 8.5
2.4. Experimental Design Using RSM. The utilization of 17 440 60 200 16.0
the RSM software facilitates the examination of various 18 400 80 100 9.5
operational factors. To make expensive and challenging 19 440 26 200 7.1
analyses more cost-effective, the analysis methods of the 20 440 60 200 15.8
Design-Expert software incorporate RSM procedures. RSM 21 373 60 200 5.1
relies on two fundamental principles as the foundation of its 22 480 80 300 12.6
methodology, namely, establishing the optimal model and 23 400 40 300 8.5
evaluating the measured response. Through contour plots or 24 480 40 100 13.3
3D graphics, the RSM allows for the visual interpretation of 25 400 80 300 8.6
data. Selecting a rough approximation of the model minimizes 26 480 40 300 13.3
unnecessary experimentation, leading to the identification of 27 440 60 200 15.8
the most optimal solution. With DOE in mind, select where to 28 440 94 200 17.8
measure the response.”””> To determine the effect of operating 29 440 94 200 17.8
parameters on the bio-oil yield, a 5- 5-level CCD model was 30 480 80 300 12.6
employed. The three most influential parameters are the 31 440 60 368 13.1
temperature, particle size, and heating rate. Table 1 exhibits the 32 440 26 200 7.0
operating parameters selected for the experimentation. 33 480 40 100 13.4
2.5. ANNs and SVM. Data-driven predictive modeling 34 440 60 200 15.8
leveraging ANN and SVM represents a formidable strategy for 35 480 40 100 13.5
discerning intricate patterns and achieving precise predictions 36 400 80 100 7.8
within intricate data sets.”® By harnessing the computational 37 373 60 200 4.5
principles inspired by the human brain in ANN and the 38 480 80 100 14.7
mathematical rigor of SVM, this approach excels in handling 39 400 40 100 8.1
diverse and multidimensional data.”” With its layered 40 400 40 100 8.2
architecture, the ANN can capture intricate relationships, 41 480 40 300 13.5
while the SVM adeptly handles classification and regression 42 440 26 200 7.1
tasks by identifying optimal hyperplanes. The strength of this 3 440 60 32 17.6
methodology lies in its adaptability to complicated, real-world 44 507 60 200 5.6
scenarios, allowing it to navigate complex data structures and 4 440 60 200 15.8
distill meaningful insights. As technological advancements 46 440 94 200 177
continue, the synergy between ANN and SVM modeling is 47 507 60 200 56
proving indispensable in finance, healthcare, and beyond, 48 480 80 300 12.5
facilitating informed decision-making and driving innovation.'® 49 440 60 200 15.9
A brief description of the tuning parameters and the training 50 440 60 32 17.6
algorithms used in the models is given in Table 2. St 440 60 200 158
2.6. ANN Modeling. ANN modeling is designed to learn 2 440 60 200 15.8
complex patterns and relationships within the data. Compris- 33 480 80 100 14.6
ing interconnected nodes or artificial neurons organized into 4 440 60 368 130
SS 440 60 32 17.5

layers (input, hidden, and output), the ANN processes
information through weighted connections, mimicking synap-
ses in the human brain. The training of an ANN involves
adjusting these weights based on a labeled data set, allowing
the model to generalize and make predictions on new, unseen
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data. ANN excels in pattern recognition, classification,
regression, and function approximation tasks. The ANN,
including the layers, neurons, and activation functions, is
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Table 2. Parametric Particulars of Trained Models

model particulars ANN SVM_1

data distribution training = 82%, unseen data

testing set = 18% testing set = 18%
input variables 3 3
response variable 1 1

process hypothesis nonlinear nonlinear

algorithmic approach  Levenberg—Marquardt

training method back-propagation back-propagation
activation/kernel tansigmoid cubic
function
cost function MSE MSE
validation checks k-folds = 6 k-fold = S

training = 82%, unseen data

Bayesian optimization

SVM 2 SVM 3

training = 82%, unseen data
testing set = 18%

training = 82%, unseen data
testing set = 18%

3 3
1 1
nonlinear nonlinear

grid search optimization random search optimization

back-propagation back-propagation
cubic cubic

MSE MSE

k-fold = S k-fold = S

tailored to the specific problem. While ANNs can capture
nonlinear relationships, their effectiveness depends on careful
design, appropriate hyperparameter tuning, and robust training
data sets. Applications of ANN modeling span various
domains, including image and speech recognition, financial
forecasting, healthcare diagnostics, and natural language
processing. As a versatile tool in machine learning, ANN
modeling continues to contribute significantly to advance-
ments in artificial intelligence and data analytics.

The ANN serves as a highly efficient classifier for pattern
identification.”” The ANN model is utilized in various
applications, with the multilayer BPNN being the most
commonly employed network for current analysis.”® The
current research used the ANN to predict bio-oil yield based
on operating parameters, eliminating the need for time-
consuming and costly experimental procedures. To ensure
accuracy, the data for the ANN modeling process was divided
into two subsets: 90% for model training and 10% for external
validation and testing.**

2.7. SYUM Modeling. The key steps in SVM modeling
involve data preprocessing, feature scaling, and the selection of
appropriate hyperparameters, such as the regularization
parameter (C) and kernel parameters. During training, SVM
aims to find the hyperplane that maximizes the margin while
minimizing classification errors. SVM is known for its
robustness against overfitting and often performs well in
scenarios with limited data. SVM modeling is widely applied
due to its versatility and ability to handle complex decision
boundaries. It is a valuable tool in machine learning for tasks
where an accurate classification or regression is crucial. As with
any modeling approach, careful tuning and validation are
essential to ensure optimal performance on specific data sets
and problem domains.

An optimization system forms the foundation of a
contemporary statistical machine learning method that aims
to optimize specific parameters. It was adopted to solve
classification difficulties, but now it can optimize regression
problems. Moreover, it has proven to be an effective technique
for optimizing quantitative structure—property relationships
(QSPR). With the integration of artificial intelligence, the
latest advancements in QSPR analysis enable accurate and
reliable predictions. These methods are particularly valued for
their easy handling of complex nonlinear scenarios.”” To
achieve a satisfactory fit, SVM focuses on minimizing the
summation of errors.

26543

Table 3. Proximate and Ultimate Analyses of Bio-oil

type property value (%)
proximate analysis moisture 11.67
volatile matter 56.32
ash 14.56
fixed carbon 17.45
calorific value 2.06 MJ/kg
ultimate analysis carbon 384 £ 02
hydrogen 5.5 +01
nitrogen 12 + 0.1
oxygen 549 £ 02

3. RESULTS AND DISCUSSION

3.1. Proximate and Ultimate Analysis. Proximate and
ultimate analysis of the bio-oil was performed on a dry basis.
Proximate analysis provides information about the basic
composition of a substance and is typically expressed as a
percentage of the total material (Table 3). Moisture content in
bio-oil is a critical parameter affecting its stability and
combustion properties. High moisture content can lead to
increased viscosity and a decreased heating value. Efficient
drying processes during bio-oil production are essential to
minimize moisture content and enhance the overall quality and
stability of the bio-oil. Volatile matter represents the
combustible components in the bio-oil. A higher volatile
matter content generally indicates good flammability and
combustion characteristics. Fixed carbon is the residue after
volatile matter has been driven off. It contributes to the overall
energy content and stability of bio-oil. Balancing fixed carbon
content is crucial; too low fixed carbon may lead to instability,
while too high fixed carbon may reduce the bio-oil’s
combustibility. Ash content indicates the inorganic residues
in the bio-oil. Excessive ash can lead to combustion issues,
equipment fouling, and corrosion. Employing cleaner feed-
stocks and optimizing pyrolysis conditions can minimize the
ash content. The choice of biomass feedstock significantly
influences the ash content.

The ultimate analysis provides insights into the elemental
composition of bio-oil, which is crucial for understanding its
energy content and combustion behavior (Table 3). The
desired elemental composition involves selecting the appro-
priate biomass feedstocks and optimizing the pyrolysis
conditions. High carbon and hydrogen contents are generally
desirable for energy production.

3.2. ANNs. The ANN model was trained using Matlab
2020b and the available toolbox within the software. Multiple
data divisions were utilized in this study to obtain optimized
results. Among these divisions, it was found that the most

https://doi.org/10.1021/acsomega.4c03131
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Figure 3. Best Performance Evaluation at Epoch 7.

optimized results were achieved when 90% of the data was
used for training the ANN model. In comparison, the
remaining 10% was set aside as an unseen test data set to
evaluate the accuracy of the trained model’s predictions. The
internal data division used default values during the ANN
training process. The optimal model design had 3 neurons in
the input layer, 9 in the hidden layer, and 1 in the output layer.
Given the nonlinear nature of the data, the sigmoid function
tansig was utilized.*

R-square values indicate extremely high correlation co-
efficients for the overall training, validation, and testing sets,
ranging from 0.99978 to 0.9999, as shown in Figure 2,
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Figure 4. Error histogram of the ANN.

suggesting that the model performs exceptionally well and
exhibits strong predictive accuracy across different data sets.
The values being close to 1 indicate a nearly perfect linear
relationship between the predicted and actual values, under-
scoring the reliability and consistency of the model across
various evaluation scenarios.

The mean square error (MSE) values for the training,
validation, and testing sets are 0.079, 0.068, and 0.087,
respectively. The lower MSE values suggest that the model
accurately predicted outcomes. The reference to the root-
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Table 4. Comparison of Performance Indices for the Trained Models

ANN
performance index training testing training
MAE 0.135 0.921 0.108
RMSE 0.254 1.18S 0.282
MBE —0.007 —0.148 0.025
R-squared 0.998 0.908 0.995
MAPE 1.50% 7.50% 1.20%

SVM_Bayesian optimizer

SVM_grid search optimizer SVM_random search optimizer

testing training testing training testing
2.89 0.235 1.284 0.169 1.281
3.486 0.304 1.547 0.332 1.486
0.652 —0.017 —0.444 —0.072 —-0.328
0.122 0.994 0.905 0.994 0.894
25% 2.50% 10% 1.90% 10%

mean-square error (RMSE) emphasizes the actual error in the
data with lower RMSE values indicating better model
performance. Additionally, the paragraph mentions that the
most optimized network achieved the best validation perform-
ance with a minimum achievable MSE at epoch seven, as
depicted in Figure 3, and includes an error histogram in Figure
4 for further analysis and visualization of the model’s
performance. Overall, the combination of low MSE, high R-
squared values, and optimization efforts demonstrates the
accuracy and reliability of the trained model.

Moreover, Figure Sa,b depict plots comparing experimental
and predicted yields for the training and testing data sets. The
visual representation of the unseen test data set in the plot
reveals satisfactory predictive performance, with the predicted
and actual values closely aligning.

3.3. SVM. The current study used the Regression Learner
Application in MATLAB 2020a to train the models. A total of
61 data points were used for this purpose. The SVM model,
which can be optimized, was trained using different kernel
functions.”’ The training data set can accurately predict the
bio-oil yield at specific input variable combinations.”> The
performance of the generated model was evaluated by
minimizing the MSE. The hyperparameters were adjusted
iteratively until no further improvements could be achieved.*®
Figure 6 illustrates the process of hyperparameter adjustment
to obtain the best possible results. The hyperparameters
determined optimal for the trained model through Bayesian
optimization (C = 999.18, y = 1) and grid basis search (C =
2.1) are reported. In contrast, Figure 7 displays the
experimental versus predicted yield for the unseen test data
sets.

3.4. Predictive Performance Comparison of ANN and
SVM. The evaluation of predictive performance involved
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comparing the training data set with an unseen test data set.
This analysis utilized several statistical indices, including
RMSE, MBE, MAE, MAPE, and R-squared. RMSE provides
a measure of accuracy across the entire data set range. Due to
its squared scale, it is highly responsive to even minor
variations in model output and particularly sensitive to larger
inaccuracies at higher values.”* Table 4 presents a compre-
hensive analysis of the statistical performance indicators for
each trained model. While all the models yielded similar
outcomes, the ANN exhibited more favorable results, as
evidenced by the significantly lower values of key error metrics
such as RMSE, MBE, MAE, and MAPE in the training and
testing data sets.

3.5. Environmental Impact of Replacing Fossil Fuel
with Bio-oil. Bio-oil is a promising alternative to conventional
fossil fuels, such as coal, oil, and gas, in terms of environmental
impact and sustainability.”* The production and use of bio-oil
have several advantages over commercial fuels. Fossil fuel
extraction and refining are highly energy-intensive processes
that require large amounts of energy from nonrenewable
sources, which results in substantial greenhouse gas emissions.
Bio-oil combustion releases significantly lower amounts of
greenhouse gases than conventional fuels (Table S). This is
because bio-oil is produced from renewable biomass sources,
which absorb carbon dioxide from the atmosphere during their
growth, offsetting the emissions produced during combus-
tion.*

Bio-oil contains fewer pollutants, such as sulfur and nitrogen
oxides, than conventional fuels. This reduces harmful
particulate matter emissions and improves air quality,
particularly in urban areas where pollution is a major health
concern.”® Bio-oil is produced from renewable biomass
sources, such as agricultural and forestry residues, and is
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Figure 6. Training of SVM regression models using (a) Bayesian
optimization, (b) random search optimization, and (c) grid search
optimization.
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Figure 7. Experimental vs predicted yield using SVM for the unseen
data set.

Table S. Comparison of Bio-oil and Fossil Fuels

sr#f aspect bio-oil fossil fuels
1 greenhouse gas lower than fossil fuels high
emissions

2 air quality improved compared to

fossil fuels

cause air pollution and
health issues

3 renewable yes no
source
4 price more expensive varies depending on

market conditions
higher than bio-oil
stored easily

S energy density  lower than fossil fuels

storage requires specialized
storage

well-established
infrastructure for
transport

7  transportation it may require
modification to the

infrastructure

grown and harvested sustainably. This makes bio-oil a more
sustainable and environmentally friendly alternative to fossil
fuels, which are finite resources and require extensive
extraction and processing.”’ Bio-oil is produced locally,
reducing the need for long-distance transport and associated
emissions. This supports local economies and creates jobs in
rural areas. Bio-oil substitutes conventional fuels in various
applications, such as power generation, heating, and trans-
portation.”® It is blended with other fuels or upgraded to
higher-quality fuels like biofuels. Bio-oil offers significant
environmental and sustainability benefits compared with
commercial fuels. Therefore, it is essential to holistically
consider the environmental impacts of bio-oil production and
strive to use sustainable and environmentally friendly practices
throughout the production process. However, further research
and development are needed to improve its production
efficiency, reduce its cost, and enhance its properties to
make it a viable and competitive alternative to fossil fuel.

4. CONCLUSIONS

This study signifies a significant stride in bioenergy production
by investigating the optimization of bio-oil production from
RHA through innovative techniques such as ANN and SVM
modeling. Utilizing these advanced methods for modeling and
optimizing operational conditions has proven instrumental in
enhancing both the yield and quality of bio-oil. The predictive
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capabilities of ANN modeling have provided a streamlined
approach to optimize pyrolysis conditions efficiently. The
outcomes of this research contribute valuable insights into the
intricate relationships between process variables and bio-oil
properties and offer a systematic means of enhancing the
production process. By optimizing operational parameters, this
study advocates for the efficient conversion of RHA into bio-
oil, aligning with a broader initiative to reduce the environ-
mental impact of traditional fossil fuels. The emphasis on
advancing alternative and environmentally friendly energy
sources underscores the importance of this research in
fostering sustainable practices in the field of renewable energy
production.
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