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1  |   INTRODUCTION

Hearing loss (HL) belongs to the most common sensory disor-
ders in humans and shows a prevalence of 1–3 in 1,000 new-
borns (Vona, Nanda, Hofrichter, Shehata-Dieler, & Haaf, 2015). 
Nonsyndromic autosomal dominant hearing loss (DFNA) was 
first described in 1997 in a Caucasian family with profound 

deafness caused by a mutation in GJB2 (Kelsell et al., 1997). 
Since then, approximately 50 autosomal dominant HL genes 
have been identified, with 13 genes showing both dominant 
and recessive inheritance patterns (http://hered​itary​heari​ngloss.
org). MYO3A (OMIM #606808), a 33-exon gene on chromo-
some 10p12.1, was first associated with autosomal recessive HL 
(DFNB30) in 2002. Affected individuals from a Jewish family 
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Abstract
Background: MYO3A, encoding the myosin IIIA protein, is associated with autoso-
mal recessive and autosomal dominant nonsyndromic hearing loss. To date, only two 
missense variants located in the motor-head domain of MYO3A have been described 
in autosomal dominant families with progressive, mild-to-profound sensorineural 
hearing loss. These variants alter the ATPase activity of myosin IIIA.
Methods: Exome sequencing of a proband from a three-generation German family 
with prelingual, moderate-to-profound, high-frequency hearing loss was performed. 
Segregation analysis confirmed a dominant inheritance pattern. Regression analysis 
of mean hearing level thresholds per individual and ear was performed at high-, mid-, 
and low-frequencies.
Results: A novel heterozygous missense variant c.716T>C, p.(Leu239Pro) in the 
kinase domain of MYO3A was identified that is predicted in silico as disease causing. 
High-frequency, progressive hearing loss was identified.
Conclusion: Correlation analysis of pure-tone hearing thresholds revealed progres-
sive hearing loss, especially in the high-frequencies. In the present study, we report 
the first dominant likely pathogenic variant in MYO3A in a European family and 
further support MYO3A as an autosomal dominant hearing loss gene.
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showed bilateral, progressive, high-frequency HL beginning 
in the second decade of life caused by three different recessive 
loss-of-function variants in MYO3A (Walsh et al., 2002). Since 
then, several additional recessive loss-of-function and missense 
variants with a wide range of HL characteristics were identified 
in patients with nonsyndromic HL (Choi et al., 2013; Miyagawa, 
Naito, Nishio, Kamatani, & Usami,  2013; Qu et  al.,  2016; 
Sommen et al., 2016; Wu et al., 2015). In 2016, the inheritance 
pattern of HL due to variants in MYO3A expanded with the dis-
covery of a missense variant in an African-American family with 
progressive, postlingual childhood onset HL (Grati et al., 2016). 
Later, in 2018, two Brazilian families with late-onset nonsyn-
dromic HL were identified with the same segregating missense 
variant (Dantas et al., 2018). To date, only three autosomal dom-
inant families with mild-to-profound, progressive HL have been 
identified with two different segregating missense variants in 
MYO3A (Dantas et al., 2018; Grati et al., 2016).

In vertebrates, two different isoforms have been identified; 
the longer Myo3A isoform (209 kDa) and a shorter Myo3B 
isoform (155 kDa), that are both expressed in the retina and 
testis (Dose et  al.,  2003). The encoded myosin IIIA protein 
consists of a N-terminal kinase domain, a highly conserved 
motor-head domain, followed by three calmodulin binding 
(IQ) motifs and a C-terminal actin-binding domain (3THD-II) 
(Dose & Burnside, 2000; Salles et al., 2009). Both previously 
described dominant variants in MYO3A are located in the mo-
tor-head domain and are thought to affect the ATPase activity 
of the gene (Dantas et al., 2018; Grati et al., 2016). Expression 
is present in the retina (Dose & Burnside, 2000) and the inner 
ear of mammals (Schneider et al., 2006; Walsh et al., 2002), 
specifically at the tips of both inner and outer hair cells in all 
stereocilia rows, as well as in vestibular hair cell stereocilia in 
mice (Walsh et al., 2011). Mutant mice homozygous for a non-
sense allele, show progressive, high-frequency HL, advancing 
to all frequencies over time (Walsh et al., 2011).

We describe the first European family with dominant, mod-
erate-to-profound, high-frequency sensorineural HL with a 
novel heterozygous missense variant c.716T>C, p.(Leu239Pro) 
in MYO3A (NM_017433.4). This finding supports and consoli-
dates the association of autosomal dominant HL due to variants 
in this gene. Due to a relative lack of studies on the genetic basis 
of autosomal dominant HL and the challenging occurrence of 
a typical later age of onset, characterization of large families 
is important for unraveling the distinction between autosomal 
recessive and dominant alleles in the personalized medicine era.

2  |   METHODS

2.1  |  Ethical compliance

Written informed consent was obtained from the family and 
all procedures were approved by the Ethics Commission of 

the University of Würzburg (46/15, approval date: 31 March 
2015).

2.2  |  Clinical evaluation

We recruited the genomic DNA from a three-generation 
German family with seven affected (I.2, II.2, II.3, III.1, III.2, 
III.4, III.5) and one unaffected individual (II.1). Audiological 
testing, including pure-tone audiometry, was done for all 
affected family members and the unaffected family mem-
ber III.3 complying with guidelines described by Mazzoli 
et al. (2003).

2.3  |  Genomic analysis and 
exome sequencing

Genomic DNA from participating affected and unaffected 
individuals was extracted from whole blood. We excluded 
pathogenic variants in the most common gene, GJB2, by di-
agnostic Sanger sequencing of the index patient. Exome se-
quencing of the index patient (III.1) was performed. Exome 
library preparation was performed with the Nextera Rapid 
Capture Exome kit (Illumina) according to manufacturer's 
instructions and paired-end sequenced (2  ×  76  bp) with a 
v2 high-output reagent kit with the NextSeq500 sequencer 
(Illumina). The human reference genome GRCh37 (hg19) 
was used for data alignment.

2.4  |  Exome analysis

Single nucleotide variants (SNVs) and small indels (<15bp) 
were analyzed using GensearchNGS software (PhenoSystems 
SA) and our in-house bioinformatics pipeline. Variant filter-
ing followed an alternate allele frequency present at >20% 
and a minor allele frequency <0.01. Reads were aligned to 
hg19 using BWA (Li & Durbin, 2010) and the GATK toolkit 
according to GATK best practice (DePristo et  al.,  2011). 
Variants were filtered by quality based on the VQSLOD score 
that indicates the log odds ratio of the probability that each var-
iant is true (McKenna et al., 2010). Population-specific allele 
frequencies were assessed using gnomAD (Karczewski et al., 
2019). PolyPhen-2 (Adzhubei et  al.,  2010), MutationTaster 
(Ng & Henikoff,  2001) and SIFT (Schwarz, Cooper, 
Schuelke, & Seelow, 2014) were used to analyze the effects 
of SNVs, as well as the Deafness Variation Database (DVD) 
(Azaiez et al., 2018) and the Human Gene Mutation Database 
(HGMD) (Stenson et  al.,  2003) for variant interpretation. 
Potential splicing effects of variants were classified by in 
silico prediction tools such as SpliceSiteFinder-like (Shapiro 
& Senapathy,  1987), MaxEntScan (Yeo & Burge,  2004), 
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NNSPLICE (Reese, Eeckman, Kulp, & Haussler,  1997), 
Genesplicer (Pertea, Lin, & Salzberg,  2001), and Human 
Splicing Finder (Desmet et  al.,  2009). CNVs were investi-
gated using the eXome Hidden Markov Model (XHMM, ver-
sion 1.0) approach (Fromer & Purcell, 2014).

2.5  |  Sanger validation and 
segregation of the MYO3A c.716T>C variant

PCR amplification and Sanger sequencing of the genomic 
DNA of the index patient, as well as affected and unaffected 
family members was performed to validate the c.716T>C 
missense variant in MYO3A (NM_017433.4). Primers 
were designed with Primer3 (Untergasser et  al.,  2012) (F: 
5′-TACTAGGTGATTGCATGTGAACAG-3′, and R: 
5′-TGAAGAGCATGATGAACACTTGG-3′) and standard 
cycling conditions were used. An ABI 3130xl 16-capillary 
sequencer (Life Technologies) was used for amplicon se-
quencing and the data were analyzed with the Gensearch 4.3 
software (PhenoSystems SA).

2.6  |  Protein modeling prediction of wild 
type MYO3A

The secondary protein structure at amino acid position 239 
(Leu) of wild type MYO3A was predicted in silico with 
I-TASSER (Yang et al., 2015). C-scores ranging from −5 to 
2 indicate the confidence of the predicted models, where a 
C-score of a higher value indicates a model with a higher 
confidence.

2.7  |  Correlation analysis

We calculated the mean hearing level threshold per pa-
tient and ear at high- (4–8 kHz), mid- (1–3 kHz), and low- 
(0.125–0.5 kHz) frequencies. Pearson's correlation between 
age at audiometric examination and mean hearing level 
threshold was calculated using OriginPro 2019b (OriginLab 
Corporation) (Figure S1).

3  |   RESULTS

3.1  |  Clinical presentation of the German 
family

We present a three-generation German family with prelin-
gual, bilateral, sensorineural HL (Figure  1a). All affected 
individuals (I.2, II.2, II.3, III.1, III.2, III.4, III.5) showed 
high-frequency HL ranging from moderate to profound in 

severity (Figure 1d). Individual III.3 underwent audiometry 
and revealed normal hearing (data not shown). Our data show 
a clear correlation between the average thresholds at high- 
(4–8 kHz) and mid- (1–3 kHz) frequencies and the age at au-
diometric examination for both ears, indicating a progressive 
HL (Pearson's r: 0.62 (right ear), 0.76 (left ear) for high-fre-
quencies; 0.71 (right ear), 0.83 (left ear) for mid-frequencies) 
(Figure S1). All affected individuals use hearing aids and 
show a good hearing outcome. After clinical examination, 
additional symptoms and risk factors for hearing loss such 
as infections and trauma were excluded. Tinnitus was not re-
ported for all affected individuals.

3.2  |  Identification and analysis of a novel 
missense variant in MYO3A

The index patient (III.1) underwent exome sequencing and 
bioinformatics analysis that included 174 deafness-associ-
ated genes (Table S1) as an initial approach to screen variants 
in clinically relevant hearing loss-associated genes that was 
followed by an exome-wide analysis. A novel heterozygous 
missense variant c.716T>C, p.(Leu239Pro) in exon 8 of the 
gene MYO3A (NCBI Reference Sequence: NM_017433.4) 
was identified that was predicted in silico as disease caus-
ing and resulted in a putative pathogenic amino acid ex-
change according to several in silico tools (PolyPhen-2, 
MutationTaster, and SIFT). The variant is classified as 
“likely pathogenic” according to the ClinGen hearing loss 
working group expert specification (Oza et  al.,  2018). The 
variant affects a highly conserved nucleotide and amino acid 
(Figure 1c) that is part of the catalytic kinase domain of the 
encoded MYO3A protein. Protein modeling prediction of 
wild type MYO3A indicated an alpha-helix at amino acid 
position 239 (Leu), based on the two predicted models with 
the highest C-score (−1.82, −2.00). Segregation testing of 
the c.716T>C variant followed a dominant inheritance pat-
tern (Figure 1a,b). Bioinformatics analysis in 174 Hl genes 
excluded additional potentially disease-causing variants and 
copy number variations (CNVs) that could resolve the phe-
notype of the family. The c.716T>C variant has been submit-
ted to the Leiden Open Variation Database version 3 (LOVD 
v.3.0) under variant ID 0000660455.

4  |   DISCUSSION

MYO3A belongs to the unconventional myosins (class III) 
of the large myosin superfamily (Dose & Burnside, 2000). 
They mediate crucial cellular functions such as signal trans-
duction, cell movement, and vesicle trafficking (Mermall, 
Post, & Mooseker,  1998). Grati et al. described the first 
autosomal dominant mutation (p.(Gly488Glu), Figure  2) 
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resulting in an amino acid substitution in the motor-head 
domain that modifies the ATPase activity of MYO3A at 
the hair cell stereocilia tips. These authors also showed 
that MYO3A interacts with PCDH15 (protocadherin 15), 

a crucial component of the mechanoelectrical transduc-
tion (MET) complex (Grati et  al.,  2016). The two previ-
ously described dominant variants in an African-American 
(c.1463G>A, p.(Gly488Glu)) and two Brazilian families 

F I G U R E  1   Pedigree of the German family, segregation, and conservation of the novel missense variant, and audiograms of affected family 
members. (a) A three-generation German family with seven affected individuals are marked with black symbols and the index patient marked 
with an arrow. The two unaffected family members are marked with white symbols. Heterozygous, affected individuals with the c.716T>C, 
p.(Leu239Pro) variant are marked with “T/C”. The wild type, unaffected individual is marked with “T/T”. (b) Chromatograms showing the wild 
type Sanger sequence (wt, top) and the heterozygous sequence (het, below) of the c.716T>C variant. (c) Conservation of the amino acid position 
239 (L) and flanking regions across different species. (d) Right and left ear pure-tone audiogram thresholds (air conduction) of affected family 
members (I.2, II.2, II.3, III.1, III.2, III.4, III.5) and the age at the time of examination
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(c.2090T>G, p.(Leu697Trp)) are both located in the mo-
tor-head domain of the myosin IIIa protein (Figure 2). The 
affected individuals showed nonsyndromic, bilateral, pro-
gressive HL, ranging from mild to profound in severity. The 
age of onset varied between early childhood (postlingual) 
and an average age of onset of 30 to 32 years (Table S2) 
(Dantas et al., 2018; Grati et al., 2016). Furthermore, one 
congenital case was reported in one of the Brazilian fami-
lies (Dantas et  al.,  2018). Interestingly, there is a great 
variability regarding the age of onset and HL severity in 
families with previously described recessive variants in 
MYO3A, ranging from congenital to late-onset HL and a 
moderate-to-profound degree of severity. Additionally, 
there is no apparent clustering of recessive and dominant 
variants in a certain protein domain, such as the kinase or 
motor-head domain (Table S2).

The affected individuals in the German family we de-
scribe, all showed nonsyndromic, prelingual, progressive 
HL (Figure  1b,c), especially impacting high- (4–8  kHz) 
and mid- (1–3 kHz) frequencies (Figure S1). Progressive 
HL is observed in other autosomal dominant MYO3A fam-
ilies. As previously described, MYO3A variants that are 
implicated in an autosomal dominant inheritance con-
fer a dominant-negative effect, reducing actin protrusion 
initiation, and elongation activity of the encoded protein 
in inner ear hair cell stereocilia (Dantas et  al.,  2018). 
Dominant-negative effects are characterized by the adverse 
assembly of wild type and mutant protein subunits, pre-
venting correct protein functionality and are frequently in-
volved in various human diseases (Bergendahl et al., 2019; 

Herskowitz,  1987; Marziano, Casalotti, Portelli, Becker, 
& Forge,  2003). The c.716T>C, p.(Leu239Pro) missense 
variant in the German family is the first dominant variant 
that is located in the kinase domain of the gene (Figure 2). 
In vitro analysis suggests that a functional kinase domain 
of the MYO3A protein is important for proper regulation 
of actin dynamics and stability of actin bundles at filopo-
dial tips (Quintero et al., 2010). The heterozygous variant 
results in an amino acid exchange from leucine to proline 
that is predicted to be disease causing in silico. The ex-
change from a branch-chain leucine to a cyclic proline pos-
sibly mediates the disruption of the present alpha-helix at 
amino acid position 239 (Roy, Kucukural, & Zhang, 2010; 
Yang et  al.,  2015; Zhang,  2008) and results in a struc-
tural protein change (Bajaj et al., 2007; Cordes, Bright, & 
Sansom,  2002). Although it was not directly tested, it is 
suspected that the potentially defective MYO3A protein 
also interacts with the existing wild type protein via a dom-
inant-negative mechanism and is responsible for the HL 
phenotype in the German family.

Compared to its recessive counterpart, many dominant 
forms of HL lack in-depth clinical characterization. Clinical 
data from large families are essential to discriminate progres-
sion, which is of high interest to directing current and fu-
ture treatment modalities. Several genes, including MYO3A, 
lack substantial clinical validity through lack of replication 
evidence. Here, we describe the first European family with 
a novel dominant variant in MYO3A, thus, providing further 
evidence for the association of this gene with an autosomal 
dominant HL phenotype.

F I G U R E  2   Summary of all identified recessive and dominant HL variants in MYO3A (NM_017433.4, NP_059129.3). The encoded myosin 
IIIA protein is composed of a N-terminal catalytic kinase domain, a motor-head domain, three calmodulin binding (IQ) motifs, a C-terminal domain 
containing a N-terminal unit (3THD-I) and an actin-binding domain (3THD-II). Previously described autosomal dominant (AD) missense variants 
are shown above in black and the newly identified variant c.716T>C, p.(Leu239Pro) is marked in red. Already identified autosomal recessive (AR) 
variants are shown below
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