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Abstract. MicroRNAs are small non‑coding RNAs with 
a length of 20‑24 nucleotides. They bind to the 3'‑untrans‑
lated region of target genes to induce the degradation of 
target mRNAs or inhibit their translation. Therefore, they 
are involved in the regulation of development, apoptosis, 
proliferation, differentiation and other biological processes 
(including hormone secretion, signaling and viral infections). 
Chronic diseases in children may be difficult to treat and are 
often associated with malnutrition resulting from a poor diet. 
Consequently, further complications, disease aggravation and 
increased treatment costs impose a burden on patients and 
their families. Existing evidence suggests that microRNAs are 
involved in various chronic non‑neoplastic diseases in chil‑
dren. The present review discusses the roles of microRNAs 
in five major chronic diseases in children, namely, diabetes 
mellitus, congenital heart diseases, liver diseases, bronchial 
asthma and epilepsy, providing a theoretical basis for them to 
become therapeutic biomarkers in chronic pediatric diseases.
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1. Introduction

In the face of social‑economic development, urbanization 
and the aging population, chronic diseases are becoming 
a global public health issue that is associated with prema‑
ture death and disability (1). Chronic diseases are the 
leading cause of mortalities worldwide and have led to a 
16% increase in childhood morbidity over the past few 
decades in the USA (1). Chronic diseases in children refer 
to non‑communicable diseases that last for >3 months and 
are caused by factors associated with genetic metabolism, 
environment and an unhealthy diet. Children with chronic 
diseases undergo long‑term medical treatment and inpatient 
care, have special dietary requirements and experience 
psychological and physical changes as well as learning diffi‑
culties owing to physical unfitness and absenteeism (2). In 
the majority of cases, conventional diagnostic methods can 
detect childhood diseases at an advanced stage (3). Given 
that microRNAs regulate most biological processes, they 
may serve as efficient diagnostic and therapeutic tools for 
chronic diseases in children (4).

MicroRNAs are small non‑coding RNAs of 20‑24 nucle‑
otides in length that play an important role in regulating 
gene expression (5‑7). Each microRNA can regulate several 
target genes simultaneously. Alternatively, the combina‑
tion of multiple microRNAs can regulate the expression of 
multiple genes that of a single gene. A total of ~60% of 
human genes are regulated by microRNAs, which constitute 
2‑3% of the human genome (8). However, abnormal expres‑
sion of microRNAs in different cells or tissues has been 
associated with the pathogenesis, progression and severity 
of multiple chronic diseases, including cardiovascular, 
neurodegenerative and endocrine diseases (9‑13). Highly 
specific microRNAs found in body fluids, such as blood, 
saliva, urine and semen, may serve as important biomarkers 
and play an essential role in developing treatment strate‑
gies for various diseases (14). The present review mainly 
summarizes the role of microRNAs in chronic diseases 
in children, including diabetes mellitus, congenital heart 
disease (CHD), liver diseases, bronchial asthma and epilepsy 
(Table I) (15‑43).
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2. MicroRNA biogenesis pathway

MicroRNA biogenesis begins in the nucleus with the synthesis 
of a long hairpin structure called primary microRNA 
(Pri‑microRNA) through RNA polymerase II‑mediated 
transcription. Subsequently, a splicing complex consisting 
of Drosha and DGCR8 cleaves the Pri‑microRNA to form 
a smaller stem‑loop structure called precursor microRNA 
(Pre‑microRNA). After the Pre‑microRNA is translocated into 
the cytoplasm via Exportin 5, the RNA‑binding protein and the 
RNase III endonuclease Dicer collectively produce a mature 
double‑stranded RNA structure. Decapping enzymes separate 
the two RNA strands, resulting in the binding of the guide 
strand to Argonaute‑guided RNA‑induced silencing complex 
2. Finally, the RNA‑induced silencing complex‑microRNA 
complexes recognize specific mRNAs through sequence 
complementarity, leading to the degradation of mRNAs or the 
inhibition of translation (44‑49).

3. MicroRNAs in diabetes mellitus

Diabetes mellitus is characterized by hyperglycemia resulting 
from impaired secretion or function of insulin (50‑52). 
Prolonged hyperglycemia may cause structural and functional 
damage to the eyes, kidneys, heart, blood vessels and nervous 
system (53,54).

Studies have suggested that microRNA‑124a2 and 
microRNA‑375 regulate the generation of pancreatic β‑cells 
and are required for the normal formation of vertebrate 
islets (55,56). MicroRNA‑375 is essential for the establishment 
and maintenance of healthy pancreatic endocrine cells in mice 
postnatally (57), and its deficiency may result in pancreatic cell 
defects and chronic hyperglycemia. In addition, microRNAs 
have been reported to regulate various physiological processes 
associated with diabetes mellitus, such as insulin synthesis, 
secretion and sensitivity and energy homeostasis (8,58). 
MicroRNA‑15a reduces the levels of endogenous uncoupling 
protein‑2 to increase oxygen consumption and decrease ATP 
production, thereby resulting in the positive regulation of 
β‑cell function and insulin biosynthesis (59). Additionally, the 
microRNA‑25/NEUROD1 axis prevents insulin biosynthesis 
by regulating the transcription of cell‑specific genes (60). 
MicroRNA‑375 is specifically expressed in pancreatic islets 
and regulates the secretion of insulin from isolated pancre‑
atic cells (8). Its overexpression inhibits the translation of the 
cytoplasmic protein myotrophin to reduce insulin secretion 
by inhibiting the exocytosis of insulin granules (61). Mice 
lacking microRNA‑375 have increased blood glucose levels 
and decreased pancreatic β‑cell volume owing to impaired 
proliferation (57).

4. MicroRNAs in CHD

CHD is the most common type of birth defect in children, 
affecting 5.4‑16.1 per 1,000 live births worldwide (62). It refers 
to an anatomical developmental disorder or abnormality of the 
heart and large blood vessels that occurs during the embryonic 
stage (63). Based on the clinical presentation, CHD is classified 
as cyanotic heart disease, septal defects and left‑sided obstruc‑
tive defects (64,65). At present, diagnostic methods, such as 

ultrasound‑guided measurement of nuchal translucency, and 
biomarkers, such as β‑human chorionic gonadotropin and 
pregnancy‑associated plasma protein‑A, are used to screen for 
fetal CHD. However, false‑positive results are common owing 
to the non‑specificity of these methods (66).

Although numerous microRNAs play an important role 
in regulating cardiac function (64,67‑74), microRNA‑1 is 
most commonly associated with CHD (75). In addition 
to regulating embryonic heart development, microRNA‑1 
targets the cardiac transcription factor heart‑ and neural 
crest derivatives‑expressed protein 2, which is involved in 
cardiovascular development during the embryonic stage (76). 
In a previous study, mice with microRNA‑1 deficiency 
were revealed to have excessive proliferation of cardio‑
myocytes and defects in cardiac conduction, indicating that 
dysregulation of microRNA‑1 may contribute to CHD (77). 
Additionally, microRNAs serve as potential biomarkers in 
clinical settings owing to their stability in blood, urine and 
other biological fluids and their ability to resist degradation 
by RNA‑degrading enzymes (78). Yu et al (79) indicated that 
microRNAs in maternal serum can be used to detect fetal 
CHD. Zhu et al (80) used reverse transcription‑quantitative 
PCR followed by sequencing by oligonucleotide ligation and 
detection to demonstrate that microRNA‑19b, microRNA‑22, 
microRNA‑29c and microRNA‑375 are upregulated in fetal 
CHD.

5. MicroRNAs in liver diseases

Liver diseases in children are more complex and varied 
compared with those in adults because it is common for liver 
diseases to be underrecognized or diagnosed late in children; 
under‑diagnosis of liver disease in children is largely due to 
the absence of symptoms in most cases, especially in the early 
stages (81). As the majority of liver diseases cannot be easily 
detected because they do not present obvious symptoms until 
the late stage of the disease, most patients develop severe liver 
fibrosis or cirrhosis before diagnosis, which seriously affects 
their health (82). Biopsy is considered the gold‑standard 
method for diagnosing liver disease and fibrosis; however, it 
can lead to severe bleeding and pain owing to its invasive‑
ness (83). In addition, biopsy is limited to a small area of 
the liver and results in sampling errors, thereby leading to a 
potentially inaccurate diagnosis of heterogeneously distrib‑
uted liver diseases (84). Therefore, a non‑invasive diagnostic 
method is required for accurate and safe assessment of the 
extent of liver disease and fibrosis. MicroRNAs are involved 
in regulating several biological and pathological processes in 
hepatocytes, and their aberrant expression is associated with 
different liver pathologies. For example, the serum levels 
of miR‑138 and miR‑143 are characteristic of liver fibrosis 
in its later stages (85). In addition, the expression profile of 
microRNAs is specific to different etiologies of liver disease in 
both adults and children (86). Therefore, microRNAs may be 
used as potential biomarkers for the diagnosis of liver diseases 
in children.

Biliary atresia (BA) refers to the complete fibrous 
obstruction of a part of or entire extrahepatic bile 
ducts, and it is the most common cause of cholestasis in 
newborns (87,88). Owing to a poor prognosis, its diagnosis 
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Table I. MicroRNAs in chronic pediatric diseases.

A, Diabetes mellitus

MicroRNAs Mechanism (Refs.)

MicroRNA‑21 Increases apoptosis in β‑cells  (15)
MicroRNA‑25 Associated with residual β‑cell function and glycemic condition  (16)
MicroRNA‑375 Can be used as a biomarker of β‑cell death and diabetes  (17)
MicroRNA‑21/126/210 Indicates an early onset of diabetes‑associated diseases  (18)

B, Congenital heart disease

MicroRNAs Mechanism (Refs.)

MicroRNA‑142‑5p/1275/ Can be used as a non‑invasive biomarker (19)
4666a‑3p/3664‑3p
MicroRNA‑29/17‑92/ Disrupts target genes in cardiac development  (20)
106b‑25/503/424
MicroRNA‑21/23a/23b/24 Can be used as a biomarker of cardiac damage in pediatric patients  (21)

C, Liver diseases

MicroRNAs Mechanism (Refs.)

MicroRNA‑200b Associated with the progression of liver fibrosis  (22)
MicroRNA‑21 Promotes fibrosis through the PTEN/AKT axis in biliary atresia  (23)
MicroRNA‑29 Upregulated in experimental biliary atresia  (24)
MicroRNA‑222 Modulates liver fibrosis in biliary atresia  (25)
MicroRNA‑124/200 Promotes cholangiocyte proliferation in cholestasis  (26)
MicroRNA‑1187 Regulates hepatocyte apoptosis in acute liver failure  (27)
MicroRNA‑15b/16 Mediates hepatocyte apoptosis in acute liver failure  (28)
MicroRNA‑150/663/503 Associated with human liver regeneration  (29)
MicroRNA‑21 Regulates TGF‑β signaling and fibrogenesis in non‑alcoholic steatohepatitis  (30)
MicroRNA‑122 Influences hepatitis C viral replication  (31)

D, Bronchial asthma

MicroRNAs Mechanism (Refs.)

MicroRNA‑let7 Associated with asthma severity degree  (32)
MicroRNA‑155 Causes allergic asthma by increasing the proliferative response of T helper cells  (33)
MicroRNA‑221 Enhances interleukin‑4 secretion in mast cells  (34)
MicroRNA‑146a/b/28‑5p  Associated with severe asthma in patients  (35)
MicroRNA‑323‑3p Affects T‑cell responses in asthma  (36)
MicroRNA‑221/485‑3p Regulates the pathogenesis of asthma  (37)
MicroRNA‑1 Aids in the diagnosis of asthma exacerbation  (38)
MicroRNA‑218‑5p Serves a protective role in eosinophilic airway inflammation (39)

E, Epilepsy

MicroRNAs Mechanism (Refs.)

MicroRNA‑181a  Exerts a neuroprotective response  (40)
MicroRNA‑124/134 Serves as a potential target for anticonvulsant drugs in epileptic developing brains  (41)
MicroRNA‑21 Regulates status epilepticus  (42)
MicroRNA‑15a‑5p Inhibits hippocampal neuronal apoptosis  (43)
MicroRNA‑135a‑5p Reduces cell survival in temporal lobe epilepsy  (19)
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and treatment are challenging, with 70% of children with 
BA requiring a liver transplant for long‑term survival (89). 
Mice with biliary obstruction exhibit upregulated expres‑
sion of microRNA‑let7a‑5p (a 4‑fold increase in expression 
compared with control mice), which is associated with 
the expression of adenosine triphosphate‑binding cassette 
subfamily C member 2 (ABCC2). ABCC2 is needed for 
the biliary excretion of numerous endogenous and hetero‑
geneous compounds and promotes bile flow independently 
of bile acids (90). Upregulation of microRNA‑155 enhances 
pro‑inflammatory activity via activating JAK2/STAT3 and 
suppressing cytokine signaling 1, whereas its downregula‑
tion reduces the incidence of BA (91). A study on mouse 
models of rhesus rotavirus infection‑induced BA demon‑
strated that microRNA‑222 regulates fibrosis by targeting 
protein phosphatase 2 regulatory subunit B‑α (PPP2R2A); 
notably, microRNA‑222 inhibits PPP2R2A dephosphoryla‑
tion and promotes Akt activation (25). In addition, clinical 
trials have demonstrated that aberrant expression levels 
of microRNA‑214, microRNA‑19b, microRNA‑222 and 
microRNA‑21 are strongly associated with liver fibrosis in 
patients with BA (92‑94). Single‑nucleotide polymorphisms 
in microRNAs have been reported to affect the development 
and prognosis of various diseases. In particular, polymor‑
phisms in microRNA‑100 (rs1834306 A>G), microRNA‑499 
(rs3746444 A>G), microRNA‑492 (rs2289030 G>C) and 
microRNA‑938 (rs2505901 T>C) may contribute to BA 
susceptibility (95‑97).

A clinical trial has demonstrated that circulating levels of 
microRNAs are higher in patients with cystic fibrosis without 
liver disease (CFLD; n=30) compared with in those with liver 
disease (n=52). In addition, reverse transcription‑quantitative 
PCR has been used to test healthy children and children with 
CFLD (n=20). The results revealed that the combination of 
serum microRNA‑122, microRNA‑21 and microRNA‑25 is 
clinically relevant for the early diagnosis of CFLD, whereas 
the combination of serum microRNA‑210, microRNA‑148a 
and microRNA‑19a facilitates the early diagnosis of liver 
fibrosis non‑invasively (98).

6. MicroRNAs in bronchial asthma

Asthma is a group of chronic inflammatory diseases (99,100) 
characterized by episodes of obstructed airflow and high 
airway sensitivity. It impacts the quality of life of patients 
by affecting lung development, and it may also represent a 
life‑threatening condition (101). Although a number of factors 
may exacerbate the risk of asthma (such as exposure to air 
pollutants and dust‑mite allergen), identifying a single direct 
cause is difficult (69). However, recent studies have suggested 
that multiple microRNAs influence the pathogenesis of 
asthma (102‑104). A total of >339 million individuals have 
asthma worldwide, with the features being higher in children 
compared with in adults (105). Asthma in children is typically 
caused by environmental allergens or viral infections that lead 
to immunoglobulin E‑dependent Th2‑type allergic reactions 
involving eosinophils, mast cells, T lymphocytes, neutrophils, 
airway epithelial cells and their cellular components. These 
reactions eventually increase airway reactivity and reduce 
airflow (106).

MicroRNAs play an important role in the patho‑
genesis of asthma by regulating inf lammation. For 
example, childhood asthma has been associated with 
the downregulation of let‑7 microRNA family members 
and upregulation of microRNA‑155, microRNA‑21, 
microRNA‑146a/b, microRNA‑142‑3p, microRNA‑223 and 
microRNA‑142‑5p (107,108). Let‑7 is a highly conserved 
microRNA family that is most abundantly expressed in the 
lungs. Reduced levels of let‑7 microRNA family members 
have been reported in the ovalbumin‑sensitized mouse 
model (109). Let‑7 microRNA family members play a 
pro‑inflammatory role in asthma by inhibiting the secretion 
of interleukin‑13 (110).

MicroRNAs have been demonstrated to regulate airway 
remodeling in mouse models. Ras homolog family member A 
(RhoA) participates in airway remodeling by regulating the 
differentiation of mesenchymal stem cells. MicroRNA‑133a 
decreases the expression of RhoA, leading to the shrinkage of 
bronchial smooth muscle cells (111).

In addition, microRNAs are potential therapeutic targets 
for asthma (101). Studies have demonstrated that microRNA 
inhibitors or synthetic microRNA oligonucleotides can be used 
to inhibit upregulated microRNAs (for example, microRNA 
inhibitors or synthetic microRNA oligonucleotides can be 
used to suppress microRNA‑21, ‑106a, ‑126, ‑145, ‑155 and 
‑221 to control aberrant cytokine expression and inflamma‑
tion), and that increasing tissue‑specific microRNA expression 
using microRNA inducers may be an alternative therapeutic 
strategy for asthma (112,113).

7. MicroRNAs in epilepsy

Epilepsy is a chronic condition characterized by abnormal 
neural discharge that leads to transient malfunctions in 
the brain (114). It is associated with sudden, spontane‑
ously terminating, recurrent motor‑sensory, mental and 
consciousness disorders (115). Epilepsy is the most common 
neurological disorder in children characterized by a persis‑
tent predisposition to developing seizures (116). Medical 
advancements (such as genetic testing, electroencephalog‑
raphy and neuroimaging) have improved the diagnosis, 
treatment and quality of life of children with epilepsy (114). 
However, delayed diagnosis and treatment may affect their 
health adversely.

A study on hippocampal sections revealed that 
temporal lobe epilepsy is associated with the increased 
expression of microRNA‑135a‑5p. Similarly, the expres‑
sion of microRNA‑135a‑5p is upregulated in epileptiform 
discharges of neonatal rat hippocampal neurons. In addi‑
tion, inhibition of caspase activity and apoptosis inhibitor 1 
expression demonstrates that microRNA‑135a‑5p promotes 
apoptosis in the epileptic temporal lobe, thereby reducing 
cell survival (116).

In another study including 63 patients with temporal lobe 
epilepsy (mean age, 9.81±2.79 years), serum analysis revealed 
significantly reduced expression of microRNA‑15a‑5p. 
In addition, a primary hippocampal cell culture (without 
magnesium) from newborn rats was used to mimic temporal 
lobe epilepsy in children, and the results showed that over‑
expression of microRNA‑15a‑5p could attenuate temporal 
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lobe epilepsy‑induced reductions in cell viability, and could 
reversed the cell apoptosis induced by temporal lobe epilepsy. 
This finding indicates that microRNA‑15a‑5p may serve as a 
highly specific and sensitive biomarker for the diagnosis of 
temporal lobe epilepsy in children (43).

Previous studies have reported that microRNAs are 
involved in the pathophysiology of epilepsy and represent 
an advanced tool for developing diagnostic and therapeutic 
strategies that are more effective and less invasive compared 
with traditional clinical strategies (drug treatment and keto‑
genic diet) (117‑119). However, to the best of our knowledge, 
studies using microRNAs as diagnostic biomarkers for 
epilepsy, especially in children, are limited. An in‑depth 
understanding of the role of microRNAs in early‑stage 
epilepsy may guide the development of more rapid and accu‑
rate diagnostic strategies, as well as more effective prevention 
and therapeutic strategies for improving the quality of life of 
children with epilepsy.

8. Conclusion

The primary goal of pediatricians is to ensure the healthy 
and safe growth of children; however, children often develop 
chronic diseases, which are difficult to prevent and treat (120). 
MicroRNAs play a notable role in chronic diseases in 
children (121‑124). To develop and classify microRNAs as 
effective biomarkers, further research is warranted to gain 
an in‑depth understanding of the mechanisms and functional 
significance of various microRNAs in chronic diseases in 
children. Identification of disease‑specific microRNAs and 
their target genes may guide the development of novel thera‑
peutic strategies. Altogether, microRNAs serve as promising 

biomarkers for the diagnosis and treatment of chronic diseases 
in children (Fig. 1).

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

Not applicable.

Authors' contributions

MZ and YH reviewed the literature and wrote the manuscript. 
Both authors have read and approved the final manuscript. 
Data authentication is not applicable.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Figure 1. MicroRNAs serve roles in diabetes mellitus, congenital heart diseases, liver diseases, bronchial asthma and epilepsy in children, and therefore may 
be used as promising biomarkers for the diagnosis and treatment of chronic pediatric diseases.
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