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Abstract: Today’s genomic experiments have to process the so-called “biological big data” that is 

now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists 

may require weeks or months if they use their own workstations. Parallelism techniques and 

high-performance computing (HPC) environments can be applied for reducing the total process-

ing time and to ease the management, treatment, and analyses of this data. However, running 

bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics 

processing unit requires the expertise from scientists to integrate computational, biological, and  

mathematical techniques and technologies. Several solutions have already been proposed to 

allow scientists for processing their genomic experiments using HPC capabilities and parallelism 

techniques. This article brings a systematic review of literature that surveys the most recently 

published research involving genomics and parallel computing. Our objective is to gather the 

main characteristics, benefits, and challenges that can be considered by scientists when running 

their genomic experiments to benefit from parallelism techniques and HPC capabilities.

Keywords:  high-performance computing, genomic research, cloud computing, grid computing, 

cluster computing, parallel computing

Introduction
Bioinformatics is a multidisciplinary field that is in constant evolution due to techno-

logical advances in correlated sciences (eg, computer science, biology, mathematical, 

chemistry, and medicine).1 Thus, it requires skills from these domains of sciences for 

modeling, gathering, storing, manipulating, analyzing, and interpreting biological 

information, ie, “biological big data”.2 Since biological big data is generated by sev-

eral different bioinformatics/biological/biomedical experiments, it can be presented 

as structured or unstructured data. Due to the complexity in the nature of the biologi-

cal big data, a shift to discovery-driven data science is under way, especially in the 

genomic field.2,3

Genomic research is the most representative domain in bioinformatics, as it is the 

initial step of several types of experiments and it is also required in several other bio-

informatics fields. It compares genomic features – DNA sequences, genes, regulatory 

sequences, or other genomic structural components – of different organisms. In general, 

comparative genomics starts with the alignment of genomic orthologues sequences 

(ie, sequences that share a common ancestry) for checking the level of similarity 

(conservation) among sequences (or genomes). Then evolutionary inferences can be 

performed over these results to infer, for example, the phylogenetic relationships or 

population genetics.4 Up-to-date, comparative genomics needs to process biological 
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big data, then it expanded their experiments at large-scale 

scenarios (increasing both, the amount and complexity of 

data or tasks). For this reason, it makes extensive use of 

novel techniques, technologies, and specialized computing 

infrastructure to make possible the managing and parallel 

processing for comparing several available genomes (maybe 

hundreds or thousands of whole genomes).

Due to the increase of the number of experiments (that are 

also becoming more complex) involving genomic research 

as well as the advances of DNA sequencing technologies 

(ie, the next-generation sequencing [NGS]5 methods), the 

amount and complexity of biological data is being increased. 

It directly affects the performance of the computational 

execution of bioinformatics experiments. Due to the afore-

mentioned huge volume of produced data, it is almost impos-

sible to process all data in an ordinary desktop machine in 

standalone executions.

Scientists need to use high-performance computing 

(HPC) environments together with parallelism techniques 

to process all the produced data in a feasible time. Several 

large-scale bioinformatics projects already benefit from par-

allelism techniques in HPC infrastructures as clusters, grids, 

graphics processing units, and clouds.6–8 In this scenario, 

bioinformatics provides interesting opportunities for research 

in HPC applications for the next years. Some vast, rich, and 

complex bioinformatics areas related to genomics can also 

benefit from HPC infrastructures and parallel techniques, 

such as the NGS, proteomics, transcriptomics, metagenom-

ics, and structural bioinformatics.1

However, integrating biological and bioinformatics 

experiments with parallel techniques and HPC environments 

is far from simple. One strategy could focus on redesigning 

bioinformatics applications (eg, FASTA, BLAST, HMMER, 

ClustalW, and RAxML) to their parallel versions (using MPI 

or MPJ,9 for instance). A second strategy can be related to 

the development of pipelines for bioinformatics, which 

are mainly conceptualized to automate the process. These 

pipelines can also be represented as scientific workflows, 

managed with scientific workflow systems.10 Their execu-

tions can benefit from the use of HPC environments (eg, 

clusters, grids, or clouds). For instance, cloud computing 

is an interesting strategy emerging as a solution applied in 

several bioinformatics areas. Tavaxy,11 Pegasus,12 Swift/T,13 

and SciCumulus14 are some examples of scientific workflow 

systems that are able to manage bioinformatics experiments 

in cloud infrastructures.

The amount of published scientific articles evidences 

that the use of parallel computing in genomic research has 

emerged as a viable and interesting solution that is being 

already adopted by many projects. Several technologies, 

techniques, systems, platforms, applications, infrastruc-

tures, and standard protocols have been already proposed. 

Considering the huge interest on this area, we present in this 

article a systematic review of literature (SRL) for parallel 

computing applied to the genomic field.

The main objective of this review is to present and discuss 

about the main solutions that were implemented to achieve 

improvements in the execution times in bioinformatics 

analyses based on distributed and parallel approaches. It 

may serve as a guideline for other data analysis projects in 

bioinformatics and computer science using infrastructures 

and concepts integrating HPC, big data and in large-scale 

bioinformatics overview. The authors believe that this article 

will be useful to the scientific community in future work to 

compare different approaches that provide parallel computing 

capabilities for genomic experiments.

Systematic review of literature
The SRL is an interesting way for designing systematic 

reviews, as we are focusing at identifying, evaluating, and 

comparing available published articles associated to a par-

ticular topic area of interest for answering a specific scientific 

question.15 SRL follows a protocol that allows replicating 

studies for other researchers. As proposed by Kitchenham 

et al,15 a SRL has three main phases: i) planning, ii) conduc-

tion, and iii) analysis of results. In the planning phase, we 

must have a clear goal of our research since here is set the 

protocol that will be followed in the conduction phase.

We follow the PRISMA statement16 to develop the sys-

tematic review based on qualitative and quantitative synthe-

sis to analyze research articles of interest. PRISMA stands 

for preferred reporting items for systematic reviews and 

metaanalyses and was efficiently used for structuring our 

SRL, and define the methodological strategy followed in our 

research, particularly to sustain the evaluation and critical 

appraisal about the publications elected to be included in 

this article.

In the context of this article, we prepared two research 

questions that should be answering for concluding our 

research:

RQ1: What approaches provide HPC capabilities for genomic 

analysis?

RQ2: Which parallel techniques coupled to those approaches 

provide HPC capabilities?

Therefore, our search strategy consisted of identifying 

approaches in published articles that cover main concepts 
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(or terms) related to genomic researches, HPC, and parallel 

and distributed techniques.

Here, we define the search string (as presented in 

Figure 1) used for conducting our search strategy in existing 

electronic databases (summarized in Table 1) for the scientific 

literature search.

We used the logical operator “AND” to connect the key 

terms (ie, genomic research and HPC) and the “OR” opera-

tor to connect the possible variations derived from any key 

terms. Then, the search string defined in Figure 1 was used 

for querying a set of existing electronic databases as presented 

in Table 1. Five electronic databases were selected based on 

the following criteria: i) the publication of articles is regularly 

updated, ii) all articles are available for download and analysis, 

and iii) all articles are revised using a peer-review process.

Many of the returned articles were considered as irrelevant 

for the goals proposed in this research. So we defined two 

additional criteria (inclusion/exclusion) to include articles in 

our research. The criterion for inclusion refers to the study 

presented in the article, which must involve both genomic 

and parallel computing terms. For instance, two articles can 

present the same research, but only the latest published article 

would be considered. For excluding articles (at the exclusion 

criterion), we consider the following topics: i) articles must 

be available for reading on the Internet, ii) articles must be 

presented in electronic format, and iii) articles should be writ-

ten in English. Then, we searched the literature by applying 

these inclusion/exclusion criteria and by techniques of hand-

searching key journals, to identify the existing approaches 

to qualitative meta-synthesis.

Once our protocol was defined, we conducted the SRL 

between April and May 2015. Initially, the record or the  number 

of citations returned by searching the key terms defined in 

Figure 1 was 8,090. This number of records was reduced to 

7,900 by eliminating records that were duplicated in searching 

or, for example, those that were not written in English. We 

reduced drastically the records (from 7,900 to 329 and finally 

to 303) as we detected that many articles following the key 

terms “genomic” or “genome” were related to in vivo or in vitro 

experiment and not to in silico (bioinformatics) experiments 

(this was performed by a in house script). As we are interested 

in determining the correlation between the genomic and paral-

lel computing terms, only records for in silico (bioinformatics-

genomics) and HPC-related key terms were included in our 

analyzes. The final and refined reduction (303–30 articles) was 

done according to the exclusion criterion: 1) about the avail-

ability of articles (ie, free full-text articles were included) and 

2) the exclusion of articles that present very similar researches 

(often belonging to the same research group), in which only 

the article published in the most important journal (eg, with 

the highest impact factor) was included.

Finally, 30 articles were found in our SLR, as detailed in 

Table 2. Interestingly, we observed that those articles were 

published in the last 8 years (since 2008), and that they were 

defined in three distinct approaches of qualitative synthesis 

(Table 2, column “Type of study”): research articles, meth-

odology articles, and software articles.

In the next section, we discuss the most relevant articles 

returned by our aforementioned methodology in order to 

compare existing approaches that combine genomic and 

parallel computing researches.

Analysis of the selected articles
This section details the results (articles) of the conducted 

SRL method used to evaluate research obtained by query-

ing the electronic databases presented in Table 1. Table 2 

summarizes information about the articles returned by the 

key terms: genomics, HPC, and parallel and distributed 

computing and following authors include a discussion about 

these selected articles.

Table 2 was organized following the classification 

of articles returned by our SRL protocol based on both 

columns: “Execution main finding” and “Bioinformat-

ics field”. For “main finding”, the articles were sorted by 

three classification types of the HPC approaches used in 

(Genomic research

OR genome research) AND

(high-performance computing

OR HPC

OR parallel computing

OR cloud computing

OR grid computing

OR cluster computing)  

Figure 1 Defined search string with genomics and HPC-related key terms.
Abbreviation: HPC, high-performance computing.

Table 1 Electronic scientific databases selected as sources

Database URL

PubMed http://www.ncbi.nlm.nih.gov/pubmed
ACM Digital Library http://dl.acm.org
ieee Xplore http://ieeexplore.ieee.org/Xplore/home.jsp
Scopus http://www.scopus.com/
Google Scholar https://scholar.google.com/

Abbreviations: ACM, Association for Computing Machinery; ieee, institute of 
electrical and electronics engineers; URL, Uniform Resource Locator.
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the referred article’s methodology: SE for standalone/serial 

execution, PT for parallel techniques, and HPC for high-

performance computing techniques. On the other hand, 

“Bioinformatics Field” returned the classification of articles 

following the main bioinformatics areas explored in the 

articles: comparative genomics, phylogenomics, transcrip-

tomics, homology modeling, proteomics, and evolutionary 

genomics.

Other columns of Table 2 are the following: publication 

source, type of study, year, and research country that respec-

tively indicate the name of the journal, the type of research/

study used in articles, the year of publication and the country 

of the research. The column type of study return three clas-

sification for the published articles: MA for methodology 

article; SA: software article; RA: research article. The HPC 

infrastructure column present the environment used for the 

experiment execution in the article (ie, network PC, clus-

ters, grids, and cloud) or the workflow management system 

(if used) (eg, Hadoop, Galaxy, and SciCumulus).

Bernardes et al17 proposed an improved method for the 

construction of profiles hidden Markov models (pHMMs) 

for detecting remote (or distant) homologous sequences 

using structural alignments. Remote homologous is a type 

of sequence that presents very low level of similarity or 

identity in regions (mainly 20% of conservation in multiple 

sequence alignment, also called the “midnight zone”) and 

traditional methods of detection such as BLAST or FASTA 

are not able to detect this very low level of conservation 

within sequences (ie, in genes or genomes). One alternative 

for increasing the specificity and sensibility of detecting true 

positives of remote homologous sequences is using three-

dimensional (3D) methodologies of alignment and searching. 

Then the authors compared the performance of structural and 

sequence pHMM programs at detecting remote homologous 

sequences. Bernardes et al’s method was executed in parallel 

in an in-house cluster.

AMPHORA18 is a pipeline for phylogenomic analyses 

designed to automate sequential executions. Several of the 

most popular bioinformatics tools are available to be used 

with AMPHORA, for example, multiple sequence alignment 

(MSA) tools such as ClustalW or Muscle; orthologs  searching 

tools such as BLAST or HMMER and phylogenomic con-

struction trees with RAxML. In the article, authors show 

that AMPHORA is scalable and efficient in HPC environ-

ments by constructing a phylogenomic tree composed by 

578 bacterial species and by assigning phylotypes to 18,607 

markers of metagenomic data collected from the Sargasso 

Sea. However, as reported by the authors, the execution 

presented in the article was performed in desktop machines 

with multiple processors instead of using HPC environments 

such as grids or clusters.

Ahmed et al19 present a genomic analysis focused on 

the comparison of several assembly genome approaches in 

HPC scenarios. Nowadays, performing assembly genomes 

executions in a feasible time is an open, yet important, chal-

lenge for bioinformaticians. The reason is that the assembly 

of large size genomes is considered as a very computing 

intensive process, consuming up to weeks or months (eg, in 

eukaryotic complex genomes) of total processing time. Due 

to that, several sequential assemblers that perform execution 

in a feasible time (ie, diminishing the total execution time) 

have been proposed to assist in the process of the genome 

assembly. However, a few algorithms efficiently parallelize 

the assembly process to speed up the required processing 

time, then very little has been done to investigate how to 

use parallel algorithms and metrics of parallel computing 

paradigm of assembly genomes to ascertain their scalability 

and efficiency.

The Java-based approach names Hadoop-BAM20 aims 

at manipulating the several formats of files used in most of 

the several bioinformatics experiments (ie, NGS). Hadoop-

BAM coupled to the traditional Hadoop framework the 

well-known and popularly used applications Picard and 

SAMtool. The file formats that are supported Hadoop-BAM 

are BAM, SAM, FASTQ, FASTA, QSEQ, BCF, and VCF. 

A disadvantage of using Hadoop-BAM is that the command 

line tools, which should be friendly and understandable to 

users, are limited in scope and hard-to-use by scientists with 

no expertise in the use of Hadoop. In addition, depending 

on the version used of Hadoop, the performance of Hadoop-

BAM can be affected since Hadoop presents some limita-

tions, especially when the analysis has very short maps and 

reduces invocations.

Blom et al21 propose EDGAR, an approach for execut-

ing comparative analysis of prokaryotic genomes. EDGAR 

is designed to analyze the produced information (ie, simi-

larities or differences) obtained from genomic comparisons. 

EDGAR’s implementation is based on a three-layer archi-

tecture, the core of EDGAR is implemented in Perl, all 

data is stored in a SQLite database, and the user interface is 

 implemented using JavaScript. As input datasets, EDGAR 

needs related genomes in multi-fasta format files to be 

consumed. In addition, EDGAR needs the National Center 

for Biotechnology Information protein table and BLAST 

database to execute the genomic comparisons. EDGAR is 

also able to generate phylogenetic trees. Since this task is 
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computing intensive, EDGAR is designed to be executed in 

computing clusters. In the article, authors state that EDGAR 

was evaluated by performing an all-against-all comparison 

against ten genomes of Xanthomonas in a local cluster using 

the Sun Grid Engine. Although this approach is useful for 

several purposes, it is limited from the scalability perspective. 

Since EDGAR is designed to execute only on computing clus-

ters, it cannot benefit from other infrastructures such as grids 

or clouds, unless important adaptations are performed.

Armadillo22 is an open-source workflow system designed 

for modeling and executing phylogenomic analyses. It allows 

for scientists to develop their own application, that authors 

named as modules (considered in other articles as tasks or 

activities45) and adding them to the structure of a workflow, 

thus creating new and complex genomic analyses. Differently 

from general-purpose workflow systems such as Pegasus and 

Swift/T, Armadillo is focused on providing facilities for bio-

informaticians such as allowing them to interconnect a set of 

existing bioinformatics applications with others in a dataflow, 

thus easing the effective use of Armadillo for scientists with 

no computational expertise. The bioinformatics applications 

that are already provided by Armadillo are MSA such as 

ProbCons; searching homologous sequences using BLAST; 

testing evolutionary model search with ProtTest; building 

phylogenetic tree using the neighbor-joining algorithm with 

PHYLIP or the maximum likelihood (ML) algorithm with 

PhyML; and other evolutionary inferences with PAML. Nev-

ertheless, no information is presented about how Armadillo 

was coupled to HPC infrastructures (cloud, grid, or cluster) 

to parallelize these executions.

Severin et al23 propose eHive, a distributed system, to 

support comparative genomic analyses modeled as scientific 

workflows. The eHive system is composed of three different 

workflows that can be executed by the scientists: i) a work-

flow that executes the pairwise whole genome alignments, 

ii) a workflow that executes the multiple whole genome align-

ments, and iii) a workflow that executes the gene trees with 

protein homology inference. The eHive relies on a MySQL 

database to store all data consumed and produced by the 

dataflows. The modeled workflows can be parallelized, and 

since they consume several fasta files as input, the content of 

each file can be also processed in parallel. Authors showed 

that eHive is more efficient than the existing job scheduling 

systems, such as Portable Batch System,46 that are based 

on central job queues, which may become a bottleneck in 

some cases. Besides this performance advantage, another 

important advantage of eHive is that scientists are able to 

modify the structure of the workflow during the execution 

course of the analysis. Scientists are able to create new jobs 

during the execution (by providing more data), but they 

can also change programs that are part of the pipeline, add/

remove control rules, etc. The main drawback of eHive 

is the use of the MySQL database since MySQL presents 

severe overheads when it has several concurrent accesses. 

The eHive was evaluated using the Sun Grid Engine47 and 

Portable Batch System.

Tavaxy11 is a system for modeling and executing bioin-

formatics workflows based on the integration of the Taverna 

and Galaxy workflow systems. Tavaxy supports execution 

in a single (sequential) environment or in clouds. It offers a 

set of new features that simplify and enhance the development 

of sequence analysis applications, covering several areas of 

bioinformatics as NGS, assembly, sequence analysis, metag-

enomics, proteomics, or comparative genomics. The focus of 

Tavaxy is facilitating the efficient execution of bioinformatics 

analysis tasks on HPC infrastructures and cloud computing 

systems. Tavaxy can be downloaded or directly used as a 

service in clouds (http://www.tavaxy.org).

Bioconductor24 is a software project that integrates more 

than 1,024 software packages, 887 annotation packages, 

and 241 experimental data packages, covering the main 

areas in bioinformatics experiments. Inside the classifica-

tion of “software packages”, the “research field” shows the 

areas of bioinformatics that are covered by Bioconductor. 

They are biomedical information, cell biology, chemio-

informatics, functional genomics, genetics, lipidomics, 

metabolomics, metagenomics, pharmacogenetics, pharma-

cogenomics, proteomics, and system biology. Summarizing, 

the packages in Bioconductor follows several organization 

and scientists need to decide which area or packages can 

be adapted better to their own experiment. Bioconductor 

aims for supporting scientists at analyzing and for the bet-

ter comprehension of high-throughput data in genomics 

and molecular biology, but other areas of bioinformatics 

are also covered such as phylogeny, proteomics, NGS, 

transcriptomics, RNA-differential analyses, and several 

statistics analysis for bioinformatics. The project aims to 

enable interdisciplinary research, collaboration, and rapid 

development of scientific software. Bioconductor is based 

on the statistical programming language R and the several 

interoperable packages contributed by a large, diverse com-

munity of scientists. Packages cover a range of bioinformat-

ics and statistical applications. Bioconductor packages can 

be downloaded at http://www.bioconductor.org/ or it is also 

available as an AMI (Amazon Machine Image) and a series 

of Docker images.
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A fundamental problem in bioinformatics is genome 

assembly due its computing intensive execution requirements. 

As NGS technologies produce huge quantity of volumes 

of fragmented genome reads, large amounts of memory 

is required to assemble the complete genome efficiently. 

Kleftogiannis et al25 compare current memory-efficient tech-

niques for genome assembly with respect to quality, memory 

consumption, and execution time. Then by combining existing 

methodologies, they propose two general assembly strategies 

that can improve short-read assembly approaches and results 

in reduction of the memory footprint. They are the following: 

i) Diginorm-MSP-Assembly and ii) Zeromemory assembly. 

Finally, they implement the genome assembly experiment 

in Amazon Elastic Compute Cloud (Amazon EC2) cloud 

infrastructure and discuss about the several characteristics in 

performance of each of the assembly application used in the 

methodology of the article and the benefits of using clouds 

for parallelizing the execution.

Proteomics-related experiments are considered as high 

computational complexity tasks and the implementation 

details of the parallelized algorithms of these methods as well 

as their computational performance have not been provided. 

Enumeration of all amino acid compositions is an important 

step and computationally expensive task in several proteom-

ics workflows, including peptide mass fingerprinting, mass 

defect labeling, mass defect filtering, and de novo peptide 

sequencing. Nefedov and Sadygov26 present a parallel method 

for enumerating all amino acid compositions up to a given 

length and discuss about the computational times for their 

proposed method, which was executed on a HPC cluster 

computer. As the authors reported, this is the first detailed 

description of a computational method for a complete and 

unbiased enumeration of all theoretically possible peptides. 

They demonstrated that the parallelization of this type of 

tasks can be improved at using HPC infrastructures and may 

be significantly improved and extended to other several pro-

teomics studies. Ongoing works are related and explore the 

accuracy of protein identification in real mass spectrometry 

data. The software is available for download at https://ispace.

utmb.edu/users/rgsadygo/Proteomics/ParallelMethod.

Yabi27 is a workflow system that is focused on deploying 

scientific analyses modeled as workflows in several HPC 

resources in a transparent form. The idea behind Yabi is to 

allow for scientists to focus on science instead of manag-

ing a complex HPC environment. Yabi allows for scientists 

to model their workflow using a huge set of applications 

(including their own code) and then save the modeled 

workflow for a posteriori reuse. Although Yabi was designed 

for general-purpose usage (ie, it can be applied in a variety 

of domains), it is mostly used by the genomic community 

since its Web-based environment and drag-and-drop tools 

are almost mandatory in bioinformatics experiments. Yabi is 

able to execute genomic analyses in compute clusters, grids, 

and clouds, and it was evaluated using several bioinformatics/

biomedical experiments as cases of study, such as analyses 

from genomics, transcriptomics, and proteomics (ie, using 

their respective related programs Repeatmasker, genscan, 

MzXML2Search, Peptide Prophet, and Mascot).

The Crossbow28 tool was designed for identifying single 

nucleotide polymorphisms in whole-genome sequencing 

(WGS) data, based on the real need of predicting the occur-

rence of diseases in patients. Crossbow is specialized in 

alignment and variant-calling activities, and it is composed 

of the applications Bowtie (ie, aligner) and SOAPsnp (ie, 

genotyper), which are invoked in a coherent flow designed 

to perform several different analyses. Crossbow is based 

on Hadoop,48,49 which means it is able to execute genomic 

analyses in both clusters and clouds. However, as Crossbow 

presents limitations for large-scale WGS projects related to 

data management issues and scalability issues, Rainbow was 

proposed.29 Rainbow is an open-source, scalable, and cloud-

based system that allows for the automation of large-scale 

WGS experiments. The main advantages of Rainbow is that 

it is able to handle BAM and FASTQ file types; to split large 

sequence files and to log performance metrics related to pro-

cessing and monitoring data using multiple virtual machines 

in Amazon EC2 cloud, thus allowing for Rainbow to improve 

the performance based on past collected results.

As genomic data analysis in evolutionary biology is 

becoming so computing intensive, several techniques for 

scaling computations through parallelization of calculations 

and advanced programming techniques were discussed. 

BioNode30 shows how a bioinformatics workflow can be 

effectively modeled and executed into virtual machines in a 

virtual cluster in different cloud environments. BioNode is 

based on Debian Linux and can run both on personal comput-

ers in a local network and in the cloud. Approximately 200 

bioinformatics programs closely related to biological evolu-

tionary experiments are included. Examples of representative 

software included in BioNode are PAML, Muscle, MAFFT, 

MrBayes, and BLAST. In addition, BioNode configuration 

allows for those scripts to parallelize these aforementioned 

bioinformatics software. BioNode supports designing and 

open-sourcing virtual machine images for the community. 

BioNode can be deployed on several operating systems 

( Windows, OSX, Linux), architectures, and in the cloud.

www.dovepress.com
www.dovepress.com
www.dovepress.com
https://ispace.utmb.edu/users/rgsadygo/Proteomics/ParallelMethod
https://ispace.utmb.edu/users/rgsadygo/Proteomics/ParallelMethod


Advances and Applications in Bioinformatics and Chemistry 2015:8 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

31

Parallel computing in genomic research: advances and applications

Dong et al31 propose a prediction and analysis tool named 

ProteinSPA, which employs a specific protein structure predic-

tion workflow designed to be executed in grid environments 

that integrates several bioinformatics tools in parallel. The 

parallelism is needed since protein structure prediction is con-

sidered as a very computing intensive task. The ProteinSPA 

tool is mainly based on mpiBLAST, which allows for parallel 

execution. It can be deployed both on clusters and on grids.

Bionimbus32 is an open source and cloud-based system 

used by a variety of genomic experiments. Bionimbus is 

based on OpenStack, and it aims at creating virtual machines 

in the cloud on demand, depending on the need of the 

experiment. Bionimbus presents the portal called Tukey that 

acts as a single entry point for various resources available 

in Bionimbus. The authors used an acute myeloid leukemia-

sequencing project as case study for testing Bionimbus. 

Bionimbus provides several applications for quality control, 

alignment, variant calling, and annotation and also an infra-

structure that supports large-scale executions. For example, 

each simple input data generates BAM files with sizes ranged 

between 5 and 10 GB and the alignment step requires 

eight central processing units for approximately 12 hours. 

Bionimbus also offers a community cloud that contains a 

set of several public biological datasets, including the 1,000 

genomes biological database.

Singh et al33 present a computational infrastructure for 

grids which accelerates the execution bioinformatics experi-

ments that are computing intensive. The infrastructure is based 

on a hybrid computing model that provides two different types 

of parallelism: one that is based on volunteer computing infra-

structures (eg, peer-to-peer network) and another that uses 

graphical processing units for fast sequence alignment. The 

case of study presented in this article evaluates all-against-all 

genomic comparisons between a set of microbial organisms, 

ie, each gene from a genome is compared to all genes from 

the other genomes. Then, the phenotype–genotype explorer 

PheGee33 was used to analyze results, ie, linking the candidate 

genes supposed to be responsible for a given phenotype. The 

Smith–Waterman algorithm13 was the chosen methodology to 

perform the pairwise alignment of the gene sequences since 

it shows better sensitivity values for low-scoring alignment14 

than faster traditional algorithms such as BLAST.15

iTree34 is a pipeline for automating phylogenomic analy-

sis executions. It was designed to be executed in parallel 

in grid environments using multi-threaded programming. 

iTree addresses aims at easing the installation and setting 

up of the environment, the choice of the reference dataset, 

and other features related to the experimental processing of 

some bioinformatics algorithms and applications as MSA 

and phylogenetic tree building. Nevertheless, iTtree does not 

provide information about large-scale executions in clouds 

or in clusters.

El-Kalioby et al35 propose a software package named 

elasticHPC that aims at easing the daily duties of scientists 

that need HPC capabilities to run their experiments. The main 

idea behind elasticHPC is to provide a variety of resources 

in the cloud and in each resource, and then a set of applica-

tions would be already deployed. For example, we may find 

a virtual machine in the cloud where sequence analysis tools 

such as BLAST are already installed and ready for use. Then, 

as clouds provide the pay-as-you-go model for the execution, 

scientists will pay only for the time required for executing 

their experiments. This approach is very similar to the Cloud-

BioLinux, but the main difference is that elasticHPC allows 

for horizontal and vertical scaling of the environment, thus 

benefiting from the elasticity characteristic of clouds.

Reid et al36 propose the workflow Mercury for compara-

tive genomic analysis. Mercury is composed of the following 

main activities: 1) generation of sequence reads and base call 

confidence values from sequencing raw data; 2) processing 

and mapping reads against a reference genome with BWA, 

thus producing a BAM file; 3) merging individual BAM files 

for variant calling; 4) identifying variants with Atlas-SNP and 

Atlas-indel for producing variant files (VCF); and 5) annota-

tion of biological and functional information contained 

into the variant lists and then formatting for publication. 

Mercury can be efficiently deployed in local machines or in 

cloud environments (eg, Amazon EC2) using the DNAnexus 

platform. The main idea is that scientists are able to instan-

tiate as many virtual machines as they need to process the 

workflow in parallel.

Minevich et al37 propose CloudMap, a pipeline that aims 

at simplifying the analysis of mutant genome sequences, 

allowing scientists to identify genetic differences (or 

sequence variations) among individuals. CloudMap is com-

posed of “template” workflows and implemented using the 

Galaxy workflow management system. Then, CloudMap 

can be executed in the scientists’ desktops or in the cloud, 

specifically in the Amazon EC2 cloud. Authors demon-

strated the effectiveness of CloudMap for WGS analysis 

of  Caenorhabditis elegans and Arabidopsis genomes. 

The advantage of CloudMap basically is associated with 

its implementation in the traditional workflow systems as 

 Galaxy. Then, it benefits from the advantages provided by 

this workflow system, for example, the ability to create virtual 

machines in the cloud providing parallelism and distribution 
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of executions.  However, Galaxy presents a limited scalability 

in comparison with other workflow systems such as Swift/T 

or Pegasus.

Wall et al proposed the pipeline Roundup6 that is mod-

eled and implemented on top of the Hadoop framework48 and 

designed to be deployed in Amazon EC2 clouds. Roundup 

improves the parallelism of the comparative genomic 

algorithm called reciprocal smallest distance. Roundup 

orchestrates the execution of programs and packages that 

aim at comparing whole genomes and reconstructing the 

evolutionary relationships. Roundup uses BLAST for all-in-

all comparisons, ClustalW for constructing MSA, PAML for 

the ML estimation of the of evolutionary distance and Python 

scripts that intermediate several processes, for example, for-

mat conversion, etc. The main idea behind this article is to 

show how cloud computing can be more interesting from the 

economic perspective than local computing infrastructures 

such as clusters or grids. The authors showed that although 

clouds present several disadvantages as pointed by Armbrust 

et al,7 they represent an interesting alternative to providing 

parallel capabilities for comparative genomic experiments. 

The use of Hadoop by the authors is the main advantage and 

disadvantage of the approach at the same time. The advan-

tage is that scientists did not require designing solutions for 

scheduling, fault-tolerance, etc. However, as stated by Ding 

et al,50 Hadoop presents severe overheads, mainly when the 

experiment presents short tasks.

Krampis et al38 propose the use of virtual machines on 

cloud infrastructures as an alternative to in-house architec-

tures, ie, small clusters. The proposed approach CloudBio-

Linux38 offers an analysis framework for executing genomic 

experiments in cloud computing platforms. The idea behind 

CloudBioLinux is not to propose an experiment for genomic 

analysis. Instead, it provides the necessary infrastructure 

for scientists to run their experiments. The virtual machine 

image created for CloudBioLinux contains a set of bioin-

formatics applications (more than 135) for constructing 

MSA, clustering, assembly, display and editing, and phy-

logenetic analyzes. CloudBioLinux was initially designed 

to run in the Amazon EC2, but authors have already tested 

it on a private Eucalyptus cloud installed at their research 

center. Scientists are allowed for accessing a huge variety 

of  computational resources to execute their analysis sequen-

tially or in parallel.

Finally, we presented a set of bioinformatics scientific 

workflows proposed by our research group build on top of the 

scientific workflow management system SciCumulus14 and 

deployed on the Amazon EC2 cloud. The main goal covered 

by these workflows is to allow scientists to design/execute 

their bioinformatics experiments in clouds, also analyzing 

the provenance data (at runtime) by querying the prov-

enance database of SciCumulus. The scientific workflows 

are SciHmm, SciPhy, SciPhylomics, SciEvol, SciDock, 

and SciSamma, which will be presented in more details as 

follows.

SciHmm39 is a scientific workflow for comparative genom-

ics build on top of SciCumulus scientific workflow engine 

and deployed on Amazon EC2 cloud. It aims at identifying 

homologous sequences by constructing/applying pHMMs 

using the HMMER package. Therefore, it is possible to obtain 

some interesting parameters and bioinformatics informa-

tion that can be further used in a posteriori phylogenetic/

evolutionary experiments, as the best MSA method (based 

on the quality of the MSA or trees obtained and the com-

putational time required) and the e-value. SciHmm is com-

posed of five main activities: i) MSA construction (using 

MAFFT), ii) pHMM build (using HMMER-hmmbuild), 

iii) pHMM search (using HMMER-hmmsearch), iv) cross-

validation procedure that uses a leave-one-multifasta-out 

algorithm (using Perl scripts), and v) Receiver-Operating 

Characteristic curves generation (using Perl scripts).

SciPhy40 is a scientif ic workflow for phylogenetic 

analyses. It aims at constructing ML phylogenetic trees using 

the RAxML program. SciPhy is composed of four activities: 

i) MSA construction (using MAFFT), ii) MSA format con-

version (using ReadSeq), iii) search for the best evolutionary 

model (using ModelGenerator), and iv) phylogenetic trees 

build (using RAxML).

SciPhylomics41 is a scientific workflow for phylogenomic 

analyses. It aims at constructing ML phylogenomic trees 

using the RAxML program. SciPhylomics is composed 

of nine activities: the first four activities belong to SciPhy 

and the following are specific from SciPhylomics. Thus, 

we considered SciPhy as the SciPhylomics’ sub-workflow. 

After the execution of the SciPhy sub-workflow and with 

the phylogenetic trees in hand, the following activities are 

executed: v) the data quality analysis that filters results based 

on the given quality criteria informed by scientists, vi) the 

MSA concatenation that generates superalignments (using 

Perl scripts), vii) the evolutionary model election (using Perl 

scripts), viii) the phylogenomic trees construction (using 

RAxML), and ix) the phylogenomic tree election (using Perl 

scripts). At the end of the execution, one or more phylogenetic 

and phylogenomic trees are generated.
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SciEvol42 is a scientific workflow for molecular evolution-

ary analyses build on top of SciCumulus and deployed on 

Amazon Web Services. It aims at detecting positive Darwin-

ian selection on genomic data, ie, determining the selective 

pressure (positive, negative, or neutral) is being exerted in 

biological sequences. SciEvol is composed of eleven activi-

ties: i) fasta file preprocessing for stop codons removal (using 

Perl scripts); ii) MSA construction (using MAFFT); iii) MSA 

format conversion to the PHYLIP format (using ReadSeq); 

iv) phylogenetic tree construction (using RAxML); v–x) 

evolutionary analysis execution that executes six codon sub-

stitution models (using codeml for M0, M1, M2, M3, M7, 

M8), and xi) evolutionary data analysis (using Perl scripts) 

that applies the likelihood ratio test on nested models (M0 vs 

M3; M1 vs M2; M7 vs M8) and reports statistical results.

SciDock43 is a scientific workflow for molecular docking-

based virtual screening analyses build on top of SciCumulus 

and deployed on Amazon Web Services. It executes/manages 

molecular docking data-intensive experiments for discover-

ing novel drug targets using AutoDock and Auto Dock Vina, 

as they are the most popular and frequently used tools for 

docking.  SciDock is composed by eight activities: i) ligand 

transformation from SDF to Sybyl Mol2 (using Babel); 

ii) ligand preparation (using MGLTools); iii) receptor 

preparation (using MGLTools); iv) AutoGrid’s parameter 

preparation (using MGLTools); v) receptor’s coordinates 

map generation (using AutoGrid), vi) docking filter (Perl 

scripts), vii) docking parameter preparation (using MGL-

Tools), and viii) docking execution (using AutoDock or 

AutoDock Vina).

SciSamma44 is a scientif ic workflow for structural 

approach and molecular modeling analyses (ie, homology 

modeling analyses) build on top of SciCumulus and deployed 

on Amazon Web Services. It aims at predicting 3D models 

from a biological sequence in order to discover new drugs. 

SciSamma is composed of eight activities: i) homologous 

detection (using BLAST), ii) template election (using Perl 

Script) that extracts important information from the protein 

data bank file, iii) alignment construction (using MAFFT) 

that aligns the target sequence with the template, iv) model 

building (using MODELLER) that build the target sequence’ 

3D-model based on the template structure/alignment, v) best 

model selection (using Perl script) that elects the best 

 protein data bank model with the lowest value of the DOPE 

assessment score, vi) model refining (using MODELLER), 

vii) model prediction (using MODELLER), and vii) model 

evaluation (using MODELLER).

Analyzing the presented articles and researches, we 

can state that the association of genomic research and 

parallel computing is a fertile field. Different genomic 

 applications of different genomic fields are applied in 

 different HPC environments. To summarize the presented 

approaches, Table 2 shows the main characteristics of each 

of the aforementioned articles.

Discussion
This article focuses on presenting the characteristics of the 

existing approaches that focuses on comparative genomic 

techniques that are supported by parallel computing and HPC 

environments. The increase in genomic research projects is 

a direct result of advances of DNA sequencing technologies 

(eg, NGS). Likewise, the amount and complexity of biologi-

cal data is continuously increasing, fostering the use of HPC 

and their parallel capabilities that are now mandatory to pro-

cess this data in a feasible time. Bioinformatics fields such 

as genomics, proteomics, transcriptomics, metagenomics, or 

structural bioinformatics can be supported by HPC experts 

using well-known technologies and infrastructures already 

applied in other domains of science such as engineering and 

astronomy.

Having outlined the range of research articles identified 

belonging to the areas of genomics and HPC parallel and 

distributed techniques, we now focus on analyzing how 

we can classify, characterize, and compare one research to 

another since they come from many different science areas. 

The first point is to turn articles that join the multidisciplinary 

sciences, electing those articles that reflect the connection 

between these sciences based on the knowledge and expertise 

of the reviewers who analyze the articles. Second, it is needed 

to analytically understand about the details of the research, 

for instance, how the genomic research was covered? ie, 

as a research article or a methodological research? or if the 

experiment focus on in vivo, in vitro, or in silico genomic 

experiments since we are interested only by the in silico 

(bioinformatics) one. What is the bioinformatics methodol-

ogy implemented in the article? and what about the HPC 

environment used as computational infrastructure?

In terms of quality assessment, it might be important to 

consider the research context in which these various articles 

were developed. We extracted all the articles that involve 

two main key terms: genomics (for bioinformatics) and 

parallel/distributed computing in HPC environments (for 

computational science) but other are emerged concepts can 

be explored as we did in the present study.
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Conclusion
A broad range of well-known bioinformatics applications 

are discussed in the surveyed publications covered in this 

article (as summarized in Table 2) following the two proposed 

questions (RQ1 and RQ2). We present the relevant publica-

tions that show the use and benefit of using parallel computing 

techniques coupled with genomic applications with the goal 

of improving the performance in large-scale comparative 

genomic executions. Current parallel computing techniques 

and technologies including clusters, grids, and compute clouds 

are used in several different scenarios of genomics research.

This article enables readers to access a set of articles 

involving complex bioinformatics applications and experi-

ments with larger/richer datasets executed benefits from 

powerful parallel computing approaches. By associating 

both bioinformatics and parallel computing fields, scientists 

are able to conduct relevant advances in several application 

sciences by deciphering the biological information contained 

in genomes, better understanding about complex genetic 

diseases, designing customized and personal-directed drug 

therapies, and understanding the evolutionary history of 

genes and genomes. The authors believe this article will be 

useful to the scientific community for developing or future 

works to evaluate and compare different genomic approaches 

that benefit from parallel computing. We believe that fol-

lowing the classifying approaches presented in this article, 

specialists may consider which approaches meet their needs. 

New solutions for parallel computing in genomics are avail-

able, many others are under development, which makes the 

field very fertile and hard to be understood and classified.

Acknowledgments
The authors would like to thank National Council of 

Technological and Scientific Development (CNPq) (grant 

478878/2013-3) and FAPERJ (grant E-26/111.370/2013) 

for partially sponsoring this research.

Author contributions
All authors contributed toward data analysis, drafting and 

revising the paper and agree to be accountable for all aspects 

of the work.

Disclosure
The authors report no conflicts of interest in this work.

References
 1. Pevsner J. Bioinformatics and Functional Genomics. Hoboken, NJ: 

John Wiley & Sons, Inc.; 2009.

 2. Dai L, Gao X, Guo Y, Xiao J, Zhang Z. Bioinformatics clouds for big 
data manipulation. Biol Direct. 2012;7(1):43.

 3. Marx V. Biology: the big challenges of big data. Nature. 2013; 
498(7453):255–260.

 4. Miller W, Makova KD, Nekrutenko A, Hardison RC. Comparative 
 genomics. Annu Rev Genomics Hum Genet. 2004;5(1):15–56.

 5. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The 
next-generation sequencing revolution and its impact on genomics. 
Cell. 2013;155(1):27–38.

 6. Wall DP, Kudtarkar P, Fusaro VA, Pivovarov R, Patil P, Tonellato PJ. 
Cloud computing for comparative genomics. BMC Bioinformatics. 
2010;11(1):259.

 7. Armbrust M, Fox A, Griffith R, et al. A view of cloud computing. 
Commun ACM. 2010;53(4):50–58.

 8. Buyya R, Broberg J, Goscinski AM. Cloud Computing: Principles and 
Paradigms. 1st ed. Wiley, New Jersey, NJ; 2011.

 9. Carpenter B, Getov V, Judd G, Skjellum A, Fox G. MPJ: MPI-like mes-
sage passing for Java. Concurr Comput. 2000;12(11):1019–1038.

 10. Ailamaki A, Ioannidis YE, and Livny M. Scientific workflow manage-
ment by database management. In: Proceedings of the Tenth International 
Conference on Scientific and Statistical Database Management, Capri, 
Italy, 1998. Washington, DC: IEEE Computer Society; 1998: 190–199.

 11. Abouelhoda M, Issa S, Ghanem M. Tavaxy: integrating Taverna and 
Galaxy workflows with cloud computing support. BMC Bioinformatics. 
2012;13:77.

 12. Lee K, Paton NW, Sakellariou R, Deelman E, Fernandes AAA,  
Mehta G. Adaptive workflow processing and execution in Pegasus. In: 
Proceedings of the 3rd International Conference on Grid and Pervasive 
Computing, Kunming, China, 2008. Washington, DC: IEEE Computer 
Society; 1998:99–106.

 13. Wozniak JM, Armstrong TG, Wilde M, Katz DS, Lusk E, Foster IT. 
Swift/T: large-scale application composition via distributed-memory 
dataflow processing. In: Proceedings of the 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid). 
Washington, DC: IEEE Computer Society; 2013:95–102.

 14. Oliveira D, Ogasawara E, Baião F, Mattoso M. SciCumulus: a lightweight 
cloud middleware to explore many task computing paradigm in scientific 
workflows. In: Proceedings of the 3rd International Conference on Cloud 
Computing. Washington, DC: IEEE Computer Society; 2010:378–385.

 15. Kitchenham B, Brereton P, Turner M, et al. The impact of limited search 
procedures for systematic literature reviews: a participant-observer 
case study. In: Proceedings of the 2009 3rd International Symposium 
on Empirical Software Engineering and Measurement, Lake Buena 
Vista, FL, USA, 15–16 October 2009. Washington, DC: IEEE Computer 
Society; 2009:336–345.

 16. Urrútia G, Bonfill X. Declaración PRISMA: una propuesta para mejorar 
la publicación de revisiones sistemáticas y metaanálisis. Med Clín. 
2010;135(11):507–511.

 17. Bernardes JS, Dávila AM, Costa VS, Zaverucha G. Improving model 
construction of profile HMMs for remote homology detection through 
structural alignment. BMC Bioinformatics. 2007;8(1):435.

 18. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal seque-
nces with AMPHORA2. Bioinformatics. 2012;28(7):1033–1034.

 19. Ahmed M, Ahmad I, Khan SU. A comparative analysis of parallel comput-
ing approaches for genome assembly. Interdiscip Sci. 2011;3(1):57–63.

 20. Niemenmaa M, Kallio A, Schumacher A, Klemela P, Korpelainen E,  
Heljanko K. Hadoop-BAM: directly manipulating next generation 
sequencing data in the cloud. Bioinformatics. 2012;28(6):876–877.

 21. Blom J, Albaum SP, Doppmeier D, et al. EDGAR: a software frame-
work for the comparative analysis of prokaryotic genomes. BMC 
Bioinformatics. 2009;10(1):154.

 22. Lord E, Leclercq M, Boc A, Diallo AB, Makarenkov V. Armadillo 1.1: an 
original workflow platform for designing and conducting phylogenetic 
analysis and simulations. PLoS One. 2012;7(1):e29903.

 23. Severin J, Beal K, Vilella AJ, et al. eHive: an artificial intelligence 
workflow system for genomic analysis. BMC Bioinformatics. 2010; 
11(1):240.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/advances-and-applications-in-bioinformatics-and-chemistry-journal

Advances and Applications in Bioinformatics and Chemistry is an inter-
national, peer-reviewed open-access journal that publishes articles in the 
following fields: Computational biomodeling; Bioinformatics; Compu-
tational genomics; Molecular modeling; Protein structure modeling and 
structural genomics; Systems Biology; Computational Biochemistry; 

Computational Biophysics; Chemoinformatics and Drug Design; In silico 
ADME/Tox prediction. The manuscript management system is completely 
online and includes a very quick and fair peer-review system, which is 
all easy to use. Visit http://www.dovepress.com/testimonials.php to read 
real quotes from published authors.

Advances and Applications in Bioinformatics and Chemistry 2015:8 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

35

Parallel computing in genomic research: advances and applications

 24. Huber W, Carey VJ, Gentleman R, et al. Orchestrating high-
throughput genomic analysis with Bioconductor. Nat Methods. 2015; 
12(2):115–121.

 25. Kleftogiannis D, Kalnis P, Bajic VB. Comparing memory-efficient 
genome assemblers on stand-alone and cloud infrastructures. PLoS 
One. 2013;8(9):e75505.

 26. Nefedov AV, Sadygov RG. A parallel method for enumerating amino 
acid compositions and masses of all theoretical peptides. BMC 
Bioinformatics. 2011;12(1):432.

 27. Hunter AA, Macgregor AB, Szabo TO, Wellington CA, Bellgard MI. 
Yabi: an online research environment for grid, high performance and 
cloud computing. Source Code Biol Med. 2012;7(1):1.

 28. Gurtowski J, Schatz MC, Langmead B. Genotyping in the cloud with 
crossbow. In Baxevanis AD, Petsko GA, Stein LD, Stormo GD, editors. 
Current Protocols in Bioinformatics. Hoboken, NJ: John Wiley & Sons, 
Inc.; 2012.

 29. Zhao S, Prenger K, Smith L, et al. Rainbow: a tool for large-scale 
whole-genome sequencing data analysis using cloud computing. BMC 
Genomics. 2013;14:425.

 30. Prins P, Belhachemi D, Möller S, Smant G. Scalable computing for 
evolutionary genomics. Methods Mol Biol. 2012;856:529–545.

 31. Dong S, Liu P, Cao Y, Du Z. Grid computing methodology for protein 
structure prediction and analysis. In: Chen G, Pan Y, Guo M, Lu J, 
editors. Parallel and Distributed Processing and Applications – ISPA 
2005 Workshops. Berlin: Springer; 2005:257–266.

 32. Heath AP, Greenway M, Powell R, et al. Bionimbus: a cloud for manag-
ing, analyzing and sharing large genomics datasets. J Am Med Inform 
Assoc. 2014;21(6):969–975.

 33. Singh A, Chen C, Liu W, Mitchell W, Schmidt B. A hybrid computational 
grid architecture for comparative genomics. IEEE Trans Inf Technol 
Biomed. 2008;12(2):218–225.

 34. Moustafa A, Bhattacharya D, Allen AE. iTree: a high-throughput phy-
logenomic pipeline. In: 5th Cairo International Biomedical Engineering 
Conference (CIBEC), Cairo, Egypt, 16 December 2010. Washington, DC:  
IEEE Computer Society; 2010:103–107.

 35. El-Kalioby M, Abouelhoda M, Krüger J, et al. Personalized cloud-based 
bioinformatics services for research and education: use cases and the 
elasticHPC package. BMC Bioinformatics. 2012;13(Suppl 17):S22.

 36. Reid JG, Carroll A, Veeraraghavan N, et al. Launching genomics into 
the cloud: deployment of Mercury, a next generation sequence analysis 
pipeline. BMC Bioinformatics. 2014;15(1):30.

 37. Minevich G, Park DS, Blankenberg D, Poole RJ, Hobert O. CloudMap: 
a cloud-based pipeline for analysis of mutant genome sequences. 
Genetics. 2012;192(4):1249–1269.

 38. Krampis K, Booth T, Chapman B, et al. Cloud BioLinux: pre-configured 
and on-demand bioinformatics computing for the genomics community. 
BMC Bioinformatics. 2012;13(1):42.

 39. Ocaña KACS, de Oliveira D, Dias J, Ogasawara E, Mattoso M. 
Designing a parallel cloud based comparative genomics workflow to 
improve phylogenetic analyses. Future Gener Comput Syst. 2013;29(8): 
2205–2219.

 40. Ocaña KACS, de Oliveira D, Ogasawara E, Dávila AMR, Lima AAB, 
Mattoso M. SciPhy: a cloud-based workflow for phylogenetic analysis of 
drug targets in protozoan genomes. In: de Souza ON, Telles GP, Palakal M,  
editors. Advances in Bioinformatics and Computational Biology. Berlin: 
Springer; 2011:66–70.

 41. Oliveira D, Ocaña KACS, Ogasawara E, et al. Performance evalua-
tion of parallel strategies in public clouds: a study with phylogenomic 
workflows. Future Gener Comput Syst. 2013;29(7):1816–1825.

 42. Ocaña KACS, de Oliveira D, Horta F, Dias J, Ogasawara E, Mattoso M.  
Exploring molecular evolution reconstruction using a parallel cloud 
based scientific workflow. In: de Souto MC, Kann MG, editors. 
Advances in Bioinformatics and Computational Biology. Berlin: 
Springer; 2012:179–191.

 43. Ocaña K, Benza S, Oliveira D, Dias J, Mattoso M. Exploring large scale 
receptor-ligand pairs in molecular docking workflows in HPC clouds. In: 
IEEE 28th International Parallel and Distributed Processing Symposium 
Workshops. 13th IEEE International Workshop on High Performance 
Computational Biology (HiComb 2014), Phoenix, AZ, USA, 19–23 May 
2014. Washington, DC: IEEE Computer Society; 2014:536–545.

 44. Ocaña KACS, Oliveira D, Silva V, Benza S, Mattoso MLQ. Exploiting 
the parallel execution of homology workflow alternatives in HPC 
compute clouds. In: Toumani F, Pernici, B, Grigori, D, et al, editors. 
Service-Oriented Computing – ICSOC 2014 Workshops. Berlin: 
Springer; 2014:336–350.

 45. Deelman E, Gannon D, Shields M, Taylor I. Workflows and e-Science: 
an overview of workflow system features and capabilities. Future Gener 
Comput Syst. 2009;25(5):528–540.

 46. Bayucan A, Henderson RL, Jones JP. Portable Batch System Admin-
istration Guide. Mountain View, CA: Veridian Systems; 2000.

 47. Gentzsch W. Sun Grid Engine: towards creating a compute power grid. 
In: Proceedings of First IEEE/ACM International Symposium on Cluster 
Computing and the Grid, Brisbane, QLD, 15–18 May 2001. Washington, 
DC: IEEE Computer Society; 2001:35–36.

 48. Apache Software Foundation. Hadoop. Forest Hill, MD: Apache Soft-
ware Foundation; 2009.

 49. Dean J, Ghemawat S. MapReduce: simplified data processing on large 
clusters. In: Proceedings of the 6th Conference on Symposium on Ope-
arting Systems Design and Implementation, volume 6. Berkeley, CA:  
USENIX Association; 2004:10–10.

 50. Ding M, Zheng L, Lu Y, Li L, Guo S, Guo M. More convenient more 
overhead: the performance evaluation of Hadoop streaming. In: 
Proceedings of the 2011 ACM Symposium on Research in Applied 
Computation. New York, NY: ACM; 2011:307–313.

http://www.dovepress.com/advances-and-applications-in-bioinformatics-and-chemistry-journal
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


