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Abstract
In the field of computational epilepsy, neural field models helped to understand some large-scale features of seizure dynam-
ics. These insights however remain on general levels, without translation to the clinical settings via personalization of the 
model with the patient-specific structure. In particular, a link was suggested between epileptic seizures spreading across the 
cortical surface and the so-called theta-alpha activity (TAA) pattern seen on intracranial electrographic signals, yet this link 
was not demonstrated on a patient-specific level. Here we present a single patient computational study linking the seizure 
spreading across the patient-specific cortical surface with a specific instance of the TAA pattern recorded in the patient. 
Using the realistic geometry of the cortical surface we perform the simulations of seizure dynamics in The Virtual Brain 
platform, and we show that the simulated electrographic signals qualitatively agree with the recorded signals. Furthermore, 
the comparison with the simulations performed on surrogate surfaces reveals that the best quantitative fit is obtained for the 
real surface. The work illustrates how the patient-specific cortical geometry can be utilized in The Virtual Brain for person-
alized model building, and the importance of such approach.

Keywords Epilepsy · Seizure propagation · Computational modeling

1 Introduction

In the field of epilepsy, computational modeling is used 
to both understand the general principles of seizure initia-
tion, progression, and termination, as well as to analyze and 
interpret the clinical data for individual patients. These can 
include non-invasive imaging revealing the geometry and 
connectivity of the patient’s brain as well as invasive intrac-
ranial EEG recordings, both ictal and interictal. Recent stud-
ies indicate that some features of the large-scale organiza-
tion of epileptic seizures may be better understood through 

investigation of the phenomena acting on smaller scales 
than the coarse parcellation of the brain into tens of dis-
crete brain regions which is often employed in whole-brain 
models of epilepsy (Taylor et al., 2014; Jirsa et al., 2017). 
As two examples, Proix et al. (2018) introduced a neural 
field model of epilepsy dynamics that gives rise to the slow 
propagation of the ictal wavefront, fast propagating waves 
in recruited regions, and clustered synchronous termination 
of the seizures. Sip et al. (2021b) suggested a link between 
the slow seizure propagation across the cortex with the so-
called theta-alpha activity onset pattern visible on intracra-
nial EEG signals. Such phenomena are strongly linked to 
the continuous nature of the underlying substrate and cannot 
be captured with the network-based models which lack the 
spatial component.

In the recent years, more research aims to personalize 
the large-scale network models in order to provide insight 
or predictions at individual level. This personalization can 
take many forms, such as using the patient-specific structural 
connectome derived from diffusion-weighted imaging (Jirsa 
et al., 2017), using the functional connectome obtained from 
intracranial recordings (Goodfellow et al., 2016; Sinha et al., 
2017), or estimating the model parameters from recorded 
seizures (Hashemi et al., 2020). However, exploiting the 
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individual data in the models operating at smaller scales to 
gain clinically relevant insight is rare, as they tend to explore 
general phenomena of epileptic seizures and not their spe-
cific instances.

In this work we demonstrate how such personalization 
of a neural field model can be performed using The Virtual 
Brain (TVB) platform (Sanz Leon et al., 2013). TVB is a 
simulator of brain dynamics, easily allowing to integrate 
patient-specific structural data. It supports both network 
based modeling, where the brain is represented as a set of 
connected nodes, as well as surface based modeling, where 
the cortex is represented as a triangulated surface, and the 
nodes on the surface are connected to each other both locally 
and through long-range connections. In the context of epi-
lepsy, however, only the former approach was utilized so far 
(Jirsa et al., 2017).

We present a single-patient study that in TVB links the 
patient-specific cortical surface with the patient-specific 
stereo-electroencephalographic (SEEG) recording of an 
epileptic seizure. Specifically we investigate the theta-alpha 
activity pattern (TAA, Fig. 1), characterized by sustained 
oscillations in the � − � range with gradually increas-
ing amplitude (Alarcon et al., 1995; Perucca et al., 2014; 
Lagarde et al., 2016). The pattern was reported to occur in 
6-23% patients (Singh et al., 2015) and it was identified as 
the most common pattern in the areas of seizure propagation 
(Perucca et al., 2014). In the previous work we suggested 
that the pattern is caused by spreading seizures across the 
cortical surface (Sip et al., 2021b, Fig. 2A). Crucial to our 
presented perspective is the distinction between the source 
(i.e. the gray matter tissue) and sensor (i.e. SEEG) spaces 

and the link between them, defined by the sensor-to-source 
projection. We hypothesize that seizure spread along the 
folded cortical surface may mimick dynamic spatiotemporal 
characteristics of seizure classes in sensor space that are not 
present in source space and thus lead to misinterpretation of 
the spatiotemporal organization of the seizure.

To illustrate this point, we demonstrate that this scenario is 
plausible on the spatial and temporal scales relevant to epilep-
tic seizures in human brain by means of numerical simulation 
(Fig. 2B). We select a single epileptic patient for whom the 
TAA pattern was observed and extract a patch of the corti-
cal surface around the electrode where it was seen. We then 
simulate the seizure spread on this surface using TVB. As a 
mathematical model we use the Epileptor (Jirsa et al., 2014), 
a phenomenological model of seizure dynamics, in its field 
formulation (Proix et al., 2018). We then compute the forward 
solution from source to sensor space and examine whether the 
features of the electrographic pattern on the simulated SEEG 
are qualitatively consistent with the real SEEG recordings for 
the specific patient. Furthermore, we perform the simulations 
also on surrogate surfaces to demonstrate that the best quanti-
tative fit is obtained for patient-specific surface.

2  Methods

2.1  Patient data

From the cohort of 15 epileptic patient in the previous study 
(Proix et al., 2017), we selected a single patient and a single 
electrode with the clearest TAA pattern present on more than 

Fig. 1  TAA pattern recorded in a patient with temporal lobe epilepsy. 
A Stereo-electroencephalographic (SEEG) traces of the recorded 
seizure in bipolar representation. B Detail of the seizure onset, 
delimited by the gray lines in A. The onset of ictal activity is first 
recorded on B3-2 (in green) located in the right hippocampus. The 
seizure then spreads to the TB contacts (in blue) located in the right 
temporal lobe. There the onset shows the distinguishing features of 
the TAA pattern: oscillating activity with frequency of 8 Hz and 

slowly increasing amplitude. It is worth noting that at the time of the 
initial oscillations in the right hippocampus (8 - 18 s), some oscilla-
tory activity appears also on the mesial contacts of TB electrode, but 
soon disappears. We assume that this initial activity visible on TB 
electrode is due to the volume conduction from the hippocampus, 
and does not reflect the source activity close to the TB contacts (see 
Fig. S1 for details), and we exclude this initial period from the analy-
sis presented later
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eight contacts of the electrode. Other patients were not ana-
lyzed using the methodology presented here, although they 
were included in the related group study using a simplified 
model of seizure propagation (Sip et al., 2021b).

The selected patient was a 29-year-old male with tempo-
ral lobe epilepsy. The patient underwent standard clinical 
evaluation, described in detail before (Proix et al., 2017). 
The clinical hypothesis based on non-invasive data (semiol-
ogy, scalp video-EEG, MRI, FDG-PET) was MRI-negative, 
right temporal lobe epilepsy with possible involvement of 
the temporo-occipital basal and posterior regions. The role of 
contra-lateral temporo-occipital regions was also questioned. 
The patient was bilaterally implanted with 13 stereotactic 
EEG electrodes (10 right hemisphere, 3 left hemisphere). 
Following the analysis of the recordings (which included 
epileptogenic index analysis (Bartolomei et al., 2008)) the 

clinicians estimated the epileptogenic zone to comprise the 
right hippocampus, right fusiform gyrus, right entorhinal cor-
tex, and right temporal pole. After the electrode explantation 
the patient became nearly seizure-free and remained so for 
two years; the resective surgery was therefore not performed. 
Long-term seizure freedom is a rare but observed effect of the 
SEEG implantation (Scholly et al., 2018; Kaur et al., 2019).

The T1 weighted images (MPRAGE sequence, repetition 
time = 1900 ms, echo time = 2.19 ms, 1.0 × 1.0 × 1.0 mm, 
208 slices) were obtained on a Siemens Magnetom Verio 
3T MR-scanner. The SEEG was recorded by a 128 chan-
nel  DeltamedTM system using a 256 Hz sampling rate. The 
recordings were band-pass filtered between 0.16 and 97 Hz 
by a hardware filter. After the electrode implantation, a CT 
scan of the patient’s brain was acquired to obtain the location 
of the implanted electrodes.

A

B

Fig. 2  A Hypothesized mechanism behind the TAA pattern, for clar-
ity shown schematically on a two-dimensional brain slice. Left: The 
seizure spreads across the cortical surface and recruits the cortical tis-
sue from the normal (blue) to the seizing state (red). The generated 
local field potentials are measured by the contacts (TB1, TB2) of the 
implanted electrode (green). Right: Time series of the source activ-
ity and recorded signals from the SEEG sensors. Dashed vertical line 
indicates the time of the snapshot in panel A. Every unit (S1, S2) on 
the cortical surface enters the seizure state through a rapid transition. 

Due to the spatial averaging of the source activity performed by the 
SEEG sensors (via the LFP summation), the recorded seizure onset 
on the sensors (TB1, TB2) is gradual with slowly increasing ampli-
tude of the oscillations. B Outline of the workflow. From patient’s 
imaging data the structural model of the brain is built and the surface 
patch around the electrode of interest is extracted. On this and three 
surrogate surfaces the simulations of seizure spread are performed, 
and simulated SEEG signals are compared qualitatively and quantita-
tively with the recorded SEEG
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The patient signed an informed consent form according 
to the rules of local ethics committee (Comité de Protection 
des Personnes Sud-Méditerranée I).

2.2  Extracting the cortical surface

The brain anatomy was reconstructed from the T1-weighted 
images by FreeSurfer v6.0.0 (Fischl, 2012) using the recon-
all procedure. The CT scan with the implanted electrodes 
was aligned with the T1 weighted images using the linear 
registration tool FLIRT from the FSL toolbox (Jenkinson 
et al., 2002). The position of the contacts was then deter-
mined by reading the position of the innermost and outermost 
contact in the MRtrix image viewer (Tournier et al., 2012), 
and placing the other contacts on this line using the known 
spacing of 3.5 mm between the contacts. This approach 
neglects the possibility of electrode bending (Granados 
et al., 2018), however, we assume that the error introduced 
is smaller than that introduced by representing the electrode 
contact as a single points, or by representing the cortical tis-
sue as a 2-dimensional sheet instead of a layer with finite 
thickness.

The part of the cortical surface used in this study was then 
obtained by the following steps: First, we took a midsurface 
of the pial surface and white matter-gray matter interface, 
i.e. the surface lying halfway between these surfaces. Then, 
the parts of the surface further than 15 mm from any contact 
on the selected electrode were discarded. After that, we fur-
ther removed all small surface patches that were sufficiently 
close to the electrode, but were unconnected to the main sur-
face patch. That could occur if the connecting cortical tissue 
lied outside of the 15 mm radius, leaving these small patches 
orphaned. This operation was done for technical reasons, and 
it had no effect on the results, since the seizure would not 
be able to spread to these unconnected patches in any case.

To obtain a triangular mesh fine enough to properly 
resolve the spatiotemporal dynamics of the simulated sei-
zure spread, the extracted part of the triangulated surface 
generated by FreeSurfer was further refined. This was done 
by splitting every triangle of the original triangulation into 
four triangles with the vertices located at the vertices of the 
original triangle and at the midpoints of the original trian-
gle’s edges.

2.3  Epileptor field model

In this study the Epileptor model (Jirsa et al., 2014) was 
employed in its field formulation (Proix et al., 2018). This 
phenomenological neural mass model was originally devel-
oped to produce the dynamics observed in in vitro epileptic 
tissue. This was done by identifying the invariant features of 
the seizure-like activity and classifying them as bifurcations 
of the underlying dynamical system. The created model was  

mathematically represented by a set of five integro-differential  
equation, representing a fast population ( u1 and u2 varia-
bles) generating rapid discharges, a population acting on an  
intermediate time scale ( q1 and q2 ) generating slower oscil-
lations, and a slow variable v guiding the system into and 
out of the seizure states. As a phenomenological model, the 
Epileptor does not provide a one-to-one mapping between its 
variables and the observables of the electrochemical system 
of the actual brain, although the authors discussed how the 
variables of the model can be represented in such systems.

In the field formulation employed, the dynamics are 
defined on a spatially continuous sheet (or line in one dimen-
sion), and any two points on the sheet are coupled through 
a local connections of decreasing strength with increasing 
distance. This field model was proved to be capable of pro-
ducing a slowly progressing seizure front, traveling waves 
as well as a simultaneous termination of a seizure in distant 
areas (Proix et al., 2018). The variables of the model are 
functions of space x and time t; where not necessary, we 
omit explicitly writing these dependencies for brevity. The 
model is described by five integro-differential equations,

where

The local connections in space are expressed via the convo-
lution operator,

(1)

�tu1 =
1

�s

(
u2 − f1(u1, q1) − v + I1 + �11w1 ∗ S(u1, �11)

)

�tu2 =
1

�s

(
1 − 5u2

1
− u2

)

�tv =
1

�s

(
1

�0
(4(u1 − u0(x)) − v)

)

�tq1 =
1

�s
(−q2 + q1 − q3

1
+ I2 + 0.002g(u1)

− 0.3(v − 3.5) + �22w2 ∗ S(q1, �22))

�tq2 =
1

�s

(
1

�2
(−q2 + f2(q1))

)

(2)g(u1) = ∫
t

t0

e−(t−s)∕(�s�12)(a12u1 + �12w12 ∗ S(u1, �12))ds

(3)f1(u1, q1) =

{
u3
1
− 3u2

1
if u1 < 0

(q1 − 0.6(v − 4)2)u1 if u1 ≥ 0

(4)f2(q1) =

{
0 if q1 < −0.25

6(q1 + 0.25) if q1 ≥ −0.25.

(5)w ∗ S(u, �) = ∫Ω

w(x, y)S(u(y, t), �)dy,
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where the local activity u is passed through a Heaviside 
function S(u, �) = H(u − �) . The Laplacian local connec-
tion kernel is used, w(x, y) = �e−dg(x,y)∕b with dg(x, y) being 
the geodesic distance between the two points x and y on the 
surface, and with a normalization constant � =

1

2�b2
.

In the previous works (Jirsa et al., 2014; Proix et al., 2018) 
the oscillations generated by the subsystem q1 , q2 were iden-
tified with Spike-and-Wave Discharges (SWD). Since here 
we use the subsystem to generate oscillations with frequen-
cies above the generally accepted range of 2-4 Hz of SWDs, 
we avoid this terminology in order not to cause any confu-
sion. Instead we call the q1, q2 subsystem simply an inter-
mediate subsystem of the Epileptor and we call the traveling 
waves supported by this system fast waves, referring to the 
high velocity of such waves compared to the velocity of sei-
zure spread.

Model parameters For the majority of the parameters 
we used the same values as in the previous study (Proix 
et al., 2018), putting the model in the regime supporting 
wide range of spatio-temporal phenomena, including slow 
seizure spread and fast traveling waves inside the recruited 
area. These are b = 1 , �11 = −1 , �12 = −1 , �22 = −0.5 , 
�12 = 10 , �22 = 1 , I1 = 3.1 , I2 = 0.45 , �2 = 100 , a12 = 3.

We have modified the temporal constants of the model 
by hand to approximately match the temporal scales of real 
human seizures: The time constant of the whole system 
�s = 5.88 was set so that the frequency of the oscillations 
of the intermediate subsystem in an uncoupled oscillator at 
the seizure onset is the same as the dominant frequency in 
the SEEG recordings. Next, the time constant of the slow 
variable �0 = 20000 was set to obtain the seizure duration 
on the order of tens of seconds.

With these parameter values, an unconnected Epileptor 
exhibits different behavior based on the value of the excit-
ability parameter u0 . For u0 < ucrit

0
= −2.056 , the system 

converges to a stable fixed point, considered to represent 
the normal, healthy regime. In this fixed point, the values 
of the slower variables q1, q2, and s place the fast subsystem 
( u1, u2 ) in the monostable state for u0 < ums

0
= −3.025 , and 

in the bistable state for ums

0
< u0 < ucrit

0
 . For u0 > ucrit

0
 the 

system periodically switches between a silent and oscilla-
tory state. In the simulations we put the epileptogenic zone 
in the supercritical state, uez

0
= −1.8 , and rest of the tissue 

we put in the bistable state, usurround
0

= −2.3 , so that it can be 
recruited in the seizure.

The parameter �11 representing the coupling strength of 
the fast subsystem was set for every simulation separately 
in order to match the seizure spread velocity observed in the 
data (Table 1). This was done by the following procedure: 
We assumed that the ictal wavefront travels in the direc-
tion of the electrode and we estimated the ictal propagation 
velocity from the temporal difference of the onsets on the 
first and last contacts and the geodesic distance of the sur-
face points closest to these contacts. Then we established the 
relation of the coefficient �11 to seizure propagation speed in 
the model by performing a parameter sweep on a small com-
putational domain (see details in Sect. 2.7 and the results on 
Fig. S2). Finally the coefficient �11 was chosen so that the 
model velocity and velocity estimated from the data would 
match.

We did not explore the robustness of the results with 
respect to the parameter values outside of the specified 
working point. The Epileptor model includes large number 
of interacting parameters, whose plausible range cannot 
be easily estimated given that Epileptor is a phenomeno-
logical model; one would have to perform an analysis of the 
dynamical regime for any particular combination of model 
parameters. Alternatively, a principled way to explore the 
role of model parameters and their plausible range would 
be a model inversion using Bayesian inference, that however 
remains out of scope for this work.

2.4  Numerical simulations

The numerical simulations of the system (1) on the triangu-
lated surface were performed in The Virtual Brain (TVB) 
platform (Sanz Leon et al., 2013) in version 1.5.4 with some 
modifications specific to surface-based simulations. For all 
simulations, the field was initially placed in the stable fixed 

Table 1  Parameters of the triangulated surfaces (the real surface and 
three surrogate surfaces described in Sect.  3.2). Last column shows 
the coupling strength �11 adjusted in the simulations to obtain the 

same propagation delay between the first and last contact pairs as in 
the real patient’s recording

Surface Ntriangles Nvertices Area [mm2] Edge length [mm] �11

Min Mean Max

Real 24352 12424 2350.4 0.079 0.483 1.596 0.53
S-Realistic 42662 21726 3727.8 0.058 0.460 2.692 0.55
S-Flat 21600 11020 1740.0 0.400 0.457 0.568 0.37
S-Sine 28950 14744 3439.0 0.301 0.573 0.929 0.53
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point of the unconnected Epileptor with the excitability 
value usurround

0
 , and the temporal integration was then per-

formed using Heun’s method with time step Δt = 0.2.

Boundary conditions There were no local connections from 
outside of the modeled part of the cortical surface. With the 
employed coupling, this can be also interpreted as modeling 
the whole cortex and keeping the Epileptors outside of the 
modeled domain in a stable state so that the coupling terms 
S(u1, �11), S(u1, �12) and S(u2, �22) are all zero. This could 
be achieved by setting the excitability parameter u0 of the 
outside tissue to be very low, so that a seizing tissue in the 
modeled part would not excite it.

2.5  Forward model for SEEG signals

In the human cortex, the most numerous neuron type is the 
pyramidal cell. Due to their geometrical structure with long 
dendrites oriented perpendicularly to the cortical surface, 
they might be well represented as electrical dipoles (Buzsáki 
et al., 2012). Following this idea, we assume that each point 
on the cortical surface acts as electrical dipole. In the spa-
tially continuous formulation the local field potential meas-
ured by the electrode contact at point xs generated by the 
source activity s(x, t) on the surface Ω is given by

where n is the outward oriented normal of the surface. In 
the discretized version using the calculated solution on a 
triangulated surface this reads

where V is the set of all vertices on the triangulated surface, 
Av is the area associated with a vertex (calculated as one 
third of the sum of areas of neighboring triangles), nv is 
the outwards oriented normal of a vertex (calculated as a 
weighted average of the normals of neighboring triangles), 
xv is the position of the vertex, and sv(t) is the calculated 
activity at the vertex. In the implementation, the temporally 
independent part of right hand side of Eq. (7) is precomputed 
and stored in the gain matrix G of size nsensors × nvertices . The 
calculation of the measured signal can then be written in a 
vector form,

where � is the vector of signals at given locations, and s is 
the vector of simulated activity at all vertices. Following 
the original Epileptor paper, we identify the source activ-
ity with the difference of two state variables of Epileptor 

(6)�(xs, t) =∫Ω

n(xs − x)

|xs − x|3
s(x, t)dx,

(7)�(xs, t) ≈
∑

v∈V

Av

nv(xs − xv)

|xs − xv|3
sv(t),

(8)�(t) = Gs(t),

model, s(t) = q1(t) − u1(t) . In the Epileptor model, these 
two variables form part of the intermediate and fast time 
scale subsystems, and represent the epileptic oscillations on 
the intermediate and fast scales respectively. Together they 
compose the electric signal recorded in the epileptic tissue 
(Jirsa et al., 2014).

2.6  Analysis of the TAA onset timing

To provide a quantitative comparison of the timing of the 
TAA pattern appearance in the recorded and simulated 
SEEG signals we determined the TAA onset time for all 
bipolar signals. By onset time we mean the time point where 
the amplitude of the signal starts to grow. It was determined 
as the time when the signal envelope rises above 20% of 
its maximum value obtained during the seizure. To calcu-
late the envelope the signals were first high-pass filtered to 
remove the low frequency oscillations (third order Butter-
worth filter, cutoff frequency 0.2 Hz). Next, the envelope 
of the signal was calculated by rectifying the signal (i.e. 
taking its absolute value) and low-pass filtering the result 
(third order Butterworth filter, cutoff frequency 0.6 Hz). The 
calculated onset times were shifted so that the earliest onset 
time is at zero.

2.7  Seizure spread velocity in the model

We determined the dependence of the seizure spread veloc-
ity on the coupling strength �11 in the model via numeri-
cal simulations. We performed multiple numerical simula-
tions of the seizure spread on a rectangular cortical sheet of 
dimensions 40 x 20 mm with different values of �11 . On the 
narrow side of the domain an epileptogenic zone of width 10 
mm was placed. The parameters of the simulations and the 
values of the epileptogenicity of the epileptogenic zone and 
of the surrounding tissue were the same as in the simulation 
of the folded cortical surface. Two points on the domain 
midline were selected (10 and 30 mm from the edge of the 
epileptogenic zone) and the seizure spread velocity in each 
simulation was calculated as the fraction of the distance 
between the two points and the temporal difference of the 
simulated seizure onset in these points.

2.8  Estimation of the fast wave velocity 
in the model

The velocity of the fast waves in the simulations was 
estimated as follows. We selected a time point ( t = 20s ) 
after the whole patch was recruited and based on a visual 
inspection of the simulation results we noted that the fast 
waves in all simulations travel in the lateral-mesial direc-
tion. We then found a shortest path on the triangulated sur-
face connecting the vertices closest to the innermost and 
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outermost contact of the implanted electrode and selected 
30 vertices located uniformly on this path. Next, we took 
a 1 s long time series of the q1 variable in these vertices 
after the selected time point. For all values of the fast wave 
velocities ufast in the range from 50 mm s1 to 1000 mm s1 
discretized by 200 points we shifted the time series by the 
temporal offset di

g
∕ufast (where di

g
 is the geodesic distance 

of the i-th point on the path from the first point), and we 
selected the value of ufast where the average correlation 
coefficient of all pairs of shifted signals was highest.

3  Results

3.1  Model of the folded cortical surface

We simulated the seizure propagation on a part of a cor-
tical surface of an epileptic patient. The simulated part 
of the cortical surface (Fig. 3B, denoted by shorthand 
‘Real’) represented the part of the cortical surface located 
in the vicinity of a single electrode, where the TAA pat-
tern (shown on Fig. 1) was recorded. Parameters of the 
triangulated patch are given in Table 1.

The area of the simulated surface patch is 2350.4 mm2 , 
which corresponds to about 1.3% of the whole cortical 
surface. The distance of the electrode contacts from the 
gray matter not included in the simulated (subcortical 
structures and excluded parts of the cortical surface) was 
between 5 and 13 mm, at least 3.5 times higher than the 
distance from the simulated part (Fig. 3C). The distance to 
the non-simulated parts is lower than the cut-off value 15 
mm used to construct the surface due to the proximity of 
the hippocampus which was excluded by design.

On this surface the evolution of the system (1) was 
simulated. Since the model was supposed to capture only 
the activity on the cortical surface, the suspected source 
of the epileptic activity in the patient, right hippocampus, 
was not included in the simulation. Instead, noting the 
visible delay of the onset of the seizure activity on the 
laterally located contacts compared to mesially located 
contacts, we hand-placed the model epileptogenic zone 
to the mesial side of the extracted surface (Fig. 3B). This 
position approximately coincides with the right entorhinal 
cortex, to which is the right hippocampus strongly con-
nected via the perforant path (Witter, 2007), supporting 
the hypothesis that the seizure spreads to the cortical patch 
from there. This model epileptogenic zone was represented 
as a small patch of diameter 5 mm with the value of excita-
bility u0 increased above the critical level so that the tissue 
would start the seizure autonomously without any external 
intervention.

3.2  Surrogate surfaces

In order to demonstrate the influence of the geometry of 
the cortical surface, we also performed the simulations of 
seizure spread on three surrogate surfaces: realistic, flat, and 
sine (Fig. 3B).

The realistic surrogate surface (S-Realistic) was con-
structed from the patient’s MRI the same way as the real 
surface, but using a different electrode. The electrode was 
also implanted in the right temporal lobe and was located 
posterior from the TB electrode, being embedded in the infe-
rior temporal gyrus, fusiform gyrus, and parahippocampal 
gyrus. The flat surrogate surface (S-Flat) was constructed 
as a flat rectangular domain extending m = 15 mm on both 
ends of the electrode and in the direction perpendicular to the 
electrode orientation to both sides, thus having dimensions 
(l + 2m) × 2m , where l = 28 mm is the distance between the 
first and last contacts of the electrode. The surface was placed 
in the distance 1.47 mm from the electrode, so that the aver-
age distance from the contacts to the surface is the same as 
for the real surface. The sine surrogate surface (S-Sine) was 
constructed as a sine wave with wave length l and amplitude 
A = 7.89 mm selected so that the geodesic distance between 
the surface point closest to the first contact and the point clos-
est to the last contact is the same as for the original surface. 
The extent of the sine surface is the same as of the flat surface.

Parameters of the triangulated surfaces are given in 
Table 1. For all three surfaces, the epileptogenic zone was 
placed close to the innermost contact of the electrode to 
reproduce the observed propagation pattern from the first 
to the last contact.

3.3  Spatial scales of SEEG averaging

Figure 3D shows the spatial plot of the gain matrix row 
associated with a single contact. The SEEG signal is gener-
ated by summing the weighted contributions of the source 
dynamics according to the values of the gain matrix row. 
To provide deeper insight into this forward model, Fig. 3E 
shows for what percentage of the gain matrix is a cortical 
area of given size responsible for. More specifically, we built 
the gain matrix for the full cortical area using the methods 
described in Sect. 2.5. For each contact (or contact pair in 
case of bipolar referencing) we then sorted the vertices by 
the absolute value of the gain matrix elements and plotted 
the accumulated absolute values of the gain matrix against 
the accumulated area. Simply put, the resulting curves show 
the spatial selectivity of all contacts or neighboring contact 
pairs. The fast saturation of the bipolar curves demonstrate 
the much higher spatial selectivity of the bipolar referencing 
compared to monopolar.
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This notion is further elaborated by the figure inset 
which shows the size of the cortical area responsible 
for 50% of the gain. The forward model indicates that 
with monopolar referencing one needs around 30 cm2 

of cortical surface to generate 50% of the SEEG signal. 
With bipolar referencing the size of the area drops below 
1 cm2 . While this is only a static view without taking into 
account the effect of the source dynamics, it provides 

Fig. 3  A Position of the modeled patches in the whole brain: Real 
(green) and S-Realistic (blue) surfaces. Axes notation: R - Right, A 
- Anterior, S - Superior. B Detail of the real and three surrogate sur-
faces. Electrode contacts (in yellow) are numbered from the 1 on the 
mesial side to 9 on the lateral side. The distance between the neigh-
boring contacts is 3.5 mm. Surface coloring shows the position of the 
epileptogenic zone (EZ). C Minimal distance of every electrode con-
tact from the part of the cortical surfaces included in the simulation 
(green) and from the subcortical structures or the part of the cortical 

surface not included in the simulation (gray). D Spatial representation 
of the gain matrix row for contact 3. Blue colors marks the positive 
weighting, red color negative. E Fraction of the gain matrix associ-
ated with the area of given size for monopolar (blue) and bipolar (red) 
referencing. See the main text (Sect.  3.3) for further details. Inset: 
area associated with 50% of the gain matrix for monopolar (blue) and 
bipolar (red) referencing. Note the different scales for monopolar and 
bipolar referencing
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important quantitative measure of the spatial selectivity 
of the implanted depth electrode.

3.4  Evolution of the simulated seizure

Let us have a look at the seizure spread simulated on the 
real surface, i.e. the surface around the investigated elec-
trode. The seizure starts spontaneously in the small patch 
where the excitability was set to higher value (Fig. 4A, 
t = 5 s ). From there it then spreads to the surrounding tissue 
( t = 10, 15 s ), until the whole patch is recruited ( t = 20 s ). 
Around t = 30 s , the oscillatory activity starts to recede in 
the same direction as it spread before, and at t = 40 s the 
seizure activity has entirely terminated. The seizure does 
not terminate at once, even though the Epileptor field model 
(with appropriate parameter values) was shown to be able 
to support the synchronous termination (Proix et al., 2018). 
Considering that our main objective here was the investi-
gation of the early seizure patterns, we have not searched 
the parameter space for the values where the simultaneous 
termination occurs.

The source activity at any point on the cortical surface 
follows qualitatively the same dynamics typical for the 
Epileptor model (Fig. 4B): Sudden seizure onset as the fast 
subsystem of the Epileptor crosses the saddle-node bifurca-
tion, then combination of the oscillations on two time scales 
during the seizure, and eventually the termination via homo-
clinic bifurcation.

Due to the local coupling of the Epileptor field, the oscil-
lations of the intermediate system synchronize and form fast 
waves traveling across the cortical surface (Fig. 4C). Such 
waves were observed in the cortex of human patients during 
seizures, spatially extending not only across microelectrode 

arrays but also across ECoG arrays (Wagner et al., 2015; 
Smith et al., 2016; Martinet et al., 2017). In this simula-
tion the velocity of the fast waves at time t = 20 s , when the 
whole patch was recruited, was estimated at 604 mm s−1 , 
falling within the reported range of wave velocities of 100 to 
1000 mm s−1 in human patients (Wagner et al., 2015; Smith 
et al., 2016; Martinet et al., 2017).

The simulated SEEG signals are plotted on Fig. 5 (cf. 
Fig. 1 with the real patient recording). We point out sev-
eral features of the signals. Firstly, unlike the rapid onset on 
the source level, the amplitude of the SEEG signals grows 
gradually. The simulated signals therefore have the typical 
features of the TAA pattern, as in the real recording. The 
ramp-up phase, during which the amplitude grows, is on the 
order of several seconds, similarly as in the recording. Sec-
ondly, there is a clear temporal delay of the seizure onset on 
the lateral contacts, caused by the slow seizure spread. And 
lastly, the amplitude of the simulated signal varies across the 
contact pairs. Since the source dynamics is fairly stereotypi-
cal on the whole cortical patch, this is to be explained by the 
geometry of the surface and by the position of the contacts. 
We will analyze these features in the following section.

3.5  Quantitative analysis

For quantitative analysis we identified the onset times and 
calculated the average amplitude of the simulated SEEG 
signals with bipolar referencing. Then we compared the 
values with the values obtained in the same way from the 
real SEEG recording (Fig. 6). The goodness of fit for all 
evaluated surfaces is shown in Table 2. Using the electrode-
specific surface gives a better fit than the three surrogate 

Fig. 4  Evolution of the simulated seizure. A Extent of the oscillatory 
activity over time. Blue color represents the normal state ( u1 < −0.8 ) 
and red the seizure state ( u1 ≥ −0.8 ). B Source activity s(t) in two 
points on the cortical surface shows the typical Epileptor dynamics 

with oscillations on two time scales. All points on the cortical surface 
follow qualitatively similar dynamics. C Snapshots of source activ-
ity s(t) over interval of 0.1 s during the seizure reveal the fast wave 
propagating across the cortical surface
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surfaces in all evaluated criteria, supporting the necessity 
of using individual geometry.

Looking at the amplitude of the signals, we can ask 
how much is this a result of the source dynamics and how 
much of the geometry of the cortical sources and position 
of the sensors. In our model, if the source dynamics of 
the whole surface patch was fully spatially homogeneous, 
i.e. all points were behaving exactly the same way, the 
amplitude of the bipolar signal between contacts i + 1 and 
i would be determined by the gain matrix G and would 

be proportionate to �
∑

j Gi+i,j − Gi,j� . Figure 7 shows that 
this description is indeed close to the situation in the per-
formed simulation of the seizure spread. The amplitude 
of the signals in the real recording can be also largely 
explained by the geometry of the sources and sensors.

3.6  Spectral signatures of the simulated SEEG

Even though all SEEG signals arise from the stereotypical 
source activity, the geometric arrangement of the sources 

Fig. 5  Traces of the simulated SEEG signals in bipolar representation. A Full simulated seizure. B Detail of the seizure onset, delimited by gray 
lines in A 

Fig. 6  Quantitative analysis  
of the SEEG signals. A For all 
bipolar signals the envelope of 
the signal was calculated, and 
the onset time was determined 
(see Methods). The signals  
were shifted so that the onset 
time of the first bipolar signal 
was at zero. B Comparison of 
the onset times for the recorded 
SEEG and the SEEG simulated 
on the real surface. In the box 
two measures of fit are reported: 
root mean square error �
RMSE =

�
1

n

∑n

i=1
(t
i
− t̃

i
)2
�

 

 and mean absolute 
error 

�
MAE =

1

n

∑n

i=1
�ti − t̃i�

�
 . 

The red point corresponds to the 
signals shown in panel A. C 
Comparison of the mean value 
of the signal envelope for the 
recorded SEEG and the SEEG 
simulated on the real surface. 
The correlation coefficient � is 
reported in the box
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and sensors has a strong effect and the resulting signals 
might differ significantly. One specific example of this is 
illustrated on Fig. 8 which shows how the geometry can 
highlight or suppress activity in different frequency bands. 
Looking at the bipolar signals and their spectrograms only, 
one might classify the two patterns in different categories: 
TB6-5 shows the prominent 8 Hz oscillations with gradu-
ally increasing amplitude, and could be thus classified as 
the TAA pattern. However, the lower frequencies are sup-
pressed on the neighboring TB7-6, where the activity in � 
range is more prominent, so its features would point instead 
to the fast activity onset pattern. While such difference was 
not seen in the recorded SEEG (Fig. S3), our model indi-
cates that the same source activity can manifest in different 
ways on the SEEG sensors, depending on the geometrical 
arrangement.

4  Discussion

Main results In this work we have investigated seizure 
front propagation across the cortical surface. We performed 
numerical simulations of the seizure spread on the cortical 
surface (i.e. in the source space) and from this source activ-
ity we generated the SEEG signals (i.e. in the sensor space) 
using the SEEG forward model. The results showed a quali-
tative and quantitative agreement with the patient recording: 
the TAA pattern was reproduced with similar duration of the 
ramp-up period of few seconds. The comparison with the 
simulations performed on the surrogate surfaces revealed 
that the real surface produces a better agreement with the 
recording in terms of the onset timing and the amplitude of 
the signals.

To obtain this good fit, three components were crucial: 
Firstly, it was the geometry of the cortical sources and posi-
tion of the sensors in three-dimensional physical space, 
which we derived from the patient MRI scans. Secondly, it 
was the velocity of the seizure spread, which we estimated 
based on the onset delays in the SEEG recordings. The 
resulting value around 600 mm s−1 fell within the plausible 
range based on the previously published works. And lastly, 
it was the direction of the propagation, determined by the 
placement of the epileptogenic zone in the model. We have 
selected one characteristic patient and have demonstrated 
good qualitative and quantitative agreement with the patient 
SEEG recording. Our further analysis of various cortical 
surrogate surfaces including flat, sinusoidal and realistic, but 
not electrode-specific, surfaces demonstrate good sensitivity 

Fig. 7  Influence of the gain matrix on the signal amplitude. A Cor-
respondence between the term gi+1,i = �

∑
j Gi+i,j − Gi,j� and the enve-

lope mean of the simulated signals. The term gi+1,i is the proportion-
ality term between the source activity and the bipolar signal between 
(i + 1) th and ith contact assuming the source activity is spatially 

homogeneous on the whole cortical patch. Correlation coefficient 
close to one indicates that the amplitude of the simulated signals can 
be largely explained by the geometry of the sources and sensors. B 
Same as A for the recorded signals.

Table 2  Evaluation of the fit of the onset times and envelope means 
between the recorded SEEG and the SEEG simulated on the real and 
three surrogate surfaces. RMSE: root mean square error, MAE: mean 
absolute error, � : correlation coefficient (for definitions see the cap-
tion of Fig. 6). Best fit in each column is highlighted in bold

Surface Onset time Envelope mean

RMSE MAE �

Real 1.11 0.82 0.68
S-Realistic 2.03 1.70 0.47
S-Flat 1.38 1.04 0.09
S-Sine 1.58 1.16 -0.47
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and specificity, thus promising usefulness in understanding 
the spatiotemporal organization of the seizure in clinical 
settings.

We have performed the simulation on the patch of cor-
tex close to the electrode of interest, and not on the whole 
cortex. Due to the locality of the source of bipolar signal, 
we deem such approach sufficient to capture all relevant 
sources of the electrical signal, yet it is not guaranteed that 
the dynamics of the activity on the patch would not change 
had the whole cortex been modeled - e.g. by propagation 
through the excluded part of the surface. Our approach 
can be interpreted as having an implicit assumption that 
the epileptogenicity of the tissue outside of the modeled 
part is low, and does not allow recruitment, thus only the 
modeled tissue is relevant.

This work dealt with a single instance of TAA pattern, 
demonstrating that in this case there exists a plausible 
configuration of seizure origin, spreading direction, and 
spreading velocity that produces qualitatively similar 
SEEG features as those observed in the patient. This con-
figuration was found by hand, and it is not guaranteed that 
it provides the best fit possible among all possible configu-
rations. An approach which would find this optimal con-
figuration for any given TAA instance and patient-specific 
geometry would be desirable and would provide further 
evidence for the relation between TAA and spreading sei-
zures, however, given the large search space finding this 
solution may be computationally challenging.

Classification of seizure onset patterns Current approaches 
to the classification of the seizure onset patterns in clini-
cal research rely on the analysis of frequencies, amplitudes, 

and waveforms present in the intracranial recordings 
(Doležalová et al., 2013); Perucca et al., 2014; Jiménez-
Jiménez et al., 2015). However, as we have shown on Fig. 8, 
the same source dynamics of spreading seizure can produce 
electrographic seizure patterns from both TAA and fast 
activity classes. Curiously, Perucca et al. (2014) names the 
“sharp activity ≤ 13 Hz” and low-voltage fast activity as 
the two most common patterns in regions of seizure spread; 
the former shares features with our definition of TAA pat-
tern, namely the clear oscillations in theta-alpha range. The 
results therefore raise the question if these patterns indeed 
reflect different source dynamics, or whether they are simply 
different manifestations of the same source dynamics caused 
by the complex geometry of the cortical sources.

In the example presented on Fig. 8a careful examina-
tion of the SEEG signals with both bipolar and monopolar 
referencing would reveal the presence of low frequency 
oscillations and prevent the classification as the fast activ-
ity onset pattern. But two issues still remain: First, if the 
monopolar signals are dominated by the background noise 
or if the classification is done automatically based only on 
the features bipolar signal, the misclassification might not 
be easy to avoid. But more importantly, we argue that by 
not considering the geometry of the sources and sensors 
one leaves out an important piece of the puzzle. The SEEG 
signals are only a distorted reflection of the source activity, 
and it is the source activity and its dynamical patterns that 
should be analyzed and classified in order to gain deeper 
insight into the epileptogenesis. However, robust methods 
for the signal inversion from sensor to source space which 
would take into account the complex geometry still remain 
to be developed.

Fig. 8  Geometry of the sources and sensors affects the spectral prop-
erties of the simulated SEEG signals. A Monopolar and bipolar view 
of seizure onset on selected contacts, as simulated on real surface. B 
Spectrogram of the two bipolar signals. 1/f normalization (spectral 

flattening) was applied to the spectrogram. The two bipolar signals 
differ notably in amplitude and its dominant frequencies. The low fre-
quencies, present in TB6-5, are suppressed on TB7-6 due to the geo-
metrical configuration of the cortical surface
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Bifurcation‑based classification When analyzing the time 
series generated by an unknown biological process, one 
approach based in the nonlinear systems theory is to look 
for the sudden qualitative changes in behavior, such as the 
change from steady to oscillating state. From the features 
of this transition (such as changes in amplitude and fre-
quency) one might infer the bifurcation that the underlying 
dynamical system is going through during this transition. 
The equations of any dynamical system undergoing a spe-
cific bifurcation can be smoothly mapped to the so-called 
normal form, which conserve the qualitative behaviour of 
the system around the bifurcation. The knowledge of the 
bifurcation type that the system is going through might 
then guide the development of a mathematical model of the  
observed activity (Kuznetsov,  1998; Izhikevich,  2010;  
Touboul et al., 2011; Jirsa et al., 2014). A systematic analysis of  
onset and offset bifurcations then permits the construction 
of a seizure taxonomy based on purely dynamic features 
(Saggio et al., 2017, 2020).

From this perspective the TAA pattern would correspond 
to a dynamical system undergoing a supercritical Hopf bifur-
cation, whose distinguishing feature is the gradually increas-
ing amplitude of the oscillations after crossing the bifurcation 
(Izhikevich, 2010). However, as we have shown in this paper, 
the features that are seen on the generated SEEG signals might 
not be present on the source level. Instead of a Hopf bifurca-
tion, our employed model of the source dynamics switches 
to the seizure state by crossing the saddle-node bifurcation.

The type of the onset bifurcation has important conse-
quences for the behavior of the dynamical system. One of 
them is the response to external stimulation. A monosta-
ble system going through a supercritical Hopf bifurcation 
transitions from a fixed point to a limit cycle. Before the 
transition, a brief stimulation would not be able to force 
the monostable system to a sustained oscillatory state, since 
there exits only a single fixed point. On the other hand, a sys-
tem undergoing a saddle-node bifurcation might be sensitive 
to stimulation: before the transition the system resides in a 
bistable state with a stable fixed point and stable limit cycle 
and stimulation of the system might therefore move it to the 
other stable state. This difference between the two dynamical 
systems highlights the importance of performing the bifur-
cation analysis on the source level, pointing us again to the 
need for robust sensor-source inversion methods.

We have shown that saddle-node model together with the 
sensor-to-source projection can mimic the TAA features, but 
that does not allow us to rule out Hopf model yet. And while 
better inversion methods may point us in the correct direction, 
eventually it is the ability of the model to correctly predict the 
responses to real interventions, such as stimulation or surgical 
resection, or even the ability to direct us to novel treatments 
that will distinguish which of these models (if any) is a bet-
ter model of the complex dynamics during epileptic seizures.

Towards fully individualized neural field models of epi‑
lepsy In this work we have used the Epileptor field model 
to investigate seizure spread across the individual cortical 
surface and to relate it to the observed TAA electrographic 
pattern. For this specific purpose, a simpler model of seizure 
spread than a six-equation neural field model could have 
been employed; that is what we did in a related study (Sip 
et al., 2021b), where we analyzed TAA patterns detected in 
recordings from a cohort of fifty subjects.

Nevertheless, looking towards the future, we aim for a 
construction of a dynamical neural field model capable of 
reproducing wide range of dynamical phenomena observed 
in epilepsy, including oscillations on multiple time scales, 
seizure spread through short- and long-range connections, 
or simultaneous seizure termination across multiple regions. 
The Epileptor model is at minimum a good starting point: 
its dynamical repertoire is broad, including the phenom-
ena named, and well explored in neural mass (Houssaini 
et al., 2020) as well as in neural field (Proix et al., 2018) 
variants.

A canonical model has been previously defined providing 
a solid mathematical foundation of the range and organi-
zation of dynamic seizure repertoire (Saggio et al., 2017). 
More technically, like in the Epileptor a decomposition into 
a fast and slow subsystem was performed. For the fast sub-
system, a planar unfolding of a high codimension singularity 
was performed and analyzed in a bifurcation diagram, locat-
ing all the paths that underlie the right sequence of bifurca-
tions necessary for seizures. The slow subsystem steers the 
fast one back and forth along these paths leading to the sei-
zure evolution. The model is able to produce almost all the 
seizures classes of predicted for systems with a planar fast 
subsystem as in the Epileptor. This provides a single theo-
retical framework to understand the organization of seizure 
dynamics, which has been tested and confirmed in a large 
detailed empirical study (Saggio et al., 2020). The seizure 
classes have been referred to as dynamotypes.

Currently, this broad dynamical repertoire might be 
seen as a hindrance, considering that it comes with mul-
titude of model parameters that need to be set to obtain 
the correct dynamical regime. Progress in model inver-
sion techniques for epilepsy (Hashemi et al., 2020; Sip 
et al., 2021a) might however overcome this issue, and will 
allow to fully exploit the complexity of the model to build 
fully individualized neural field epilepsy models. These 
will be characterized not only by the individual structure 
(white matter connectome and cortical surfaces) but also 
by parameters of the model individually estimated from 
functional data. In this long-term view, this work provides 
the motivation for the development of neural field models 
epilepsy models by showcasing a possible application, and 
it makes the initial steps in the direction of individualized 
neural field models.
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