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Abstract
Understanding spontaneous transitions between dynamical modes in a network is of signifi-

cant importance. These transitions may separate pathological and normal functions of the

brain. In this paper, we develop a set of measures that, based on spatio-temporal features

of network activity, predict autonomous network transitions from asynchronous to synchro-

nous dynamics under various conditions. These metrics quantify spike-timing distributions

within a narrow time window as a function of the relative location of the active neurons. We

applied these metrics to investigate the properties of these transitions in excitatory-only and

excitatory-and-inhibitory networks and elucidate how network topology, noise level, and cel-

lular heterogeneity affect both the reliability and the timeliness of the predictions. The devel-

oped measures can be calculated in real time and therefore potentially applied in clinical

situations.

Introduction
The complex dynamics of brain networks underlies information processing as well as various
pathologies. Epilepsy [1,2] and/or Parkinson’s disease [3] are the most prominent examples of
rapid autonomous transitions of network level spatio-temporal patterning from normal, largely
asynchronous behavior into episodes of synchronous pathological activity that constitute un-
derpinnings of the pathology. While, in the case of epilepsy, a significant fraction of seizures
can be treated with medications or invasively with surgery, there is still large number of cases
in which patients have to deal with a threat of impending seizures. Therefore it becomes imper-
ative to develop tools which, based upon online monitoring of brain dynamics can predict sei-
zure, warn the patient, and/or optimally, take measures (through controlled drug infusion or
electrical stimulation) to counteract dynamical changes in the network dynamics near the foci
that lead to seizure onset. There is a wealth of research being conducted that is centered on de-
veloping metrics and algorithms that would monitor changes in the brain activity (usually EEG
signals or intracranial recordings) and predict impending seizures [4–11]. Existing measures
have relatively low success rates providing a lot of false positives or false negatives [12–16].

PLOSONE | DOI:10.1371/journal.pone.0122225 April 9, 2015 1 / 21

OPEN ACCESS

Citation: Mofakham S, Zochowski M (2015)
Measuring Predictability of Autonomous Network
Transitions into Bursting Dynamics. PLoS ONE 10(4):
e0122225. doi:10.1371/journal.pone.0122225

Academic Editor: Gennady Cymbalyuk, Georgia
State University, UNITED STATES

Received: April 2, 2014

Accepted: February 19, 2015

Published: April 9, 2015

Copyright: © 2015 Mofakham, Zochowski. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.
Descriptions provided in the methods section provide
all the information needed to reproduce the results for
this study. This is simulation data easily reproduced
from model description. The data files are available
upon request.

Funding: This work was supported by the National
Science foundation (CMMI 1029388 and PoLS
1058034).

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0122225&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Others analyzed the activity of network and individual neurons around the epileptic onset
[17–22].

In this manuscript we take somewhat different approach. We developed a set of measures to
study early spatial features of network reorganization upon impending transition into bursting
dynamics. Namely, we investigate whether and under what conditions we can identify and
later detect early dynamical signs of transitions from synchronous to asynchronous dynamics
in highly simplified settings.

In loose terms we assume that the asynchronous mode of activity corresponds to interictal
dynamics while synchronous activity corresponds to seizure itself. While this is clearly an over-
simplification the goal of this work is to elucidate universal properties of transitions between
those two modes of activity.

To make the settings at all relevant to possible clinical applications we the only information
we utilize is the relative spatial positions of the neurons and their spiking activity patterns. This
could in practice correspond to multiunit information obtained from two or more depth elec-
trodes placed in the brain. We further assume that we have access to this information in the
brain region corresponding to localized seizure foci and that transition in this region alone will
generate distributed seizure dynamics. We do not tackle the problem of how does synchronous
dynamics spread throughout the brain.

We investigate the afore mentioned transitions within ring of excitatory only or excitatory-
and-inhibitory integrate-and-fire neuronal networks. This model has been used for more than
a century and still is widely used due to its low computational cost, broad range of applications,
simplicity along with accuracy [23,24].

Even though that the LIF model is one of the simplest models of neuronal dynamics it can re-
produce number of biologically observed spatio-temporal patterns depending on the connectivi-
ty, synaptic weights, inhibitory feedback, noise and heterogeneity. In 1991 Abeles, showed that if
network wires randomly, tight temporal synchrony in order of milliseconds could be easily at-
tained [25]. However, Hopfield and Herz studied a network of locally connected integrate-and-
fire oscillators neurons and they observed mostly asynchronous dynamics unless very late in the
simulation (more than a hundred periods in a network) that invalidate any importance of syn-
chrony in coding information comparing with biological short time scales of decision making
[26]. This result was partially explained by D. Hansel et al, who investigated dynamics of purely
excitatory homogeneous and fully connected networks of LIF and Hodgkin-Huxley (HH) model
[27]. They showed that depending on the type of neuronal Phase Response Curve (PRC) excita-
tion for neurons with type 1 characteristic is mostly desynchronizing, however in neurons with
type 2 properties (HH), excitation can lead to synchrony. Campbell &Wang (1999) on the other
hand showed that network can reach synchrony much faster than the original estimate (within a
few periods), they showed that the time needed to reach this synchrony is a logarithmic function
of the network size [28]. At the same time it was recently shown that noise statistics itself could
dramatically change neural spiking properties [29].

Brunel on the other hand investigated the effect of added inhibition into the excitatory oscil-
lators [30]. He studied the dynamical properties of a network of sparsely randomly intercon-
nected excitatory and inhibitory spiking leaky integrate-and-fire neurons. He showed that the
networks could switch between synchronous and asynchronous activity, consisting of the
propagating waves of activity, depending on driving frequency and excitatory-inhibition inter-
actions. Along these lines, Tsodyks, et al. showed that excitatory-inhibitory network of LIF
neurons that are interconnected with nonlinear synapses can adopt a synchronous activity as-
sociated with population bursts intermittent with long periods of asynchronous activity [31].
These types of transitions have been studied recently within the framework or extreme events
[32, 33].
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Here, we use small-world paradigm to vary network connectivity within the excitatory and
inhibitory neurons [34, 35]. It is known that small-world topologies exhibit complex spatio-
temporal dynamics including intermittent transitions to bursting activity [36–38]. Specifically,
Roxin observed transitions from asynchronous activity to short-term synchronous bursts for
such network topologies [39]. Further, Netoff et al. modeled CA1 and CA3 network interac-
tions using three different neuron models (LIF, Hodgkin Huxley, and a Poisson spike-train
model) connected into small-world structure. They observed that the burst seen in the CA3 is
due to simultaneous and quick reactivation of recently active neurons that happens trough
long distance connections. They observed this mechanism in all three different models, sug-
gesting that the fraction of long distance connections are more crucial for network synchrony
than the details of each neurons [37].

Here, we use the afore mentioned network properties to study early dynamical features of
transitions from asynchronous to synchronous network state. We test performance of the de-
veloped metric for various network types and network structures. We varied connectivity pat-
terns under two conditions: when the transitions are driven by cellular heterogeneities in the
network (i.e. variation of cellular parameters), and 2) when transitions are driven by noise
aimed to simulate uncorrelated input from other brain regions to the foci. Those two condi-
tions are to simulate internally and externally driven transitions towards bursting. In sections
1.1 and 1.2 we describe the observed spatio-temporal patterning in the excitatory only and in
the excitatory-and-inhibitory networks. Then in section 2 we introduce metrics used to quanti-
fy properties of transitions from asynchronous to bursting regimes.

Results

1. Characterization of network dynamics
We first characterize the simplified neuronal network dynamics and investigate how distinctive
network properties such as the connectivity structure, noise and inhibition can shape its dy-
namics and influence the properties of transitions between different modes of activity patterns.
Here we generally differentiate transitions from/into bursting regime to be driven by noise
(modeling uncorrelated input from other parts of the network) and, separately those generated
internally by the network, caused by distribution of cell intrinsic frequency.

1.1. Excitatory networks with deterministic and noise driven dynamics. First we investi-
gated the dynamics of a network consisting of 200 integrate-and-fire excitatory neurons in 1D
ring structure and examine its spatio-temporal patterning as a function of noise, external cur-
rent and its underlying connectivity pattern. The neurons are set to fire spontaneously as they
are driven by constant current or random input. The three stimulation types are intended to
simulate cellular changes due to the intrinsic neuronal excitation (constant current), input
coming from other brain modalities (random input), or both.

It is well established that the dynamics of a neuronal network is highly dependent upon its
structure; here we use small-world paradigm to vary network connectivity using excitatory re-
wiring probability Pe. Accordingly, here we show three major classes of network activity pat-
terns can be formed for local, small-world and random topology in Fig 1A–1D respectively.
The panels depict raster plots (left column; blue dots denote action potentials) and histograms
(right column) of interspike Intervals (ISIs) associated with fully deterministic dynamics (no
noise) of networks having different connectivity patterns. For Pe = 0 (Fig 1A), i.e. for networks
having exclusively local connectivity, we observe low frequency propagating chains of activity.
Given that there is no input noise in the network, and the fact that the activity is initiated by
the constant external current, one can observe repetition of the traveling wave-forms over
time. The corresponding ISI histogram is very narrow. Fig 1B depicts activity around the
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Fig 1. Dynamics of a network of 200 excitatory integrate-and-fire neurons with deterministic (left column) and noise-driven (right column)
dynamics. (A-D) Raster plots and ISI histograms associated with deterministic dynamics of networks having Pe = 0, 0.15, 0.4 and 1 respectively (blue dots
denote timing of neuronal action potential). (E-H) Same as panels (A-D) for noise driven networks (noise frequency = 0.00005). (I) Changes of mean ISIs as a
function of rewiring parameter for noise driven identical (Ieext = 1.05, fN = 0.00005 blue line), non-identical (Ieext = 0.95–1.15, fN = 0.00005, green line) and
deterministic dynamics for non-identical neurons (Ieext = 0.95–1.15, red line). (J) Changes in mean ISI duration as a function of noise level for an excitatory
network with Pe = 0.15 for both identical (Ieext = 1.05, blue line), and non-identical neurons (Ieext = 0.95–1.15, green line). Spike timings used for analysis in
this figure is provided as the supplemental data in S1–S8 Dataset.

doi:10.1371/journal.pone.0122225.g001
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small-world regime (Pe = 0.15), where most connections are local and few of them are rewired
to form long distance connectivity. The Small-world regime is known for high clustering and
short path lengths and has been shown that the brain possibly shares these connectivity fea-
tures [40–45]. The associated dynamics consists of two phases (Fig 1B): 1) short irregular prop-
agating waves of activity that collide occasionally and, 2) globally synchronous activity. At the
same time, addition of few random connections causes ISIs to shift toward lower values reflect-
ing the higher firing frequency. These kinds of dynamics were reported earlier and were also
observed in various brain modalities during normal function and pathology [39, 46–49]. With
Pe = 0.4, random connections are frequent enough to transform the dynamics into a single syn-
chronized phase. Interestingly in the ISI histogram we see two distant peaks the main peak cor-
responds to the dominating low-frequency synchronous activity patterns, whereas the small
high-frequency peak is due to the asynchronous activity appearing sporadically. Finally, Fig 1D
illustrates networks with exclusively random connections (Pe = 1). Where, we observe stable
synchronous bursting with frequency much lower than the small-world regime. Fig 1E–1H
correspond to the same network structures as those presented in Fig 1A–1D, respectively, but
with the addition of the background noise (please refer to methods). Here, the spatio-temporal
patterning is similar to the fully deterministic case, with generally shorter episodes of bursting
dynamics, more rapid transitions into and out of those regimes and more pronounced episodes
of asynchronous dynamics especially for those Pe values around the small-world region.

Changes in the mean ISI values as a function of rewiring parameter are plotted for deter-
ministic dynamics of non-identical neurons and noise-driven dynamics of both identical and
non-identical cells (Fig 1I). The general pattern for all cases is similar, large ISI for local con-
nectivity pattern (Pe = 0.0), followed with a significant drop for small-world connectivity re-
gime (Pe = 0.15–0.2), and then increase of ISI values in more random network topologies
(Pe>0.3). This data shows that firing rate is somewhat higher when both heterogeneity and
noise present (green line) at Pe = 0.15, and it reduced and shifted to Pe = 0.2 either with elimi-
nating the noise (red line) or heterogeneity (blue line). Albeit not surprising that the overall fre-
quency increases with addition of noise (additional excitatory input), it is interesting that the
frequency changes are more pronounced for random and local network connectivity than the
small-world regime. The noise effect on ISIs values for both identical (Ieext = 1.05, blue line)
and non-identical neurons (Ieext = 0.95–1.15, green line) are shown in (Fig 1J). For the interme-
diate and low values of noise, the cell heterogeneity significantly lowers the average of ISI while
for the higher levels of the applied noise there is no significant difference in the firing rates.

Here we will be primarily interested in characterizing transitions between bursting and syn-
chronous activity patterns for different network cellular and network properties. To better il-
lustrate the transitions between the synchronous and asynchronous regime we plotted
rasterplot with and example of such transition (Fig 2A) together with cumulative signal of net-
work activity (Fig 2B) and example of voltage traces (Fig 1C) near the transition point. De-
picted example corresponds to the network where neurons obtain constant input. We observe,
not surprisingly, that the pairs on neurons lying in spatial proximity are generally more syn-
chronous that those positioned far from each other. Furthermore one can observe that during
the asynchronous period the dynamics of the pairs is driven by mostly common asynchronous
signal causing their activity to desynchronize, while during bursting they respond collectively
to large network input.

1.2. Excitatory-Inhibitory networks with deterministic and noise driven dynamics.
Next, we investigated how the various topologies of inhibitory connectivity affect the network’s
spatio-temporal patterning. In order to do so, we created two corresponding rings of excitatory
and inhibitory cells. The inhibitory neurons send same number of connections as excitatory
neurons to other inhibitory and excitatory neurons, but their synapses are weaker than those
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originating from excitatory neurons. Inhibitory neurons are connected using the same frame-
work as excitatory cells—initially these neurons are connected locally and then rewire part of
those local connections based on the inhibitory rewiring parameter (Pi), Fig 3A. To look at the
effect of inhibitory network’s connectivity pattern on the excitatory dynamics, we kept the ex-
citatory rewiring parameter (Pe) fixed and varied the inhibitory rewiring parameter (Pi = 0–1).
Fig 3 presents results for the case when Pe = 0.15. In case of local inhibition (Fig 3C) we ob-
served a strong suppression of propagating chains of activity in excitatory network in compari-
son with the excitatory only network dynamics (Fig 3B). This suppression is evident during
asynchronous activity regimes. The shape of synchronous burst does not change significantly.

The increase of the inhibitory rewiring parameter (Pi) causes complex changes to the spa-
tio-temporal firing pattern of the excitatory cells (Fig 3C–3E). The firing chains within the
asynchronous dynamics increase in length, however at the same time the synchronous bursts
become suppressed for high Pi values (see Fig 3E). Furthermore, the overall frequency of the

Fig 2. Network activity and individual neurons’ voltage profiles before and after transition into synchronous dynamics. (A, B) An example of raster
plot and cumulative network activity pattern for a system composed of 200 excitatory neurons, transitioning from asynchronous to synchronous dynamics.
(C) Example of voltage traces of two pairs of neurons ([10, 11],[90,91]) where neurons in each pair are neighbors but the pairs are distant from each other.

doi:10.1371/journal.pone.0122225.g002
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Fig 3. Interaction of excitatory and inhibitory networks for varying inhibitory connectivity in networks with deterministic dynamics. (A) Topology of
interacting network of excitatory and inhibitory neurons. Here Pe = 0.15 and inhibitory connectivity changes from local (PI = 0) to random (PI = 1). (B)
Excitatory only neurons with Pe = 0.15 when there is no inhibitory feedback. (C) Pi = 0, (D) Pi = 0.2, the local propagating waves in the asynchronous regime
are destroyed. (E) Random inhibitory connections (Pi = 1), the firing frequency reduces significantly, while the propagating waves are longer and the
synchronous bursting is suppressed. Spike timings used for analysis in this figure is provided as the supplemental data in S9–S12 Dataset.

doi:10.1371/journal.pone.0122225.g003

Predictability of Network Transitions

PLOS ONE | DOI:10.1371/journal.pone.0122225 April 9, 2015 7 / 21



firing tends to decrease with Pi. This is due to rapid spread and equalization of inhibition
through out the network.

2. Identification and quantification of observed dynamical regimes
As we showed above, networks having different properties such as underlying structure, noise
and different inhibitory connectivity pattern exhibit distinctive dynamics. In most regimes
however we do observe periodic transitions from asynchronous (or less synchronized) to syn-
chronous (or more synchronized) modes of activity. We set out to characterize these different
patterns of activity and ultimately elucidate the predictive dynamical features of transitions be-
tween these dynamical regimes. In particular we want to investigate under what conditions (if
any) these features can be identified sooner rather than later, and thus, reversing the question,
can they tell us something about the underlying network properties.

Since the changes in network activity patterns are rapid, we cannot apply measures that are
based on long temporal averages, as this would obscure the transition detection. Thus, to char-
acterize the dynamics we developed a set of measures based on assessment of instantaneous
changes in adjacent spike-timings of neurons. Based on the observations reported in previous
section, the underlying idea of the proposed measures is to analyze, instead of changes in tem-
poral distributions, instantaneous properties of spatial distributions of neuronal activity in
given time windows. The major advantage of the developed metrics is that they are simple to
compute based on the data that is readily available from recordings and thus can be applied di-
rectly to in vivo or clinical measurements. While the exact positions of the recorded cells are
clearly unknown, one can ultimately divide the neural populations as coming from the same
electrode (cells are nearby) and coming from other electrodes placed at various distances.

The specific question we want to answer is if, and if so, how much before the ultimate syn-
chronous state can we detect changes in spatial network activity patterns. Also, we want to eluci-
date nature of this transition (e.g. is it a nucleation of locally synchronized groups of neurons)?

Here we divided the spiking data is divided into equal size time-windows with their duration
matching the mean ISI observed in the network. Next, we calculate the time difference between
closest (temporarily) spikes of every cell that fired within given window and every other cell in
the network. These spike timings are then sorted based on the actual spatial distance of neurons
(Fig 4A)—below we will refer to this vector as TD. We then aim to statistically characterize the
properties of this vector as a function of network state, and more importantly near the impend-
ing transition into bursting.

Fig 4 shows an example of the raster plot (Fig 4B) and computed TD vector for the consecu-
tive time windows (Fig 4C). The color scale denotes the time difference between the spikes
(note that scales are significantly different for different network structures). Fig 4D depicts the
spatial derivative of TD (dTD), while Fig 4E is the mean of TD for a given time window (TM).
We will use the TM to identify the onset and offset of the bursting regime. We do this by setting
a threshold value of TM below which we considered that the network dynamics is largely syn-
chronous. While this is to some extend arbitrary the results presented below are (within a
range) largely independent of the exact value of the threshold chosen. The dotted line on
Fig 4E denotes the threshold of transition between the two (asynchronous and bursting) re-
gimes. One can easily observe, that the values of TD are highly dependent on the distance be-
tween the cells. The universal property for all network structures (except when Pe = 1, see
below) is the rapid loss of this distance dependence during the transition. We aim to statistical-
ly analyze and characterize properties of these transitions.

The developed metric is quite sensitive to the changes in the network dynamics across vari-
ous network structures and detects even small variations in the overall observed pattern of
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Fig 4. Characterization of the spatio-temporal dynamics of the network. (A) To characterize instantaneous spatial patterning in the network, we
calculate the minimum time interval between each neuron’s spike in the time-window (blue filled circles) with all other neurons’ spikes and sort these timings
based on their spatial distance. The left side of panel A shows the calculation for the a time window that has a asynchronous activity with relatively large and
highly variable time intervals; the right side panel depicts calculation for the time window with a synchronous activity and minimal time differences between
the spikes. (B) An example of raster plot obtained from noise driven excitatory only network PE = 0.15, noise frequency f = 0.00005 (C) Color plot of
consecutive TD calculations; colors indicate the closest timing between spikes of neurons in the given window with all other neurons in the network. (D)
Spatial derivative of TD (dTD) in each time window. (E) Mean of TD for consecutive time windows (to which we refer as TM). The dotted line is a cutoff, which
we will use to identify the initiation of the bursting dynamics.

doi:10.1371/journal.pone.0122225.g004
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activity. An example of such is presented in Fig 5. This figure depicts changes in relative neu-
rons’ firing pattern as a function of their relative distance reported by the TD, for various con-
nectivity structures of excitatory network (Pe = 0; 0.15; 1.0). While the network spatio-temporal

Fig 5. Raster plots and corresponding TD and dTD for selected time windows in an excitatory network.Where the left, middle and right column are
associated with Pe = 0, Pe = 0.15, Pe = 1 respectively. (A) Raster plots; (B) Spatio-temporal changes of TD; (C) Examples of TD evolution with distance for
selected time windows (marked of B); (D) examples of derivative of TD at the same timepoints.

doi:10.1371/journal.pone.0122225.g005
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patterns are significantly different in the three cases, the metric picks up the bursting regime
without difficulty. Moreover the internal structure of the TD vector can shed the light on the
intra-burst dynamics of the network. The spatial extend of the changes in TD provides informa-
tion about the correlation lengths between neuronal activities generated by propagating waves
in the network. Thus when all connections are local and the average timing difference between
spikes of neurons grows with their actual distance consistent with the long traveling chains of
neuronal activities (Fig 5A). On the other hand, when the network has small-world connectivity
pattern (Pe = 0.15), we observe much more complex correlation structure with significantly de-
creased correlation length. The distribution of the local extrema in the TD again corresponds to
the shorter chain lengths of activity in the raster plot (Fig 5B). Finally, when all the connections
are random (Pe = 1.0), one can still observe changes in timing differences allowing for differenti-
ation of dynamics between less and more synchronous network states. However there is no in-
ternal correlation within the given TD. In Fig 5C we pick few time-windows and show how these
relative timings change as a function of actual distance for different structures: local, small-
world and random. In case of local connections these timings increase monotonically with in-
creasing spatial distance while in small-world structure there are local maxima and minima cor-
responding to the size of broken traveling chains. Finally in case of soley random connections
there is no clear relationship between spike timings and spatial distance. In Fig 5D we showed
changes in spatial derivatives for the same time windows.

2.1. Characterization of dynamical network regimes using the developed metrics. First
we set out to investigate the duration of the two (asynchronous and bursting) network regimes.
We use the evolution of TM to detect network durations in respective regimes. The threshold
defining the onset of the bursting regime is set arbitrarily, however its specific value did not in-
fluence significantly the obtained results. We studied duration of the bursting regime for both
excitatory only and excitatory-inhibitory networks as a function of topologies of both networks
and also as a function of noise level. Fig 6 shows the fraction of time spent in the bursting re-
gime for excitatory only networks as a function of these parameters. Fig 6A reports this fraction
as a function of network connectivity (Pe) for three types of networks. The first type are the net-
works composed of identical neurons (same driving excitatory current Ie = 1.05; see methods)
having transitions between synchronous and asynchronous dynamics driven by the noise (fN =
0.00005). The second network type is not driven by noise, but at the same time its elements are
not identical in terms of their driving current and thus their intrinsic firing frequency (Ie =
0.95–1.15; note that the mean Ie = 1.05). Eventually the third one is driven by noise and its neu-
rons are non-identical in terms of the driving current (fN = 0.00005, Ie = 0.95–1.15; mean Ie =
1.05, green line). As observed earlier (Fig 1) the fraction of time spent in synchronous regime
increases significantly with increasing Pe. At the same time, for small-world regime, heteroge-
neity of neurons along with noise (Fig 6A, green line) considerably lowers the fraction of time
spent in synchronous dynamics. However, there is no significant difference between noise driv-
en transitions and those cause internally by cell heterogeneity. For higher Pe values (Pe>0.3),
the neuronal heterogeneity nor/and noise does not change the duration of bursting dynamics
significantly.

On the other hand the effect of noise on the dynamics for the excitatory network is illustrat-
ed in Fig 6B. Here we vary the noise level (i.e. the probability of occurrence of random spikes)
for the two networks: those having identical driving current applied to all cells (blue line) and
those having driving current randomly chosen from a distribution Ie = 0.95–1.15 (green line).
The fraction of time spent in synchronous dynamics is suppressed with the increased levels of
noise, but also depends strongly on cellular heterogeneity.

We analyzed in similar fashion the effect of the inhibitory topology on the spatio-temporal
dynamics of the excitatory network (Fig 7). As before we investigated the dynamics of three
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Fig 7. Fraction of time that the network spent in the synchronous regime. The synchronous fraction of
dynamics as a function of inhibitory connectivity when excitatory connectivity is in small-world regime (Pe =
0.15), for: 1) noise driven identical neurons (fN = 0.00005, Ie = 1.05,Ii = 0.95; blue line), 2) non-identical
neurons (fN = 0.00005, Ie = 0.95–1.15, Ii = 0.9–1.0; green line), and 3) deterministic dynamics of non-identical
neurons (no noise, Ie = 0.95–1.15, Ii = 0.9–1.0; red line).

doi:10.1371/journal.pone.0122225.g007

Fig 6. Characterizing the effect of noise level and connectivity structure on the dynamics of excitatory network. (A) Fraction of time network adopts
synchronous dynamics as a function of rewiring parameter for noise driven identical (Ieext = 1.05 for all neurons fN = 0.00005, blue line), non-identical (Ieext =
0.95–1.15, fN = 0.00005, green line) and deterministic dynamics for network of non-identical cells (Ieext = 0.95–1.15, red line). (B) The effect of the increasing
noise level on the dynamics for the excitatory-only network with Pe = 0.15 for noise driven identical (Ieext = 1.05 for all neurons, blue line) and non-identical
(Ieext = 0.95–1.15, green line).

doi:10.1371/journal.pone.0122225.g006
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types of networks—the noise driven dynamics of networks composed of either identical neu-
rons, non-identical neurons and fully deterministic dynamics of networks composed of non-
identical cells (both excitatory and inhibitory). The mean driving current of the inhibitory cells
was set to be Ii = 0.95—effectively below spontaneous firing threshold. Thus their firing was
driven only by the excitatory network and/or noise. The connectivity of the excitatory networks
was kept constant at Pe = 0.15 and we varied the inhibitory connectivity (Pi = 0.0–1.0). Interest-
ingly the small-world regime of inhibitory connectivity corresponds to the largest fraction of
time spent in synchronous dynamics (Fig 7). As expected overall fraction of time that network
spent in synchronous dynamics is lower in the presence of both noise and heterogeneity (green
line). It is interesting to note that network spends most time in synchronous bursting regime
when PI = 0.15 (small world topology) and it significantly decreases for random inhibitory net-
work structure. This could indicate that changes in overall inhibitory network structure for ex-
ample due to axonal sprouting could lead to network more prone to bursting.

2.2. Network transitions from asynchronous to bursting regime. The ultimate goal of
this study is to characterize network transitions and their predictability from asynchronous ac-
tivity into the bursting regime. Here we limit the meaning of predictability to identification of
first signs of transition to bursting dynamics before the transition itself takes place. Thus, we
setout to identify the predictive dynamical features of the transitions as well as their first occur-
rence relative to the closest transition time, through further analyzing of the TD vector near the
transition points. Specifically we utilize measures such as TM (mean value of all TD values), var-
iance from the mean of TD values and variance of dTD (the spatial derivative of TD, see Figs 4
and 5) to detect precursors of the transition preceding the bursting onset. As we will show
below, we observed systematic changes in these measures prior to the onset of transitions into
the bursting. These changes can be interpreted as the early features of incoming transition (or
beginnings of the transition itself) and based on that we can obtain lead-time estimate to the in-
stance when fully synchronous state takes hold (see methods). We characterize this transition
predictability as a function of topologies of both excitatory and inhibitory networks, heteroge-
neity of cells and noise levels.

We want to use measures characterizing properties of TD to detect precursors of the transi-
tions into the bursting dynamics and calculate the lead-time TL (or predictability) to the transi-
tion, as a time period before the transitions, during which we can detect significant changes in
dynamics, as reported by the developed metrics. First, we measure the values of the above de-
fined metrics in the time windows immediately preceding the onset of the bursts (as defined by
the TM). We then calculate the ratios of these values obtained in the consecutive time windows.
Thus, we calculate RN = MN+1/MN, where RN denotes the ratio of the (generalized) measure
‘M’ calculated ‘N’ time-windows before the burst onset (N = 0, 1, 2, 3, 4, 5). We then average
the ratios over all the realizations of transitions for given network type. If the RN is significantly
different from unity we assume that spatial patterning within this time window is persistently
and significantly different from that in the prior window. At the same time, the lead-time is de-
fined as the number of time windows prior bursting onset within which the spatio-temporal
network pattern undergoes significant change with respect to the one observed in a window be-
fore. We defined “predictability” or Lead-time as a number of windows prior to the onset of
bursting when the ratio is significantly different from one.

Fig 8 depicts estimation of the lead-time as a function of inhibitory network connectivity.
The vertical dashed line (Fig 8A and 8B) denotes the transition point into bursting dynamics.
We report the ratios of three derivative measures of the TD vector (TM, spatial variance of TD

and its spatial derivative, dTD vector, for given time-window) calculated in the times windows
N+1 and N before and after the transition (N = 0, 1, 2, 3, 4, 5). Fig 8C shows lead-time (TL). All
three measures used show significant changes before the transition to bursting. The changes in
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variance of both TD and of dTD show the largest changes before the transition point. However
in terms of estimated lead-time TM performs somewhat better (see also Figs 9 and 10).

The excitatory network topology is fixed (Pe = 0.15) and neurons are identical (Ie = 1.05)
driven by noise (fN = 0.00005). The connectivity pattern of the inhibitory network is being

Fig 8. The effect of inhibitory connectivity on the lead-time, TL. (A-B) the ratio of measures (TM: blue line, Variance Of TM: red line, Variance Of dTM:
green line) before and after the onset of the transition into the bursting is shown for Pi = 0.2 and 1, respectively; Pe = 0.15, fN = 0.00005. Based on these
ratios, TL is calculated as a function of the inhibitory connectivity pattern (C). TL peaks for Pi = 0.2 and then decreases for more random inhibitory topologies.

doi:10.1371/journal.pone.0122225.g008

Fig 9. TL varies as a function of inhibitory connectivity (Pi) for excitatory networks with different values of Pe.. (A) Pe = 0.0, (B) Pe = 0.15 and (C) Pe =
1.0 where blue, red and green lines are standing for obtained TL based on the TM, variance of TM and variance of dTM measures respectively.

doi:10.1371/journal.pone.0122225.g009
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changed from local (Pi = 0) to random (Pi = 1). The examples of the ratios of the three metrics
at the consecutive time-windows are depicted for Pi = 0.2 (Fig 8A) and Pi = 1 (Fig 8B). We ob-
serve that depending on the inhibitory topology all three measures report different predictabili-
ty intervals—with longer ones being reported for Pi = 0.2. Fig 8C reports the lead-time as a
function of the inhibitory network connectivity. As mentioned before the size of time windows
depends on spiking frequency. If we assume that the mean spiking rate is around 10- 20Hz the
lead-time can be estimated to be up to 200-400ms (4 time-windows). While not a lot, this
maybe enough to provide electrical stimulation to disrupt pathological pattern.

To better understand the interaction of the excitatory and inhibitory topologies on the lead-
time (TL), we explored the effect of inhibition on networks with three excitatory connectivity
patterns Pe = 0.0, 0.15 and 0.4 having deterministic dynamics (Ieexc = 0.95–1.15, I

i
exc = 0.9–1,

Fig 9). Here the general trend is less clear, but there is a moderate decrease of the lead-time for
more random inhibitory topologies, with shift of the predictability peak towards values where
PeffiPi, as reported by TM.

We next used the measures described above to characterize the effect of noise and variability
of neuronal firing frequency on the transition lead-time for both, the excitatory (Fig 10A) and
interacting excitatory-inhibitory (Fig 10B) networks. The solid-lines are for the case when neu-
rons are receiving the same external current, while dashed lines are for the case when the neu-
rons have significantly different intrinsic firing frequencies as their driving current varies
between Ie = 0.95–1.15 for excitatory cells and Ii = 0.9–1.0 for inhibitory cells. Obtained results
suggest that predictability is much higher for the networks in which neurons have similar in-
trinsic firing frequencies, however as expected the lead-time decreases with the increasing
noise level.

Fig 10. The effect of noise on the lead-time of the transitions for both excitatory and interacting excitatory-inhibitory networks. (A) Excitatory
networks (Pe = 0.15); (B) excitatory and inhibitory networks (Pe = 0.15, Pi = 0.0). Solid lines denote simulations in which all neurons receive identical external
current (Ie = 1.05, Ii = 0.95), while dashed-lines are representing simulations with distribution of external currents (Ie = 0.95–1.15, Ii = 0.9–1.0).

doi:10.1371/journal.pone.0122225.g010
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Methods

Spiking neuron model
The Leaky integrate-and-fire (LIF) model was used to simulate network of excitatory and inter-
acting excitatory-inhibitory neurons. The evolution of the voltage across the membrane of neu-
ron ‘j’ is defined as follows:

C
dVj

dt
¼ �ajðVj � EÞ þ Iext þ Ijsyn ð1Þ

Where Vj and C are the voltage and capacity across jth neuron’s membrane, respectively.
The constant α is the leak conductance of the cell that is minimally different for each neuron
and chosen from Gaussian distribution (μ = 1, SD = 0. 05). Here Iext is an externally applied
current to each cell. Depending on the network model studied (i.e. whether the transitions are
due to the noise or to the significant firing frequency mismatch) it can be identical for all of the
neurons—external current that excitatory neuron receives: Ieexc = 1.05 (the steady state is for
most cells just above threshold), external current that inhibitory neuron receives: Iiexc = 0.95
(just below the threshold for most cells), or it can be taken from a uniform distribution (Ieexc =
1.05, SD = 0. 1 and Iiexc = 0.95, SD = 0. 05). After the electrical potential across the cell mem-
brane achieves the threshold set to VT = 1, the cell fires an action potential and its membrane
potential is reset to Vreset. We set resting-potential ‘E’ and reset-potential ‘Vreset‘ equal to zero.
Immediately after neuron spikes, the cell enters the refractory period (Tref = 1.5ms).

This synaptic input from presynaptic cell into the postsynaptic cell can be positive or nega-
tive depending on its excitatory or inhibitory character of the presynaptic cell and is defined as
follows:

Ijsyn ¼ o
X

i

Aij

�
HðtÞ � Hðt � tÞ� ð2Þ

Where i and j are presynaptic and postsynaptic neurons, respectively. The ω is the efficacy of
connection between presynaptic and postsynaptic neurons; A is the adjacency matrix, H(t)—a
Heaviside function, and τ = 1 ms represents the spike duration. We used Euler method with
step size h�0.01ms (estimated from time duration of the spike) to integrate LIF equation for
the network.

For networks dynamics incorporating stochastic component, we defined noise as a lighting
bolt arriving randomly at each cell with predefined probability. Its arrival at a given site caused
the cell to fire instantaneously independent of the membrane voltage, unless the cell was cur-
rently spiking or in its refractory time.

Networks Structures
The excitatory only network is composed of 200 excitatory neurons forming a 1-D ring struc-
ture. The small-world framework was used to vary continuously the network connectivity de-
pending on the rewiring probability [34]. This rewiring breaks a local connection that comes
from presynaptic neuron and forms a new random connection to any other postsynaptic neu-
ron that didn’t have connection before. Thus the network connectivity can vary from local con-
nectivity (Pe = 0), to the random connectivity (Pe = 1). Every neuron establishes 8 connections
to its neighbors (i.e. R = 4).

For interacting excitatory and inhibitory systems we added a corresponding network of 200
inhibitory cells. Thus here the network connectivity pattern is defined by two parameters (Pe and
Pi). Every excitatory cell makes 8 connections to other excitatory and inhibitory cells, every
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inhibitory cells makes also 8 connections to both other inhibitory and excitatory neurons. The
synaptic weight for connections originating from excitatory cells is ωe = 2.2, while that of inhibi-
tory neurons ωi = 0.8.

Analysis
In order to identify type of the networks’ dynamics (asynchronous versus synchronous) and
characterize their transitions, we created a measure based on the relative timing of each neu-
ron’s with respect to other neurons in the system (TD). We divided time of simulation into
number of equal length time-windows. The length of the time-window was set to be the aver-
age spike frequency in the network. At each time window, the minimum time difference be-
tween every neuron’s spike within that window and all other cells is computed (regardless
whether the other cells spike within that time-window). If there is more than one spike per
neuron in a time window we choose the earliest spike’s time for the given neuron. This calcula-
tion is repeated for all the consecutive time windows. These times are then sorted based on the
physical distance between neurons and the histogram of the mean times at every distance is
resulting in distinct spatial vector TD generated for every time window. The example of TD

can is illustrated using a color plot on Fig 4, where vertical axis represents the distance between
two neurons, horizontal axis is showing the time of simulation. The color scale indicates the
TD values.

We define TM as (spatial) average of TD and use its value to detect temporal location of
the transitions into and out of the bursting regime. To characterize the properties of the TD

vector near the transition point we calculate its spatial derivative dTD. Finally we calculate
dTM, which is the average value of dTD and also variance of TD and dTD.

Onset and slope of the transition
We want to use measures characterizing properties of TD to detect precursors of the transitions
into the bursting dynamics. We calculate the values of the above defined measures in the time
windows immediately preceding the onset of the bursts (as defined by the TM). We then calcu-
late the ratios of the measures progressing forward in time. Therefore we calculate RN = MN+1/
MN), the ratio of the (generalized) measure ‘M’ calculated ‘N’ time-windows before the burst
onset (N = 0, 1, 2, 3, 4, 5). If the RN is significantly different from unity we assume that spatial
patterning within this time window is persistently and significantly different from that in the
prior window. The lead-time is defined as the number of time windows prior bursting onset
within which the spatio-temporal network pattern undergoes significant change with respect
to the one observed in a window before. This lead-time is then averaged over many realizations
of bursting transitions.

Discussion
In this study we investigated predictability of network transitions into bursting regime as a
function of network structure, cell variability and noise. Initially, we characterized the dynam-
ics for different parameter sets and then we used the developed measures to predict transitions
to synchronous activity using spike timings. The networks, as predicted exhibit different types
of dynamics, ranging from propagating waves of activity, through coexistence of two phases
with short waves of activity and bursting, and finally synchronous dynamics. Addition of inhi-
bition to network shortens the propagating waves, with the transition to bursting suppressed
for random inhibitory topologies.

Over the last few decades amount of research is associated with finding robust measures
that can detect synchrony [50–53]. In general these measures require relatively long time series,
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making them not applicable to measure relatively rapid transitions in network patterning, such
as the onset of seizure. The metrics that we propose here aims to detect instantaneous changes
in spatial statistics of spiking coincidence.

The introduced measures centered on analysis of relative spike timings of all firing cells
within a given time window. The metrics characterized instantaneous spatial correlations be-
tween the cells as a function of their physical distance. The systematic changes in the intro-
duced measures in the time windows preceding the bursting onset, were able to predict
transition into bursting within few time windows of its onset. It is important to note however
that the approach taken does not allow estimating the false positives (i.e. when observed change
does not lead to bursting transition), resolving these changes from the ones leading to bursting
onset is a subject of ongoing research. The performance of the metrics depended on network
topology, noise level and distribution of cellular firing rates. The constructed metrics provide
an alternate approach toward gaining an insight on transitions between asynchronous and
bursting dynamics. Their advantages are that they can be computed rapidly and thus applied
online in clinical use.

Supporting Information
S1 Dataset. (Fig 1A) Spike-timings. Excitatory only network, Pe = 0, neurons receive no noise,
and their external current is taken from a uniform distribution of Ieext = 0.95–1.15.
(XLS)

S2 Dataset. (Fig 1B) Spike-timings. Excitatory only network, Pe = 0.15, neurons receive no
noise, and their external current is taken from a uniform distribution of Ieext = 0.95–1.15.
(XLS)

S3 Dataset. (Fig 1C) Spike-timings. Excitatory only network, Pe = 0.4 neurons receive no
noise, and their external current is taken from a uniform distribution of Ieext = 0.95–1.15.
(XLS)

S4 Dataset. (Fig 1D) Spike-timings. Excitatory only network, Pe = 1, neurons receive no
noise, and their external current is taken from a uniform distribution of Ieext = 0.95–1.15.
(XLS)

S5 Dataset. (Fig 1E) Spike-timings. Excitatory only network, Pe = 0, with noise frequency of
fN = 0.00005 and all neurons receive identical external current Ieext = 1.05.
(XLS)

S6 Dataset. (Fig 1F) Spike-timings. Excitatory only network, Pe = 0.15 with noise frequency
of fN = 0.00005 and all neurons receive identical external current Ieext = 1.05.
(XLS)

S7 Dataset. (Fig 1G) Spike-timings. Excitatory only network, Pe = 0.4, with noise frequency of
fN = 0.00005 and all neurons receive identical external current Ieext = 1.05.
(XLS)

S8 Dataset. (Fig 1H) Spike-timings. Excitatory only network, Pe = 1, with noise frequency of
fN = 0.00005 and all neurons receive identical external current Ieext = 1.05.
(XLS)

S9 Dataset. (Fig 3A) Spike-timings. Excitatory only network, Pe = 0.15, neurons receive no
noise, and their external current is taken from a uniform distribution of Ieext = 0.95–1.15.
(XLS)
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S10 Dataset. (Fig 3B) Spike-timings. Excitatory neurons in the excitatory-inhibitory network,
where Pe = 0.15 and Pi = 0, neurons receive no noise, and their external current is taken from a
uniform distribution of Iiext = 0.9–1, Ieext = 0.95–1.15.
(XLS)

S11 Dataset. (Fig 3C) Spike-timings. Excitatory neurons in the excitatory-inhibitory network,
where Pe = 0.15 and Pi = 0.2, neurons receive no noise, and their external current is taken from
a uniform distribution of Iiext = 0.9–1, Ieext = 0.95–1.15.
(XLS)

S12 Dataset. (Fig 3D) Spike-timings. Excitatory neurons in the excitatory-inhibitory network,
where Pe = 0.15 and Pi = 1, neurons receive no noise, and their external current is taken from a
uniform distribution of Iiext = 0.9–1, Ieext = 0.95–1.15.
(XLS)
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