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Background: Kidney renal clear cell carcinoma (KIRC) is a common malignant tumor of
the urinary system. Surgery is the preferred treatment option; however, the rate of distant
metastasis is high. Mast cells in the tumor microenvironment promote or inhibit
tumorigenesis depending on the cancer type; however, their role in KIRC is not well-
established. Here, we used a bioinformatics approach to evaluate the roles of mast cells
in KIRC.

Methods: To quantify mast cell abundance based on gene sets, a single-sample gene set
enrichment analysis (ssGSEA) was utilized to analyze three datasets. Weighted correlation
network analysis (WGCNA) was used to identify the genes most closely related to mast
cells. To identify new molecular subtypes, the nonnegative matrix factorization algorithm
was used. GSEA and least absolute shrinkage and selection operator (LASSO) Cox
regression were used to identify genes with high prognostic value. A multivariate Cox
regression analysis was performed to establish a prognostic model based on mast cell-
related genes. Promoter methylation levels of mast cell-related genes and relationships
between gene expression and survival were evaluated using the UALCAN and GEPIA
databases.

Results: A prolonged survival in KIRC was associated with a high mast cell abundance.
KIRC was divided into twomolecular subtypes (cluster 1 and cluster 2) based onmast cell-
related genes. Genes in Cluster 1 were enriched for various functions related to cancer
development, such as the TGFβ signaling pathway, renal cell carcinoma, and mTOR
signaling pathway. Based on drug sensitivity predictions, sensitivity to doxorubicin was
higher for cluster 2 than for cluster 1. By a multivariate Cox analysis, we established a
clinical prognostic model based on eight mast cell-related genes.

Conclusion: We identified eight mast cell-related genes and constructed a clinical
prognostic model. These results improve our understanding of the roles of mast cells
in KIRC and may contribute to personalized medicine.
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INTRODUCTION

Clear cell renal cell carcinoma (KIRC) accounts for
approximately 65–70% of all renal cell carcinomas (Warren
and Harrison, 2018; Siegel et al., 2020). Metastasis is the main
cause of death in patients with KIRC (Li et al., 2018). The early
clinical features are not obvious and are difficult to identify.
Therefore, some patients with KIRC have metastases when they
are first diagnosed (Motzer et al., 1996). Although surgical
treatment achieves good results, the 5-years survival rate for
patients with metastatic KIRC is still low (Heidenreich et al.,
2012; Sara et al., 2016). Studies on immune checkpoint
inhibitors have made significant advances for KIRC
treatment; however, the response to immunotherapy in
patients with KIRC varies greatly across individuals (Fang
et al., 2020). Therefore, it is necessary to identify therapeutic
targets and effective predictors for early diagnosis and
treatment.

Mast cells are one of the main components of the tumor
immune microenvironment. The mast cell density is elevated in
various types of tumors (Marone et al., 2016). Mast cells can be
attracted by chemotactic molecules produced by tumor cells,
thus producing a variety of angiogenic and lymphangiogenic
factors, thereby contributing to tumor growth and metastasis
(Boesiger et al., 1998; Abdel-Majid and Marshall, 2004;
Taskinen et al., 2008; Detoraki et al., 2010; Melillo et al.,
2010; Theoharides et al., 2010; Sismanopoulos et al., 2012).
While many studies have demonstrated that mast cells can
promote tumor development, others have shown that mast
cells have tumor-inhibitory effects (Dabiri et al., 2004; Amini
et al., 2007). A poor prognosis in KIRC has been linked to the
existence of mast cells (Hiroshi et al., 1999; Melillo et al., 2010;
Strouch et al., 2010; David et al., 2011; Rao et al., 2016). Previous
studies have shown that mast cells can be used as targets for
immunotherapy of solid tumors (Oldford and Marshall, 2015).
Beuselinck et al. used unsupervised transcriptome analysis to
identify four robust KIRC subtypes that were associated with
different responses to sunitinib treatment (Beuselinck et al.,
2015). Zhao et al. classified KIRC in the Chinese population into
three classes based on gene expression, which provides practical
guidelines on clinical treatment of patients with KIRC (Zhao
et al., 2020). However, few studies have examined the role of
mast cells in KIRC and the molecular mechanisms underlying
their effects.

In this study, we used a bioinformatics approach to evaluate
the prognostic value of mast cell-related genes in KIRC. In
particular, we used a single-sample gene set enrichment
analysis (ssGSEA) to quantify mast cell abundance in three
KIRC datasets. Then, a series of statistical analyses, including
a univariate Cox regression analysis, weighted correlation
network analysis (WGCNA), GSEA, Least Absolute Shrinkage
and Selection Operator (LASSO) Cox analysis, and Kaplan–Meier
survival analysis, were performed to identify mast cell-related
genes that may regulate the development of KIRC and to develop
clinical prognostic models. These results will improve our
understanding of the role of mast cells in KIRC and provide a
basis for personalized treatment.

METHODS

Processing of KIRC Patient Data Set
Clinical information and KIRC transcriptome sequencing data
were downloaded from The Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/repository), including data for 539
KIRC and 72 normal cases. The E-MTAB-1980 dataset (n � 101)
was downloaded from the ArrayExpress database (https://www.
ebi.ac.uk/arrayexpress/). Similarly, sample information for KIRC
(n � 91) was downloaded from the International Cancer Genome
Consortium (ICGC) database (https://dcc.icgc.org/). Immune-
related genes were derived from the Immunology database and
Analysis Portal (ImmPort) database (https://www.immport.org/
home). A mast cell gene set (Supplementary Table S1) was
obtained from a previous study (Bindea et al., 2013).

Quantification of Mast Cell Abundance
Mast cell abundance was quantified in three bladder datasets
using ssGSEA based on the mast cell gene set using the GSVA R
package (Hänzelmann et al., 2013).

Identification of Mast Cell-Related Genes
and Molecular Subtypes
WGCNA was performed using the R package “WGCNA”
(Langfelder and Horvath, 2008) to identify highly correlated
gene modules among samples and these modules were used for
subsequent analyses. WGCNAwas based on 1670 immune-related
genes from TCGA-KIRC, and the relationships between single
genes and mast cell density were quantified by gene significance.
Module membership was evaluated as the correlation between the
gene expression profiles and module characteristic genes. The total
number of non-gray modules was eight. The brown module was
most highly correlated with the mast cell density (r � 0.58, p � 9e-
46). This module contained 258mast cell-related genes. Among the
258 mast cell-related genes, 250 were consistently found in all
ArrayExpress and the International Cancer Genome Consortium
(ICGC) datasets and were used for an non-negative matrix
factorization (NMF) clustering analysis. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses of the 250 genes were performed
using the clusterProfiler package in R (Yu et al., 2012). We
identified functional pathways related to cluster 1 in TCGA
dataset and used h.all.v7.1.symbols.gmt as the reference gene set
for GSEA. The analysis was performed using 1000 permutations
with a <0.05 false discovery rate (FDR) as the screening threshold,
and GSEA version 4.0.1. ESTIMATE (Yoshihara et al., 2013) and

TABLE 1 | Univariate Cox regression analysis of fibroblast abundance in The
Cancer Genome Atlas (TCGA), E-MTAB-1980, and International Cancer
Genome Consortium (ICGC) cohorts.

Datasets HR HR.95 L HR.95H p-value

TCGA 0.004201883 0.000320462 0.055094827 3.08E-05
E-MTAB-1980 4.95E-05 2.81E-08 0.087285488 0.009339429
ICGC 0.164918533 0.000142324 191.0997492 0.616586053
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CIBERSORT (Newman et al., 2019) algorithms were used to
explore the relationship between molecular subtypes and tumor
immune microenvironment.

Chemotherapeutic Response and
Immunotherapeutic Response Prediction
The responses to doxorubicin and sunitinib, two commonly
used chemotherapeutic drugs, were predicted for each sample
according to the Genomics of Drug Sensitivity in Cancer
(GDSC, https://www.cancerrxgene.org/) using the R package
“pRRophetic.” Based on 10-fold cross-validation of the GDSC
training set, the prediction accuracy was evaluated, and ridge
regression was used to estimate the IC50 values for the samples.
Repeated gene expression estimates were summarized as an
average value, and default values were used for all parameters
setting the tissue type to “allSolidTumours” and using “combat”
for batch effect removal (Geeleher et al., 2014). All parameters
were set to the default values. We then compared the TCGA
KIRC expression profile of cluster 1 and 2 with another
published dataset that contained the data of 47 patients with
melanoma who responded to immunotherapies using subclass
mapping method (https://cloud.genepattern.org/gp) (Lu et al.,
2019).

Construction and Verification of Clinical
Prognostic Model Based on Mast
Cell-Related Genes
To identify the mast cell-related genes most closely related to
prognosis, a Cox regression analysis with the LASSO penalty
was performed using the R package “glmnet.” To construct the
optimal clinical prognostic model of mast cell-related genes, a
multiple regression analysis was used. We developed the
formula for the risk score as follows: Risk Score � coef
(gene 1) × expr (gene 1) + coef (gene 2) × expr (gene 2) +
coef (gene 3) × expr (gene 3) + . . .. + coef (gene N) × expr (gene
N). Patients were classified into a high-risk and low-risk group
according to the median value of the risk scores of all samples
in each dataset.

Survival Analysis and Methylation Analysis
To evaluate the relationship between survival and the expression
of eight genes in the model, the GEPIA database (http://gepia.
cancer-pku.cn/) was used (Tang et al., 2017). The UALCAN
database (http://ualcan.path.uab.edu/) was used to analyze the
promoter methylation levels of genes used to construct a clinical
prognostic model (Chandrashekar et al., 2017).

Statistical Analyses
Differences in overall survival (OS) among groups were
compared using the Kaplan-Meier analysis and log-rank test.
A multi-time receiver operating characteristic (ROC) analysis
and area under the curve (AUC) were used to evaluate signal
specificity and sensitivity. R (version 4.0.2) was used for all
statistical analyses. Statistical significance was set at p < 0.05.

RESULTS

Mast Cell Abundance is Beneficial for
Survival of Patients With KIRC
To quantify mast cell abundance based on a mast cell gene set in
three KIRC datasets (TCGA, ArrayExpress, and ICGC cohorts),
ssGSEA was used. A univariate Cox analysis showed that the mast
cell gene set was a protective factor for KIRC (Table 1). In
addition, we divided the samples in the three data sets into low
abundance and high abundance groups based on ssGSEA scores.
A high abundance of mast cells was beneficial for the survival of
patients with KIRC (Figures 1A–C).

Identification of Mast Cell-Related Genes
and Molecular Subtypes
To identify genes related to mast cells, WGCNA was used. The
genes were clustered into eight modules (Figure 1D). As
determined by Pearson’s correlation coefficients (Figure 1E),
the brown module was most highly correlated with mast cell
abundance (r: 0.58, p � 9e-46). A functional enrichment analysis
showed that the genes in the brown module are enriched for the
following GO terms: regulation of epithelial cell proliferation,
epithelial cell proliferation, regulation of chemotaxis, receptor
ligand activity, and signaling receptor activator activity
(Figure 1F). A KEGG pathway analysis showed that the mast
cell-related genes were involved in the MAPK signaling pathway,
Rap 1 signaling pathway, cytokine–cytokine receptor interaction,
and PI3K-Akt signaling pathway (Figure 1G). Furthermore, to
obtain survival-related mast cell-related genes, we used a
univariate Cox regression analysis. Among 250 mast cell-
related genes, 103 were related to survival with a threshold of
p < 0.05 (Supplementary Table S2). An NMF clustering analysis
divided these 103 genes in TCGA-KIRC into two molecular
subtypes (Cluster 1 and 2) with different molecular and
clinical characteristics. Figure 2A shows a heatmap of
expression differences between clusters 1 and 2 in the TCGA
cohort. The immune score for cluster 2 was significantly higher
than that of cluster 1 (p < 0.05), with no significant differences in
the stromal score and tumor purity between the two subgroups
(Figures 2B–D). We also divided ArrayExpress-KIRC and
ICGC-KIRC data into cluster 1 and cluster 2. Figure 3A
shows a heatmap for the two subgroups in the ArrayExpress
cohort. The stromal score for the cluster 1 subgroup was higher
than that for the cluster 2 subgroup (Figure 3B). The tumor
purity was lower for the cluster 1 subgroup than the cluster 2
subgroup (Figure 3C). There was no significant difference in
immune scores between the two subgroups (Figure 3D).
Figure 4A shows a heatmap for the two subgroups in the
ICGC cohort; the immune score, stromal score, and tumor
purity did not differ significantly between cluster 1 and cluster
2 (Figures 4B–D). Differences in the tumor immune
microenvironment were observed between the two molecular
subtypes in the three KIRC cohorts (Figures 5A–C). As
determined by a Kaplan-Meier analysis, survival time was
longer in cluster 1 than in cluster 2 (TCGA, p < 0.001;
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ArrayExpress cohort, p < 0.001) (Figures 5D–F). A GSEA
showed that cluster 1 is enriched for the upregulation of
inositol phosphate metabolism, adipocytokine signaling
pathway, endocytosis, phosphatidylinositol signaling system,

TGFβ signaling pathway, renal cell carcinoma, mTOR
signaling pathway, vasopressin regulated water reabsorption,
fatty acid metabolism, leukocyte transendothelial migration,
and focal adhesion (Figure 6).

FIGURE 1 | (A–C) Kaplan–Meier curves for patients with bladder cancer (BLCA) showed that in the six cohorts, patients with a low fibroblast abundance have a
better prognosis than that of patients with a high fibroblast abundance [(A): The Cancer Genome Atlas (TCGA); (B): E-MTAB-1980; (C): International Cancer Genome
Consortium (ICGC)] (C) Using weighted correlation network analysis (WGCNA), eight modules were identified. (D) The brown module was most highly correlated with
mast cells (cor: 0.58, p � 9e-46). (E, F) Functional enrichment analysis of 258 mast cell-related genes.
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Cluster 2 is More Sensitive to Immuno- and
Chemotherapies
To predict the response to immunotherapy, subclass mapping was
applied to compare the expression profiles of the two KIRC subtypes
with a published dataset for patients with melanoma treated by
immunotherapy (Ro et al., 2017). In the TCGA cohort, cluster 2 was
more likely to respond to anti-CTLA4 treatment (p � 0.010).
However, based on corrected p-values, cluster 2 was not sensitive
to CTLA4-R (Figure 7A). We also used GDSC data to predict the

IC50 of doxorubicin for cluster 1 and cluster 2 in the three cohorts.
Sensitivity to doxorubicin was significantly higher for cluster 2 than
for cluster 1 (TCGA cohort, p � 0.016; ArrayExpress cohort, p �
0.003; ICGC cohort, p � 0.0002) (Figures 7B–D).

Construction of a Clinical Prognostic Model
Based on Mast Cell-Related Genes
Based on 103 mast cell-related genes, we used the LASSO Cox
regression algorithm to identify 46 genes with high

FIGURE 2 | Molecular subtypes identified based on mast cell-related genes in The Cancer Genome Atlas (TCGA) cohort. (A) Heatmap of differences between
cluster 1 and cluster 2. (B–D) Differential analyses of the immune score, stromal score, and tumor purity between cluster 1 and cluster 2.
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prognostic value using p < 0.01 as a threshold
(Supplementary Table S3). Finally, by a multivariate Cox
regression analysis, we identified eight genes for the
construction of a clinical prognostic model of mast cell-
related genes (Table 2). The risk score was calculated as
follows: [TRPC4AP expression level × (0.0286)] + [TEK
expression level × (−0.0636)] + [IL17RD expression level ×
(−0.1686)] + [PTH expression level × (1.4582)] + [PDIA2
expression level × (0.1083)] + [SOCS3 expression level ×

(0.0053)] + [FCGRT expression level × (−0.0117)] + [GDF5
expression level × (0.8070)].

Application of the Prognostic Model to
Patients With KIRC
At a ratio of 1:1, patients with KIRC in the TCGA cohort were
divided into training and test sets. Based on the risk score
calculated from the clinical prognostic model based on mast

FIGURE 3 |Molecular subtypes identified based on mast cell-related genes in the E-MTAB-1980 cohort. (A) Heatmap of differences between cluster 1 and cluster
2. (B–D) Differential analyses of the immune score, stromal score, and tumor purity between cluster 1 and cluster 2.
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cell-related genes, patients with KIRC were divided into high-risk
and low-risk groups (Figure 8B). As the risk score increased, the
survival time of patients with KIRC decreased (Figure 8G). A
time-dependent ROC curve analysis supported the predictive
value of the model. These results show that our prognostic
indicators have a good performance (Figure 8L).

Validation of the Clinical Prognostic Model
To determine the reliability of the clinical prognostic model
across populations, we applied the formula to the TCGA

cohort, TCGA testing cohort, ArrayExpress cohort, and
ICGC cohort, yielding similar results to those obtained for
the training set. Patients with KIRC were divided into high-
risk or low-risk groups based on the risk score calculated
from the model (Figure 8A, C–E). A lower risk was
associated with a longer survival time (Figure 8B, H–J).
Additionally, we verified the predictive accuracy of the
clinical prognostic model in a joint analysis of the TCGA
cohort, TCGA testing group, ArrayExpress cohort, and
ICGC cohort (Figure 8C, M–O). Therefore, the newly

FIGURE 4 | Molecular subtypes identified based on mast cell-related genes in the International Cancer Genome Consortium (ICGC) cohort. (A)
Heatmap of differences between cluster 1 and cluster 2. (B–D) Differential analyses of the immune score, stromal score, and tumor purity between cluster 1
and cluster 2.
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developed clinical prognostic model is generalizable to
different populations.

Survival Analysis and Methylation Analysis
of Eight Genes Included in the Prognostic
Model
To analyze the correlation between OS in patients with KIRC and
the expression of the eight mast cell genes included in the model,

the GEPIA database was utilized. OS was better for patients with
low TEK expression than with high TEK expression (p < 0.001).
Patients with high TEK expression had better disease-free
survival (DFS) than that of patients with low TEK expression
(p � 0.00043). Patients with high IL17RD expression had better
OS than that of patients with low IL17RD expression (p < 0.001).
Patients with high IL17RD expression had better OS than that of
patients with low IL17RD expression (p � 0.00045). Patients with
high FCGRT expression had better OS than that of patients with

FIGURE 5 | Differences in immune cell populations and survival between the two molecular subtypes of cluster 1 and cluster 2. [(A, D): The Cancer Genome Atlas
(TCGA); (B, E): E-MTAB-1980; (C, F): International Cancer Genome Consortium (ICGC)].
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FIGURE 6 |Gene set enrichment analysis (GSEA) of Kyoto Encyclopedia of Genes andGenomes (KEGG) pathway differences between cluster 1 and cluster 2. [(A):
inositol phosphate metabolism, (B): adipocytokine signaling pathway, (C): endocytosis, (D): phosphatidylinositol signaling system, (E): TGFβ signaling pathway, (F):
renal cell carcinoma, (G): mTOR signaling pathway, (H): vasopressin regulated water reabsorption, (I): fatty acid metabolism, (J): leukocyte transendothelial migration,
(K): focal adhesion]. NES: normalized enrichment score.
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low FCGRT expression (p < 0.001). In contrast, patients with low
PDIA2 expression had better OS than that of patients with high
PDIA2 expression (p < 0.001). Patients with low PDIA2
expression had a better DFS than that of patients with high
PDIA2 expression (p < 0.001). Patients with low SOCS3
expression had better OS than that of patients with high
SOCS3 expression (p � 0.00013). Patients with low GDF5
expression had better OS than that of patients with high
GDF5 expression (p � 0.00013) (Figure 9). In addition, we
analyzed the promoter methylation levels of eight genes using
the UALCAN database. The promoter methylation levels of
FCGRT (p < 0.001), PDIA2 (p < 0.001), PTH (p < 0.001), and
TRPC4AP (p < 0.001) were decreased in KIRC and those of GDF5

(p < 0.001) and TEK (p � 0.024) were increased in KIRC
(Figure 10).

DISCUSSION

KIRC is the third most common malignant tumor of the urinary
system. In 2020, it accounted for an estimated 14,830 deaths, with
approximately 73,750 new cases in the United States (Siegel et al.,
2020). Surgery remains the best treatment option. However, most
patients eventually develop distant metastases (Rao et al., 2018). At
present, radiotherapy, chemotherapy, targeted therapy, and
immunotherapy are not effective in KIRC (Lalani et al., 2018).

FIGURE 7 | (A) Subclass mapping analysis showed that cluster 2 is sensitive to CTLA4-R. [The Cancer Genome Atlas (TCGA): PCTLA4-R � 0.010; E-MTAB-1980:
PCTLA4-R � 0.191; International Cancer Genome Consortium (ICGC): PCTLA4-R � 0.232] Based on corrected p-values, cluster 1 is not sensitive to CTLA4-R. (B) Box
plot of estimated IC50 values for sunitinib and doxorubicin in cluster 1 and cluster 2. [(A): TCGA; (B): E-MTAB-1980; (C): International Cancer Genome Consortium
(ICGC)].

TABLE 2 | Multivariate Cox regression analysis of genes related to mast cells used to construct the model.

Gene Coefficient HR HR.95 L HR.95H p-value

TRPC4AP 0.02857631 1.02898853 1.00929749 1.04906374 0.00374682
TEK −0.0635723 0.93840629 0.90164062 0.97667113 0.00182356
IL17RD −0.1686320 0.84481971 0.75159926 0.94960225 0.00470115
PTH 1.45824552 4.29841145 0.82061110 22.5153437 0.08435432
PDIA2 0.10826512 1.11434314 0.99652289 1.24609344 0.05758127
SOCS3 0.00534328 1.00535758 1.00240904 1.00831479 0.00036303
FCGRT −0.0117308 0.98833770 0.97729089 0.99950937 0.04080188
GDF5 0.80699657 2.24116669 1.40590172 3.57267371 0.00069420
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Therefore, a deeper understanding of the molecular mechanisms
underlying KIRC is necessary for development of effective early
diagnostic methods and prognostic markers.

Mast cells are important components of the immune
microenvironment of tumor tissues and can promote or inhibit
tumorigenesis by releasing various factors (Varricchi et al., 2017).

FIGURE 8 | (A–E) Distribution of patients according to the risk index. (F–J) Risk score calculated from the clinical prognostic model can predict survival. (K–O)
Receiver operating characteristic (ROC) curve to verify the prognostic value of the model. [(A, F, K): The Cancer Genome Atlas (TCGA); (B, G, L): TCGA training group;
(C, H, M): TCGA testing group; (D, I, N): E-MTAB-1980; (E, J, O): International Cancer Genome Consortium (ICGC)].
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We quantified the abundance of mast cells in three cohorts and
found that the mast cell gene set used in the study is a protective
factor in KIRC.We identifiedmast cell genes that weremost closely

related to the ssGSEA score byWGCNA. A functional enrichment
analysis showed that mast cell-related genes are related to epithelial
cell proliferation regulation, epithelial cell proliferation, chemotaxis

FIGURE 9 | Analysis of overall survival (OS) and disease-free survival (DFS) by the application of the constructed model based onmast cell-related genes of patients
with kidney renal clear cell carcinoma (KIRC). (TEK: pOS < 0.001, pDFS � 0.00043; IL17RD: pOS < 0.001, pDFS � 0.00045; FCGRT: pOS < 0.001; PDIA2: pOS < 0.001, pDFS
� 0.00076; SOCS3: pOS � 0.00013; GDF5: pOS � 0.00013).

FIGURE 10 | Analysis of promoter methylation levels of mast cell-related genes in the constructed model. (A–H)GDF5: p < 0.001; SOCS3: p � 0.173; FCGRT: p <
0.001; PDIA2: p < 0.001; PTH: p < 0.001; IL17RD: p � 0.126; TEK: p � 0.024; TRPC4AP: p < 0.001.
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regulation, receptor ligand activity, signal receptor activator
activity, MAPK signaling pathway, Rap1 signaling pathway,
cytokine receptor interaction, and PI3K/Akt signaling pathway.
Furthermore, after screening for survival-related mast cell-related
genes, we divided KIRC into two molecular subtypes, cluster 1 and
cluster 2, based on these genes. Predictive analyses of the responses
to immuno-chemotherapies indicated that cluster 2 is sensitive to
anti-CTLA4 treatment based on the p-value but not based on the
corrected p-value. The mechanism underlying the observed
difference in sensitivity requires further research. In addition,
sensitivity to doxorubicin was higher for cluster 2 than cluster 1.

Finally, we constructed a clinical prognostic model based on
mast cell-related genes using the LASSO Cox regression model
and multivariate Cox regression model to predict the prognosis
and survival time of patients with KIRC. Time-dependent ROC
supported the predictive ability of the model.

The clinical prognostic model was based on eight mast cell-
related genes. The tyrosine kinase receptor TEK, mainly expressed
on endothelial cells, is activated by Angiopoietin-1. Endothelial cell
survival and vascular maturation are promoted by the activation
and phosphorylation of TEK, leading to downstream signal
transduction (Eklund and Saharinen, 2013). Moreover, TEK
promotes immune responses, the activation of mast cells, and
the adhesion of mast cells to VCAM-1 (Kanemaru et al., 2015).
Low TEK expression promotes AKT phosphorylation, the
epithelial–mesenchymal transition, and the proliferation and
migration of KIRC cells and inhibits the apoptosis of KIRC
cells (Chen et al., 2021). In addition, the mitogen-activated
protein kinase (MAPK) pathway is related to senescence,
apoptosis, cell proliferation, differentiation, and migration (Sun
et al., 2015). Cytokine signal transduction 3 (SOCS3) is an inhibitor
of IL-6 and a negative regulator of cytokine signal transduction.
SOCS3 not only inhibits cytokine-mediated JAK/STAT signal
transduction, but also maintains the MAPK pathway, thereby
promoting the growth of KIRC and angiogenesis (Oguro et al.,
2013). Very few studies of KIRC have focused on TRPC4AP,
IL17RD, PTH, PDIA2, FCGRT, and GDF5, and the role of these
mast cell-related genes in KIRC requires further research.

Epigenetic changes oftenoccur inKIRCandmaybe important events
in its development (Joosten et al., 2018).AbnormalDNAmethylation is a
common type of epigenetic change, including genome-wide changes and
regional variation (Jones and Baylin, 2002; Feinberg and Tycko, 2004).
Abnormal DNA methylation can induce the abnormal expression of
cancer-related genes and is the most common epigenetic change in
tumorigenesis. Changes in DNAmethylation during tumor progression
affect target tumor cells; additionally, the immune system may undergo
methylation changes during immune responses (Li et al., 2017). In our
study, the promoter methylation levels of FCGRT, PDIA2, PTH, and
TRPC4AP were reduced in KIRC. In contrast, promoter methylation
levels of GDF5 and TEK were elevated in KIRC. We believe that a
decrease in TEK resulting from an increase in promoter methylation
levels may promote the proliferation and migration of KIRC cells,
ultimately leading to the occurrence and progression of KIRC. Of
course, the mechanism underlying the changes in the methylation
levels of these genes in KIRC needs further verification.

The prognostic value of the newly established model was
supported by an analysis of the OS of patients with KIRC in a

training group, in which patients classified as high-risk had a
shorter survival time. In addition, we used the risk scores calculated
from the prognosis model to generate a risk curve to monitor
disease progression. The ROC curve showed that our clinical
prognostic model had a high predictive value. All results were
verified by ArrayExpress and ICGC cohorts. Therefore, this model
may be valuable for evaluating the prognosis of patients with KIRC.

This study had some limitations. First, all data were collected
from TCGA, ArrayExpress, and ICGC, but lack of a support from
hospital centre. Second, experimental studies of the functions of
mast cell-related genes were not conducted. Therefore, further
verification is needed to clarify the molecular mechanisms
underlying KIRC and the roles of mast cells.

CONCLUSION

We found a correlation between prognosis and mast cell
abundance in KIRC. By WGCNA, genes related to mast cells
were identified, and two molecular subtypes (cluster 1 and cluster
2) were identified. Patients in cluster 2 were more likely to benefit
from immunotherapy. The newly developed clinical prognostic
model based on eight mast cell-related genes may contribute to
the monitoring and the prediction of survival. More broadly, our
research provides a basis for personalized medicine in KIRC.
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