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Abstract: Rutin, a natural flavonol glycoside, elicits its diverse health-promoting effects from the
bioactivities of quercetin, its aglycone. While widely distributed in the vegetables and fruits of
human diet, rutin is either absent or inadequate in common animal feed ingredients. Rutin has been
supplemented to dairy cows for performance enhancement, but its metabolic fate in vivo has not been
determined. In this study, plasma, urine, and rumen fluid samples were collected before and after
the intraruminal dosing of 100 mg/kg rutin to 4 Holsteins, and then characterized by both targeted
and untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomic analysis.
In plasma and urine, 4-methylcatechol sulfate was identified as the most abundant metabolite of
rutin, instead of quercetin and its flavonol metabolites, and its concentration was inversely correlated
with the concentration of p-cresol sulfate. In rumen fluid, the formation of 3,4-dihydroxyphenylacetic
acid (DHPAA) and 4-methylcatechol after rapid degradation of rutin and quercetin concurred with
the decrease of p-cresol and the increase of its precursor, 4-hydroxyphenylacetic acid. Overall,
the formation of 4-methylcatechol, a bioactive microbial metabolite, as the dominant bioavailable
metabolite of rutin and quercetin, could contribute to their beneficial bioactivities in dairy cows,
while the decrease of p-cresol, a microbial metabolite with negative biological and sensory properties,
from the competitive inhibition between microbial metabolism of rutin and tyrosine, has the potential
to reduce environmental impact of dairy operations and improve the health of dairy cattle.

Keywords: rutin; quercetin; 4-methylcatechol; p-cresol; microbial metabolism; dairy cow

1. Introduction

Flavonoids, as a large group of ubiquitous polyphenolic compounds in plants [1], are
well known for their health-promoting and disease-preventing effects in humans and pro-
duction animals, mainly through their anti-inflammatory and anti-oxidative properties [2].
Quercetin is one of the most bioactive flavonoids. It is widely distributed in the fruits and
vegetables of a human diet as the aglycone of rutin (quercetin-3-O-rutinoside), but deficient
in common plant-derived feed ingredients of monogastrics and ruminants, such as corn,
soybean, and alfalfa [3]. Therefore, the use of quercetin in animal feed, commonly through
rutin supplement, has been extensively explored for alleviating the morbidities under
pathophysiological challenges. In dairy cows, positive effects of quercetin and rutin on
growth, health, reproduction, metabolism, and milk production have been observed [4–7].
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In young calves, feeding quercetin decreased splanchnic glucose oxidation, increased glu-
cose absorption, and increased antioxidative capacity [5,8]. In lactating cows, intraduodenal
supplementation of quercetin enhanced insulin release and sensitivity [9], and mitigated
the hepatic disorders from lipid accumulation and metabolic stress [6]. Furthermore, the
modulation of rumen microbiota was observed after rutin supplementation in dairy cows,
as shown by the decrease of methane production [7] and the increases of short-chain fatty
acids (SCFAs) and crude protein from fermentation [4]. All these beneficial effects on health
and metabolism can be further translated into the enhancement of energy utilization and
production in dairy cows.

Many proposed mechanisms on the health- and growth-promoting effects of quercetin
and rutin, such as anti-inflammatory and antioxidant activities, are largely based on the
results of in vitro studies [10–14], in which the concentrations of quercetin chosen for un-
raveling its intracellular mechanisms might not be physiologically relevant. Therefore,
whether these mechanisms are applicable to the in vivo biological processes depends on
the disposition of quercetin and rutin in vivo, mainly through their bioavailability and
biotransformation. In monogastric animals, quercetin is mostly absorbed in the small
intestine, with 17% bioavailability in pigs [15] and 59% in dogs [16], whereas rutin is
more absorbable in the large intestine after its glycoside bonds are cleaved by bacterial
α-rhamnosidase and β-glucosidase to release quercetin [17,18]. In ruminants, ruminal
bacteria-mediated degradation occurs prior to the absorption. The bioavailability of intraru-
minal quercetin and rutin in nonlactating cows was only 0.1 and 0.5%, respectively [19].
The in vitro incubation of quercetin with the ruminal fluid of nonlactating cows showed
that almost 90% of quercetin was degraded during the first 5 h of incubation, producing
3,4-dihydroxyphenylacetic acid (DHPAA) and 4-methylcatechol as the major metabolites
from fermentation [20]. However, the formation of these microbial metabolites in vivo and
their metabolic fates in dairy cows have not been examined.

To investigate the metabolic fate of rutin in dairy cows, both targeted metabolite and
untargeted metabolomic analyses were conducted to profile rutin and quercetin metabolites
in plasma, urine, and rumen fluids after intraruminal dosing of rutin, as well as the
associated metabolic changes in these biological fluids. The distribution of these metabolites
was defined by the quantitative analysis. The acquisition of new knowledge on rutin
biotransformation may improve our understanding on the health and performance benefits
of feeding flavonol supplements or flavonol-rich ingredients to dairy cows.

2. Results
2.1. Identification of Plasma Metabolites Affected by Intraruminal Rutin

A targeted analysis was conducted to determine the presence, as well as the concen-
trations, of rutin, quercetin, and their known flavonol metabolites, including kaempferol
(a dehydroxylated metabolite of quercetin), isorhamnetin, and tamarixetin (two methy-
lated metabolites of quercetin), in both unhydrolyzed and hydrolyzed plasma samples.
Rutin (I), isorhamnetin, and tamarixetin were not detected in the samples (data not shown).
Quercetin (II) and kaempferol (III) were detected in hydrolyzed samples but not in unhy-
drolyzed samples (Table 1), indicating extensive conjugation. Moreover, the concentration
of kaempferol was more than one order lower than that of quercetin, indicating its status
as a minor metabolite (Figure 1A,B). The pharmacokinetics analysis on the time course
of quercetin revealed its low plasma concentration (Cmax = 1.70 µmol/L), short half-life
(t1/2 = 12 min), high clearance (Cl = 0.97 L/min/kg), and large volume of distribution
(Vd = 129.63 L/kg) (Table 2).
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Table 1. Identification of plasma, rumen, and urine metabolites in LC-MS analysis. The metabolites
were detected in negative mode ((M−H)−) or positive mode after the DC derivatization ((M + DC)+).

Ion Sample Mode of Ion
Detection

m/z of
Detected Ion Identity Formula ∆ppm Database ID

I Plasma
Rumen (M − H)− 609.1454 Rutin C27H30O16 −0.3 HMDB0003249

II Plasma
Rumen (M − H)− 301.0351 Quercetin C15H10O7 1 HMDB0005794

III Plasma (M − H)− 285.0361 Kaempferol C15H10O6 −2 HMDB0005801

IV Plasma
Urine (M − H)− 203.0012 4-Methylcatechol sulfate C7H8O5S −0.9 HMDB0240459

V Plasma
Urine (M − H)− 187.0064 p-Cresol sulfate C7H8O4S −0.5 HMDB0011635

VI
Plasma
Urine

Rumen
(M − H)− 123.0448 4-Methylcatechol C7H8O2 −3 HMDB0000873

VII
Plasma
Urine

Rumen
(M + DC)− 342.1166 p-Cresol C7H8O 0.6 HMDB0001858

VIII Urine (M − H)− 178.0506 Hippuric acid C9H9NO3 1 HMDB0000714
IX Rumen (M − H)− 167.0343 DHPAA C8H8O4 −0.6 HMDB0001336
IX’ Rumen (M − H)− 123.0446 DHPAA (fragment) C7H8O2 0
X Rumen (M + DC)+ 386.1061 4-Hydroxyphenylacetic acid C8H8O3 −0.3 HMDB0060390
XI Rumen (M + DC)+ 648.1838 Tyrosine C9H11NO3 0.8 HMDB0000158
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Figure 1. Concentrations of detectable flavonol metabolites of rutin in hydrolyzed (open box) and
unhydrolyzed (open circle) plasma samples. Acid hydrolysis was conducted to release flavonols
from their respective conjugates in plasma. (A) Time course of quercetin (II), and (B) time course of
kaempferol (III). The Roman numerals (II and III) refer to the ion IDs in Table 1. The concentrations
are expressed as means ± SEMs.

Table 2. Kinetic parameters of quercetin in plasma. The values were calculated based on the
concentrations of quercetin in hydrolyzed plasma samples.

Parameter Quercetin

AUC0–t (µmol/L ×min) 143.30
Vd (L/kg) 129.63
t1/2 (min) 12.24

Cmax (µmol/L) 1.70
tmax (min) 60

Cl (L/min/kg) 0.97

To determine whether other quercetin metabolites were also present, an untargeted
metabolomics analysis was conducted on the plasma LC-MS data. In the scores plot of
a PLS-DA model, the time-dependent separation of plasma samples is observed along
with the principal component 1 of the model (Figure 2A and Figure S1 of Supplementary
Materials). Two ions (IV–V) contributing to the sample separation through their high values
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in the principal component 1 were identified in the loadings plot of the model (Figure 2B),
and then determined as 4-methylcatechol sulfate (IV) and p-cresol sulfate (V) by elemental
composition analysis and MS/MS fragmentation (Figure 2C,D, Table 1). After removing
the sulfate group from these two metabolites by acid hydrolysis, the concentrations of
4-methylcatechol (VI) and p-cresol (VII) in plasma samples were quantified. The results
showed that, after the intraruminal dosing of rutin, the concentration of 4-methylcatechol
increased gradually and peaked at 240 min, whereas the concentration of p-cresol decreased
through 240 min (Figure 2E,F). The Pearson correlation analysis showed a significant inverse
correlation between these two metabolites (Figure 2G), implying that the formation of 4-
methylcatechol sulfate (IV) might negatively affect the production of p-cresol sulfate (V).
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Figure 2. Identification and characterization of the most prominent changes in the plasma
metabolome after the intraruminal rutin administration. (A) A scores plot of the PLS-DA model on
plasma metabolome. The trajectory of treatment-elicited changes is comprised of the means of four
samples at each time point in principal components 1 and 2. The distribution of individual samples is
presented in Figure S1. (B) Loadings plot of the PLS-DA model. The two most prominent metabolites
contributing to the separation of samples were labeled (IV–V), and their identities are listed in Table 1.
(C) MS/MS fragmentogram of 4-methylcatechol sulfate (IV). (D) MS/MS fragmentogram of p-cresol
sulfate (V). (E) Time course of 4-methylcatechol (VI), and (F) time course of p-cresol (VII) after acid
hydrolysis procedure. The concentrations are expressed as means ± SEMs. (G) Pearson correlation
and linear regression analyses of 4-methylcatechol and p-cresol in plasma.

2.2. Identification of Urinary Metabolites Affected by Intraruminal Rutin

The metabolomic analysis of pre-dosing (−3 to 0 h) and post-dosing urine samples (0 to
3 h and 3 to 6 h) showed the time-dependent separation in the scorings plot of a PLS-DA
model, mainly along with the principal component 1 (Figure 3A). Three most prominent
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metabolites (IV–V, VIII) contributing to this separation were identified in the loadings plot
of the model through their high values in the principal component 1 (Figure 3B) and then
determined as 4-methylcatechol sulfate (IV), p-cresol sulfate (V), and hippuric acid (VIII)
(Table 1). Consistent with the results of plasma analysis, the analysis of hydrolyzed urine
samples showed that the concentration of 4-methylcatechol (VI) increased dramatically
while the concentration of p-cresol (VII) decreased after the intraruminal rutin dosing
(Figure 3C,D). In addition, hippuric acid (VIII) in urine was also decreased by the rutin
treatment (Figure 3E).

Figure 3. Identification and characterization of the most prominent changes in the urine metabolome
after the intraruminal rutin administration. The LC-MS data of pre- and post-treatment of urine
samples were processed by PLS-DA modeling. (A) A scores plot of the PLS-DA model. Three sample
groups (n = 4/group) were circled. (B) Loadings plot of the PLS-DA model. Three most prominent
metabolites contributing to the separation of samples were labeled (IV, V, and VIII), and their identities
are listed in Table 1. Concentration of (C) 4-methylcatechol (VI), (D) p-cresol (VII), and (E) hippuric
acid (VIII) in urine. The concentrations are expressed as means ± SEMs. Different letters indicate
significant difference (p < 0.05) among timepoints.

2.3. Investigation of Ruminal Degradation of Rutin and Quercetin

The sources and causes of observed metabolic changes in plasma and urine were
further examined by the metabolomic analysis of the rumen fluid samples collected at
multiple time points after the rutin administration. A distinctive time-dependent separation
was observed in the scores plot of a PLS-DA model, in which the trajectory of sample groups
showed the reversible metabolic changes in rumen fluid after the rutin administration
(Figure 4A). The metabolites contributing to these time-dependent changes were further
identified in the loadings plot (Figure 4B), and determined as rutin (I), quercetin (II),
DHPAA (IX and IX from its in-source fragment), and 4-hydroxyphenylacetic acid (X).
Quantitative analyses of these metabolites in rumen fluid showed that the concentration
of rutin (I) decreased rapidly after 30 min and disappeared at 2 h (Figure 4C), while the
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concentration of quercetin (II) peaked at 1 h and disappeared at 4 h (Figure 4D). Compared
to rutin and quercetin, the time course of DHPAA (IX) was further delayed since its
concentration peaked at 2 h around 200 µM and returned to its basal level at 6 h (Figure 4E).
The targeted analysis of 4-methycatechol (VI) showed a profile similar to DHPAA, but
in much lower concentrations (Figure 4F). The half-life (t1/2) of rutin (I), quercetin (II),
DHPAA (IX), and 4-methycatechol (VI) were determined as 10.89 min, 14.62 min, 60.65 min,
and 48.22 min, respectively (Table 3). All these profiles indicated a rapid degradation of
rutin and quercetin, followed by gradual formation of DHPAA and 4-methylcatechol in
the rumen.
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Figure 4. Identification and characterization of the most prominent changes in the rumen metabolome
after the intraruminal rutin administration. Data from LC-MS analysis of rumen fluid extracts were
processed by PLS-DA modeling. (A) Scores plot of the PLS-DA model on rumen metabolome.
The samples in the same time point (n = 4) were circled. (B) Loadings plot of the PLS-DA model.
The labeled markers (I, II, VII, IX, IX, and X) are the identified metabolites that contribute to the
separation of samples. Their identities are listed in Table 1. Time course of (C) rutin (I), (D) quercetin
(II), (E) 3,4-dihydrophenylacetic acid (IX), and (F) 4-methylcatechol (VI) in rumen fluid. The concen-
trations are expressed as means ± SEMs.

Table 3. Kinetic parameters of rutin, quercetin, and their microbial metabolites in rumen fluid.

Rutin Quercetin 3,4-dihydroxyphenylacetic Acid 4-Methylcatechol

t1/2 (min) 10.89 14.62 60.65 48.22
Cmax (µmol/mL) 156.42 71.16 181.21 10.09

tmax (min) 30 60 120 120

2.4. Influence of Rutin on Ruminal Tyrosine Metabolism

In addition to rutin and quercetin metabolites, 4-hydroxyphenylacetic acid (X), the
intermediate metabolite in the microbial conversion of tyrosine to p-cresol, was identified
as a prominent ruminal metabolite affected by the rutin treatment (Figure 4B). The quanti-
tative analysis showed that the concentration of 4-hydroxyphenylacetic acid continuously
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increased in the first 4 h of rutin administration and then plateaued afterwards (Figure 5A).
In contrast, the concentration of p-cresol (VII) gradually decreased in the first 4 h of rutin
treatment (Figure 5B). Moreover, the concentration of tyrosine (XI) was not altered by
ruminal rutin (Figure 5C). All these observations indicated that the decrease in p-cresol
might be caused by the inhibition of the conversion from 4-hydroxyphenylacetic acid to
p-cresol, instead of the deficiency in tyrosine.
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2.5. Ruminal Short-Chain Fatty Acids (SCFAs)

The influences of rutin treatment on rumen fermentation were further examined
by measuring the concentrations of SCFAs in the rumen fluid. The results showed that
intraruminal rutin had limited effects on acetic acid (Figure 6A), while it consistently
increased the concentrations of propionic acid and butyric acid (Figure 6B,C).
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3. Discussion

The identification of 4-methylcatechol, a microbial metabolite, as the dominant bioavail-
able metabolite of intraruminal rutin, and the inhibitory effect of the rutin→ quercetin→
DHPAA→ 4-methylcatechol degradation route on the microbial production of p-cresol,
are the two most notable observations from the intraruminal rutin treatment in the current
study. The metabolic events associated with these observations occurred either in sequence
or in parallel, through both microbial and endogenous metabolism at different physiologi-
cal sites (Figure 7). The causes and significances of these metabolic events are discussed in
the following sections.
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Figure 7. Summary of intraruminal rutin-induced metabolic changes in dairy cow. Microbial
metabolites, 4-methylcatechol and p-cresol are the bioavailable end products of rutin and tyrosine,
respectively. Since these two degradation pathways share the same decarboxylation reaction, the
conversion of DHPAA to 4-methylcatechol could inhibit the conversion of 4-hydroxyphenylacetic
acid to p-cresol. These metabolic events in the rumen further affect the distribution of other rutin and
tyrosine metabolites in the plasma and urine of dairy cows.

3.1. 4-Methylcatechol as the Most Bioavailable Metabolite of Rutin and its Significance

Both 4-methylcatechol (3,4-dihydroxytoluene) and its immediate precursor, DHPAA,
are known microbial metabolites of rutin [21]. However, our data are the first to demon-
strate 4-methylcatechol as the most bioavailable metabolite from microbial metabolism of
rutin in dairy cows.

3.1.1. Bioavailability of Rutin, Quercetin, and their Derivatives

Previous bioavailability studies on rutin and quercetin, which were mainly conducted
in human and monogastric animals, focused on the post-absorption presence of quercetin
and its flavonol metabolites produced via methylation (isorhamnetin and tamarixetin)
or dehydroxylation (kaempferol). In dairy cows, the peak plasma concentration of to-
tal flavonols, which included quercetin, isorhamnetin, tamarixetin and kaempferol, was
around 1 µM from intraruminal administration of 100 mg rutin/kg BW [19]. With the same
dose of rutin, the peak plasma concentration of quercetin (1.7 µM) in our study was in the
comparable range. In contrast, concentrations of 4-methylcatechol (50 µM) in plasma and
urine (3000 µM) were much greater than any other metabolite of rutin. This observation
clearly indicates that 4-methylcatechol is the most abundant bioavailable metabolite of
intraruminal rutin in dairy cows. In addition, this phenomenon might not occur solely in
ruminants since the plasma and urinary concentrations of 4-methylcatechol sulfate and
catechol sulfate, another microbial metabolite of flavonols, in human subjects were also 1–3
orders greater than the concentrations of their flavonol precursors [22]. Therefore, more
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studies are needed to determine the status of 4-methylcatechol and other microbe-derived
phenolics as the bioavailable metabolites of flavonoids in ruminants and non-ruminants.

3.1.2. Significance of 4-Methylcatechol as the Dominant Bioavailable Rutin Metabolite

A direct implication of this observation is to provide additional explanations for the
documented bioactivities of rutin and quercetin, such as antioxidant and other health- and
performance-promoting activities in dairy cows [4–7]. A previous comparison on the antiox-
idant activities of quercetin and its metabolites indicated that 4-methylcatechol performed
as a robust radical scavenger in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and was
equally effective as quercetin for suppressing malondialdehyde production in a cell-based
lipid peroxidation assay [23]. Therefore, 4-methylcatechol might alleviate the oxidative
stress occurred in the metabolic disorders of periparturient cows, such as hepatosteatosis
and ketoacidosis [24,25]. In addition to its antioxidant activity, 4-methylcatechol has been
shown to possess strong antiplatelet and hypotensive activities [26,27] and thus could
function prophylactically against circulatory morbidities in dairy cows, such as pulmonary
artery hypertension-elicited right-heart failure in neonatal calves [28]. It will be interesting
to examine whether rutin supplementation might decrease the mortality associated with
pulmonary artery hypertension in calves and improve the performance of adult cows.

In the current study, 4-methylcatechol was primarily detected as its sulfate conjugate
in plasma and urine. This observation is expected, since sulfation is the most common
conjugation reaction for absorbed catechols and phenols (Figure 7). If the non-conjugated
form is required for the bioactivities, then hydrolysis of 4-methylcatechol sulfate to release
4-methylcatechol is required prior to or at the site of action. One possible route of deconju-
gation is through the activity of lysosome sulfatase [29]. Further examination on the status
of 4-methylcatechol in bovine tissue may provide more insight on this issue.

3.2. Rutin Degradation Pathway and its Interactions with Tyrosine Degradation in the Rumen

The stepwise degradation of rutin→ quercetin→ DHPAA→ 4-methylcatechol in
ruminal fermentation has been shown in vitro [20]. The results of our in vivo study pro-
vided solid evidence on this pathway through the kinetic profiles of these four compounds
(Figure 4 and Table 3). More importantly, this degradation pathway inhibited the degrada-
tion of tyrosine to p-cresol in rumen (Figure 5). These metabolic reactions and interactions
derived from ruminal microbes and their enzymes could have significant impacts on the
performance of dairy cows.

3.2.1. Rutin and the Bacteria Responsible for Rutin Degradation

Rapid degradation of rutin to quercetin in the rumen is expected, since many ruminal
bacteria, such as Selenomonas, Butyrivibrio, and Peptostreptococcus species, contain glycosi-
dases, a family of enzymes capable of hydrolyzing two glycosidic bonds in rutin [30]. The
sugars released by this hydrolysis, including rhamnose, glucose, and rutinose, are available
for ruminal fermentation to produce SCFAs, such as Butyrivibrio-mediated butyric acid
production [31]. The fermentation of rutin-derived sugars, together with the fermentation
of recently consumed TMR, likely contributed to the selective increases of ruminal SCFAs
in this study. Quercetin can undergo the hydrolytic cleavage of its heterocyclic C ring, a re-
action conducted by Butyrivibrio and Clostridium species [32,33], to form phloroglycinol, an
A ring-derived metabolite, and DHPAA, a B ring-derived metabolite (Figure 7). Phloroglu-
cinol can proceed through a series of reduction and oxidation reactions to produce butyric
acid and acetic acid, which has been observed in Eubacterium oxidoreducens [34], while
DHPAA undergoes a decarboxylation reaction to form of 4-methylcatechol, a terminal
product from the microbial degradation of rutin [35].

3.2.2. Influence of Rutin Degradation on p-Cresol Production and its Potential Mechanism

As an end product of microbial tyrosine degradation, p-cresol can be formed directly
by cleaving the Cα–Cβ bond of tyrosine, a reaction catalyzed by tyrosine lyase, or by the
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decarboxylation of 4-hydroxyphenylacetic acid, which is formed by the transamination of
tyrosine and oxidation of 4-hydroxyphenylpyruvic acid [36]. After absorption, p-cresol is
conjugated to its sulfate or glucuronide forms by colonocytes or hepatic cells [37]. The in-
verse correlation between 4-methylcatechol and p-cresol observed in this study (Figure 2G)
indicates the potential competition between rutin degradation and p-cresol production,
especially in the decarboxylation step. This conclusion is supported by the fact that the
conversion of DHPAA to 4-methylcatechol and the conversion of 4-hydroxyphenylacetic
acid to p-cresol occur through the same decarboxylation reaction and therefore, likely
share the same decarboxylases. More importantly, the decrease of p-cresol in rumen fluid
was coincident with the increase of 4-hydroxyphenylacetic acid (Figure 5A), which can be
considered as a direct consequence of inhibiting the 4-hydroxyphenylacetic acid→ p-cresol
biotransformation. In fact, 4-hydroxyphenylacetic acid decarboxylase, a glycyl radical
enzyme, has been purified and cloned from Clostridium difficile, a pathogenic bacteria, and
other Clostridium species [38]. The substrate affinity analysis showed that DHPAA had
higher affinity (Km = 0.5 mM) than 4-hydroxyphenylacetic acid (Km = 2.8 mM) for this
decarboxylase, and DHPAA inhibited the decarboxylation of 4-hydroxyphenylacetic acid
with Ki = 0.4 mM [38]. This decarboxylase activity is likely present in many bacterial
species, since p-cresol is produced as a degradation product of tyrosine by diverse anaero-
bic bacteria, such as Clostridium, Faecalibacterium, Eubacterium, Anaerostipes, Ruminococcus,
Bacteroides, Bifidobacterium, and Coriobacteriaceae [36]. In rumen of dairy cows, multiple
strains of a Lactobacillus sp. have been shown to catalyze the formation of p-cresol and
4-methylcatechol [38,39].

As with p-cresol, urinary hippuric acid was decreased by rutin administration (Figure 3E).
This observation was similar to the results of our recent study, in which urinary hippuric
acid, together with indoxyl sulfate and phenylacetylglutamine, were decreased by the
supplement of green tea polyphenols in human subjects [40]. Benzoic acid, the precursor
of hippuric acid, originated from the microbial metabolism of tyrosine, phenylalanine,
phenolics, and quinic acid in plants. Therefore, a similar competitive inhibition mechanism
could be responsible for the inhibitory effect of rutin on the biosynthesis of hippuric acid.

3.2.3. Significance of Inhibiting p-Cresol Production

Unlike other beneficial metabolites produced by bacterial fermentation, p-cresol is
known for its negative bioactivities, mainly its inhibitory effects on epithelial cell pro-
liferation, mitochondrial bioenergetic activity, and T helper 1 cell-regulated immune re-
sponse [41,42]. It has been considered as a uremic toxin due to the correlation between
serum p-cresol sulfate and endothelial damage in kidney disease [43]. In addition, p-cresol
is widely considered as a prominent volatile organic compound responsible for the odor
of concentrated cattle and dairy operations [44]. Therefore, decreased p-cresol in rumen
fluid and decreased p-cresol sulfate in plasma and urine should be considered as beneficial
effects of rutin consumption.

4. Materials and Methods
4.1. Chemicals and Reagents

The chemicals and reagents used in sample preparation, LC-MS analysis, structural
confirmation, and quantification are enlisted in Table S1 of Supplementary Materials.

4.2. Animals, Experimental Design, and Sample Collection

Animal care and experimental procedures were approved by the University of Min-
nesota Institutional Animal Care and Use Committee (protocol 2008-38360A, approved
on 16 September 2020). The dairy cows were housed in the University of Minnesota dairy
cattle teaching and research farm at the St. Paul campus with free access to feed and water.
Four multiparous rumen-cannulated Holstein cows in mid-to-late lactation were fed a
standard total mixed ration (TMR) formulated to meet the nutritional needs of Holsteins in
late lactation (Table S2). The number of the cows in this study was based on the practices
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in previous studies, in which ruminal biotransformation and plasma kinetics of quercetin
were studied using two to six cows [19,20]. Cows had ad libitum access to feed and water
throughout the day, except for the periods of feed change and milking (<30 min, twice per
day). Cows had no clinical signs of disease or metabolic disorders and appeared healthy
throughout the study. On the day of experiment, each cow received a 100 mg/kg BW
intraruminal dose of rutin. Rutin was suspended in 300 mL of deionized water and dosed
into the rumen through the cannula for about 1.5 h after fresh TMR was provided. The
container of rutin suspension was rinsed twice with 200 mL deionized water, which was
also added to the rumen. Rumen fluid samples were collected at 0, 0.5, 1, 2, 4, and 6 h of
the rutin administration, and immediately placed on ice. Blood samples were collected
via jugular catheter using heparinized tubes at 0, 0.25, 0.75, 1.0, 1.5, 2, 3, 4, and 6 h after
the rutin administration, and immediately placed on ice until centrifuged at 2000× g for
10 min to separate plasma. Urine samples were collected in 19 L plastic pails and then
pooled within three periods, including −3 to 0, 0 to 3, and 3 to 6 h of rutin administration,
to form three urine samples per cow. Urine samples were immediately placed on ice after
the collection. The aliquots of rumen, plasma, and urine samples were stored at −80 ◦C
prior to analysis.

4.3. Metabolites Extraction

Rumen fluid samples were prepared by mixing with 50% aqueous acetonitrile (ACN)
in 1:10 (v/v) ratio; plasma samples were deproteinized by mixing with 50% aqueous ACN
in 1:5 (v/v) ratio; urine samples were prepared by mixing with 50% aqueous ACN in
1:4 (v/v) ratio. The mixtures were centrifuged at 16,000× g for 10 min to precipitate the
particles and insolubles. The supernatants were used in sample analysis.

4.4. Acid Hydrolysis of Conjugated Metabolites

Glucuronide and sulfate metabolites in plasma or urine samples were hydrolyzed
following a modified method [45]. Briefly, 120 µL of plasma or urine sample was mixed
with 200 µL of 2 mg/mL tert-butyl hydroxyquinone (tBHQ) methanol solution and 80 µL
of 10 M HCl, and then incubated in a water bath at 90 ◦C for 2 h. After cooling, the mixture
was further mixed with 400 µL of 2 mg/mL tBHQ methanol solution, and then centrifuged
at 16,000× g for 10 min. To measure the hydroxyl group contained metabolites, a similar
procedure for hydrolysis using methanol without tBHQ was conducted as described above.
After cooling, the mixture was neutralized with ammonia hydroxide, and then centrifuged
at 16,000× g for 10 min. The supernatant was used in the subsequent sample preparation
and analysis.

4.5. Chemical Derivatization

For detecting the metabolites containing amino group (amino acids) and the ones
containing hydroxyl group (p-cresol), samples were derivatized with dansyl chloride (DC)
prior to the LC-MS analysis [46]. Briefly, 5 µL of sample or standard was mixed with
50 µL of 10 mM sodium carbonate solution, 5 µL of 50 µM deuterated L-tryptophan-
(indole-d5) as an internal standard, and 100 µL of 3 mg/mL DC solution dissolved in
acetone. The mixture underwent the incubation at 60 ◦C for 15 min, cooling on ice, and
then centrifugation at 16,000× g for 10 min, and the supernatant used for LC-MS analysis.
For detecting the metabolites containing carboxyl group, the samples were derivatized
with 2-2′-dipyridyl disulfide (DPDS), triphenylphosphine (TPP), and 2-hydrazinoquinoline
(HQ) prior to the LC-MS analysis [47]. Briefly, 2 µL of sample or standard was added into
100 µL of freshly prepared ACN solution containing 1 mM DPDS, 1 mM TPP, 1 mM HQ,
and 100 µM deuterated d4-acetic acid as the internal standard. The reaction mixture was
incubated at 60 ◦C for 30 min, chilled on ice, and mixed with 100 µL of H2O. This mixture
was centrifuged at 16,000× g for 10 min and the supernatant was used for LC-MS analysis.
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4.6. LC-MS Analysis

A 5 µL of aliquot prepared from rumen fluid, plasma, or urine was injected into an
Acquity ultraperformance liquid chromatography-quadrupole time-of-flight mass spec-
trometry (UPLC-QTOFMS) system (Waters, Milford, MA, USA), and then separated in
a UPLC column in a 10-min run at a flow rate of 0.5 mL/min. Detailed information on
LC-MS acquisition conditions is provided (Table S3). The LC eluant was injected into a
Xevo-G2-S QTOF mass spectrometry (Waters, Milford, MA, USA) for accurate mass mea-
surement and ion counting. Capillary voltage and cone voltage for electrospray ionization
was maintained at 3 kV and 30 kV for positive-mode detection, or at −3 kV and −35 V
for negative-mode detection, respectively. The source temperature and desolvation tem-
perature were set at 120 ◦C and 350 ◦C, respectively. Nitrogen was used as both cone gas
(50 L/h) and desolvation gas (600 L/h), and argon as collision gas. For accurate mass mea-
surement, the mass spectrometer was calibrated with sodium formate solution (range m/z
50–1000) and monitored by the intermittent injection of the lock mass leucine enkephalin
((M + H)+ = m/z 556.2771 or (M − H)− = m/z 554.2615) in real time. Additional structural
information was obtained by tandem MS (MS/MS) fragmentation with collision energies
ranging from 15 to 45 eV. Mass chromatograms and mass spectral data were acquired and
processed by MassLynxTM software V4.2 (Waters, Milford, MA, USA) in centroided format.

4.7. Targeted/Quantitative Analysis

The concentrations of rutin, quercetin, methylated quercetin, kaempferol, DHPAA,
4-methylcatechol, p-cresol, short-chain fatty acids, and amino acids were determined by
calculating the ratio between their individual peak areas and the peak area of internal
standard and fitting with a standard curve using QuanLynxTM software (Waters, Milford,
MA, USA).

4.8. Untargeted Multivariate Data Analysis and Marker Characterization

After data acquisition in the UPLC-QTOFMS system, chromatographic and spectral
data of samples were deconvoluted by MarkerLynxTM software. A multivariate data
matrix containing information on sample identity, ion identity from retention time (RT)
and m/z, and ion abundance, was generated through centroiding, deisotoping, filtering,
peak recognition, and integration. The intensity of each ion was calculated by normal-
izing the single ion counts (SIC) versus the total ion counts (TIC) in the whole chro-
matogram. The processed data matrix was exported into SIMCA-P+TM software (Umetrics,
Kinnelon, NJ, USA), transformed by Pareto scaling, and then analyzed by partial least
squares discriminant analysis (PLS-DA) on multiple time points of samples after rutin
administration. Major latent variables of the multivariate model were defined in a scores
scatter plot. The potential metabolite markers were identified by analyzing ions contribut-
ing to the principal components and to the separation of sample groups in the loadings
scatter plot. The chemical identities of interested compounds were determined by accu-
rate mass measurement, elemental composition analysis, database search using Human
Metabolome Database (https://www.hmdb.ca/, accessed on 21 September 2021), and
Metlin (https://metlin.scripps.edu/, accessed on 21 September 2021), MSMS fragmenta-
tion, and comparisons with authentic standards if available.

4.9. Kinetic Analysis

The kinetic parameters of rumen and plasma samples were determined by the ex-
travascular input non-compartmental analysis (Module 101) of SOLVER in Microsoft Excel
2016 version 16.0.5173.1000 (Redmond, WA, USA) [48].

4.10. Statistical Analysis

Experimental values were reported as mean ± standard error of the mean (SEM). The
statistical significance among samples at different time points was analyzed by one-way
ANOVA followed by Tukey’s post hoc test, Pearson correlation, or linear regression using

https://www.hmdb.ca/
https://metlin.scripps.edu/
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GraphPad Prism version 8.0.2 (GraphPad, Inc., La Jolla, CA, USA). A value of p < 0.05 was
considered significant.

5. Conclusions

Overall, our current study examined the in vivo ruminal rutin degradation process
and identified 4-methylcatechol, an end product of microbial metabolism, as the dom-
inant bioavailable metabolite of rutin and quercetin in dairy cows. The formation of
4-methylcatechol inhibited the microbial degradation of tyrosine to p-cresol, potentially
through competitive inhibition of decarboxylation reactions. Therefore, 4-methylcatechol
was likely responsible for or contributed to the many reported bioactivities of rutin and
quercetin, while the decrease in p-cresol production could also convey benefits to dairy
cows and the environment. These new observations warrant further investigations on the
mechanisms and potential benefits of rutin supplementation in feed for cattle.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo12010016/s1, Figure S1: Scores plot of plasma samples after intraruminal rutin
administration; Figure S2: Identification of ruminal degradation of rutin in rumen fluid, Table S1:
Source of chemicals and reagents used in chemical analysis, LC-MS analysis, structural confirmation,
and quantification, Table S2: Ingredient and nutrient content of the total mixed ration (TMR), Table
S3: LC-MS data acquisition condition in a 10-min run.
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