
Introduction 

Since the brain is the target organ of many anesthetic drugs, clinical investigators have 
been interested in developing brain function monitors that reliably measure anesthetic 
drug effects. Several electroencephalography (EEG) monitoring devices have been intro-
duced to measure frontal electrical cortical activity and process the EEG signal to gener-
ate indices of brain electrical activity that closely correlate with the hypnotic effects of an-
esthetics [1–3]. These brain function monitors are designed to measure the adequacy of 
anesthesia, including expired anesthetic gas concentrations, hemodynamic and respirato-
ry variables, and clinical assessments such as patient movement as a complement to other 
techniques. 

Although processed EEG (pEEG) monitors have been available for decades, they have 
not been widely used in clinical practice. Without adequate training, the clinical utility of 
raw EEG waveforms, indices of hypnosis, burst suppression ratios, spectral edge frequen-
cy, and various graphical displays on EEG are not obvious. Furthermore, in contrast to 
standard deterministic monitors, such as electrocardiograms, the pEEG is a stochastic 
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The evidence supporting the intraoperative use of processed electroencephalography 
(pEEG) monitoring to guide anesthetic delivery is growing rapidly. This article reviews the 
key features of electroencephalography (EEG) waveforms and their clinical implications in 
select patient populations and anesthetic techniques. The first patient topic reviewed is the 
vulnerable brain. This term has emerged as a description of patients who may exhibit in-
creased sensitivity to anesthetics and/or may develop adverse neurocognitive effects fol-
lowing anesthesia. pEEG monitoring of patients who are known to have or are suspected 
of having vulnerable brains, with focused attention on the suppression ratio, alpha band 
power, and pEEG indices, may prove useful. Second, pEEG monitoring along with vigilant 
attention to anesthetic delivery may minimize the risk of intraoperative awareness when 
administering a total intravenous anesthesia in combination with a neuromuscular block-
ade. Third, we suggest that processed EEG monitoring may play a role in anesthetic and 
resuscitative management when adverse changes in blood pressure occur. Fourth, pEEG 
monitoring can be used to better identify anesthesia requirements and guide anesthetic ti-
tration in patients with known or suspected substance use. 
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measure that must typically be interpreted probabilistically; there-
fore, it is inherently less robust than routine clinical monitoring 
systems. In addition, as a clinical state monitor that requires 15–
30 s of raw EEG waveform data, the pEEG indices reflect brain 
activity from the very recent past; however, real-time data cannot 
be retrieved as they can with standard deterministic monitors [4]. 

Despite these limitations, the application of pEEG monitoring 
in anesthesia patient care has increased. With advances in the un-
derstanding and interpretation of raw EEG waveforms, pEEG pa-
rameters, and graphical EEG displays (such as spectrograms), the 
technology has emerged as an important tool for optimizing anes-
thesia delivery. This review briefly outlines the clinical rationale 
underlying the application of pEEG monitoring in modern anes-
thesia practice. 

Raw and processed EEG: key features 

First, a brief review of basic features of the EEG waveform and 
how the raw waveform can be processed into various parameters 
and graphical displays is provided as a framework for EEG inter-
pretation in the clinical setting. Additionally, data supporting the 
application of pEEG to improve anesthesia care is provided. Key 
elements include raw EEG waveform morphology, spectral analy-
sis, burst suppression, and alpha power. 

EEG waveform morphology

The raw EEG waveform, plotted in microvolts versus time, is 
characterized in terms of frequency and amplitude and continual-
ly cycles around electrical zero. Frequencies are arbitrarily de-
scribed using five bands measured in cycles per second or Hertz 
(Hz): delta (<  4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (14–32 
Hz), and gamma ( >  32 Hz). Amplitudes are described using 
power, defined as the amplitude squared (so that the amplitude is 
always a positive number), and reported in decibels (dB) using a 
logarithmic scale that provides a convention to visualize a wide 
range of amplitudes. The changes in amplitude are referred to as 
oscillations. Given that available commercial pEEG monitors re-
quire sensors that are placed over the forehead, waveform fre-
quency and amplitude signals reflect electrical activity largely 
from the frontal cortex. 

Spectral analysis

Spectral analysis is perhaps the most important of the EEG pro-
cessing methods in clinical anesthesia because most inhaled and 
intravenous general anesthetics result in a generalized “slowing” 

of the raw EEG waveform, wherein the waveform exhibits in-
creased power in lower frequency bands. The slowing of the raw 
EEG waveform can be characterized using spectral analysis. Ap-
plying Fourier’s theorem using a fast Fourier transform, spectral 
analysis is a mathematical technique used to separate a complex 
sine wave (like the raw EEG) into its component sine waves, 
thereby generating a power versus frequency histogram. Drugs 
used for general anesthesia, such as isoflurane or propofol, char-
acteristically produce a leftward shift in the power versus frequen-
cy histogram. This leftward shift is reflected in a lower median 
frequency (i.e., frequency in the power versus frequency histo-
gram in which 50% of the power is lower and 50% is higher) and 
a lower spectral edge frequency (frequency below which 95% of 
the power in the power versus frequency histogram is found). 

Spectrogram

In addition to numerical parameters such as the median fre-
quency and spectral edge frequency, the results of spectral analy-
sis can also be visualized in the form of a spectrogram. A spectro-
gram plots the power across a spectrum of frequencies as they 
change over time [5]. Time is displayed along one axis and fre-
quency and power along the opposite axis (some commercial de-
vices plot time on the horizontal axis, others plot time on the ver-
tical axis). The frequency typically ranges from 0–30 Hz. Applying 
a “heat map” approach, the power is presented using colors from 
blue (–40 dB) to red (15 dB). The “warmer” the color, the greater 
the power (e.g., blue represents lower power, red represents high-
er power). The spectrogram is intended to reduce the cognitive 
workload required for EEG interpretation, making it easier to vi-
sualize where most of the power in the EEG signal resides [6]. 
Fig. 1 presents differences in the alpha band power between two 
patients. 

Burst suppression

When anesthetic concentrations (e.g., halogenated agents, 
propofol, etomidate, and thiopental) reach sufficiently high levels, 
periods of isoelectricity are generated in the raw EEG. These peri-
ods of isoelectricity are typically interspersed with “bursts” of EEG 
activity. Higher concentrations of anesthesia can result in com-
plete burst suppression, wherein the EEG is completely isoelectric. 
Computed as part of a signal processing technique known as ape-
riodic analysis, the burst suppression ratio is the proportion of 
time in which the EEG is isoelectric over a specified length of 
time (usually 15–60 s). Other conditions can also result in burst 
suppression or isoelectricity, including hypothermia and cerebral 
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ischemia. Advanced age is associated with burst suppression at 
lower anesthetic concentrations. 

Alpha power

The alpha band is of particular interest since it changes with 
general anesthesia and declines with age more than other frequen-
cy bands [7]. Alpha power is thought to originate from thalamo-
cortical electrical activity, which plays a role in integrating sensory 
information and synchronizing different cortical regions of the 
brain [8]. Therefore, alpha band power has been the subject of 
several studies exploring its potential utility as a biomarker of 
brain health in the perioperative period [9]. 

The vulnerable brain 

The term “vulnerable brain” has emerged as a description of 
patients who may exhibit increased sensitivity to anesthesia and/
or may develop adverse neurocognitive effects after receiving an-
esthesia. Patients with advanced age, neurovascular disease, intra-
cranial pathology, traumatic brain injury, or an overwhelming in-
fectious or metabolic disorder are some potential examples. 

Neuroscientists suggest that neurons in vulnerable brains have 
a lower mitochondrial production of energy substrates, which re-
duces neuronal electrical activity and synaptic neurotransmission 
[10]. Significant cerebral ischemia or hypoperfusion during anes-

thesia can be detected using EEG changes. Particularly during sta-
ble anesthesia, a sudden alteration in the EEG (i.e., a shift in pow-
er to lower frequency ranges, decrease in amplitude, periods of 
burst suppression, isoelectricity, and/or a drop in the pEEG index) 
may indicate incidental cerebral ischemia. 

A large body of work has explored pEEG-guided titration of 
anesthesia to improve clinical outcomes associated with the vul-
nerable brain, including postoperative delirium (POD), postoper-
ative cognitive dysfunction (POCD), and mortality. Table 1 pres-
ents a summary of results from four randomized controlled trials 
(RCTs) exploring the effect of pEEG-guided anesthesia delivery 
on the incidence of POD and POCD.  

In a recently published large RCT, the Electroencephalography 
Guidance of Anesthesia to Alleviate Geriatric Syndromes (EN-
GAGES) trial [11], the authors compared pEEG-guided (target 
bispectral index [BIS] value ≥  40) with routine anesthesia deliv-
ery. The main finding was that pEEG-guided anesthesia did not 
decrease the incidence of POD, despite a modest reduction in an-
esthetic exposure (a decrease in the median end-tidal anesthesia 
concentration from 0.8 to 0.7 minimum alveolar concentration 
[MAC]) and a reduction in the duration of EEG suppression (the 
median duration of time with a BIS value <  40 decreased from 60 
min to 32 min) (Table 1). 

In an independent analysis of the ENGAGES trial data, Ack-
land and Pryor [12] importantly identified that prior retrospective 
observational studies have established that EEG burst suppression 

B

A

Fig. 1. Examples of (A) high and (B) low alpha power within a left frontal spectral display. The left vertical axis is frequency (Hz). The right 
vertical axis is power (dB). The cooler and warmer colors represent low and high power, respectively. The horizontal axis is time (min). The dark 
blue horizontal lines present the alpha band range (8–12 Hz).

Alpha Band (8–12 Hz)

Alpha Band (8–12 Hz)
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in the presence of low anesthesia concentrations is associated with 
a higher incidence of POD [13]. They also found that the pub-
lished threshold for increased risk of POD is a burst suppression 
duration ≥  4 min. In the ENGAGES trial, the median EEG burst 
suppression duration was 7 and 13 min in the pEEG-guided and 
control groups, respectively. The duration for both groups exceed-
ed the threshold for increased delirium risk. They suggested that 
with the burst suppression duration above the threshold for POD, 
it was difficult to draw any conclusions about the utility of 
pEEG-guided anesthesia delivery for reducing the incidence of 
POD.  

To synthesize a consensus from this body of work, meta-analy-
ses have systematically found that pEEG-guided anesthesia has 
the potential to reduce the incidence of POD and POCD. Punja-
sawadwong et al. [14] analyzed data from three RCTs to explore 
the incidence of POD and POCD in combined cohorts of 2,529 
and 2,051 patients, respectively. They reported a reduction in the 
incidence of POD in patients aged > 60 years undergoing non-car-
diac and non-neurosurgical procedures from 21% without to 15% 
with pEEG monitoring. They also reported a small reduction in 
the incidence of POCD at three months post-operation from 9% 
to 6% with pEEG monitoring [14]. In another meta-analysis of 
five RCTs, which included 2,654 patients, MacKenzie et al. [15] 
determined that the use of a pEEG monitor was associated with a 
38% reduction in the odds of developing POD but data were in-
sufficient to assess the relationship between pEEG and POCD. 

Expanding this line of investigation, researchers have identified 
select measurements for neuronal electrical activity, burst sup-
pression, and changes in the alpha band that may serve as an elec-
trophysiological phenotype of the vulnerable brain [9]. Both are 
available with newer conventional pEEG monitors; however, they 
do require some expertise for proper interpretation at the point of 
care. 

Many studies have suggested that anesthesia-induced burst sup-
pression is a risk factor for POD [7,16–19]. For example, Purdon 
et al. [7], in their study of EEG changes in patients aged 18–90 
years who received either propofol or sevoflurane as a mainte-
nance anesthetic, found decreased power in all EEG frequency 
bands with increasing age. Alpha power was found to decrease 
more than the other frequency bands and burst suppression was 
more evident in elderly patients. 

In an observational cohort analysis, Fritz et al. [18] enrolled 619 
patients who underwent general anesthesia with planned inten-
sive care unit (ICU) admission after surgery. They assessed deliri-
um using the Confusion Assessment Method (CAM) for the ICU 
and measured the burst suppression. They found that 162 patients 
developed POD and that patients with more burst suppression 

were more likely to develop delirium. Approximately 15% of pa-
tients who developed POD had no burst suppression; however, 
35% of those with ≥  18 min of burst suppression developed POD. 
These authors also reported a similar finding, with a BIS value <  
20, and found that those patients who received fewer intraopera-
tive opioids were likely to experience more burst suppression. 
Similar findings have been reported in patients following cardiac 
surgery [19]. In a retrospective analysis of the same patient co-
hort, Fritz et al. [16] explored patient sensitivity to inhaled anes-
thetics. They found that patients who experienced burst suppres-
sion at lower concentrations of inhaled anesthesia had a higher 
incidence of POD and concluded that burst suppression in the 
presence of low concentrations of inhaled anesthesia may serve as 
a phenotype of anesthetic sensitivity, increasing their risk for poor 
cognitive outcomes. 

Giattino et al. [20] studied 15 patients who underwent a preop-
erative neurocognitive assessment and then measured alpha pow-
er among other EEG metrics during anesthesia and surgery. They 
found a correlation between frontal alpha-band activity and pre-
operative cognitive function that was not present in other EEG 
frequency bands such as delta, theta, or beta [20]. The authors 
concluded that lower intraoperative frontal alpha power may be 
useful for identifying patients with poor cognitive function before 
surgery who may benefit from practices that minimize or prevent 
POD and POCD. 

In a large multicenter trial, Hesse et al. [17] studied EEG chang-
es during emergence from anesthesia and the development of de-
lirium in the post-anesthesia care unit (PACU). They character-
ized a set of seven different EEG patterns during emergence from 
anesthesia, defined as emergence trajectories. Emergence trajecto-
ries were compared with the power in the alpha band and other 
EEG frequency bands. Patients with the various emergence trajec-
tories who did not develop oscillations in alpha power were at a 
higher risk for POD in the PACU [17]. Of note, this phenomenon 
was more pronounced in patients who received ketamine or ni-
trous oxide. 

Taking this concept one step further, Shao et al. [9] demonstrat-
ed an important relationship between changes in alpha band pow-
er and burst suppression. These authors analyzed EEG data for 
the presence of burst suppression and diminished alpha band 
power in patients maintained with either propofol or sevoflurane. 
They characterized the relationship between burst suppression 
and alpha power using logistic regression and found that for each 
dB decrease in frontal alpha power, the odds of experiencing burst 
suppression increased 1.33-fold. From their analysis, they pro-
posed that these findings represent an EEG phenotype of the vul-
nerable brain. 
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Although these findings may allow for the early detection of 
patients who are vulnerable to adverse neurocognitive outcomes, 
their clinical value requires further investigation and will likely be 
part of a comprehensive approach to brain health in the perioper-
ative period. In addition to monitoring EEG values, anesthesia 
care providers will likely have to utilize more refined approaches 
to anesthesia titration, implement tools to assess cognitive func-
tion throughout the perioperative period, and implement postop-
erative patient care pathways that minimize adverse outcomes 
[21,22]. Implementing these patient care adjuncts will likely un-
veil gaps in anesthesia care providers’ experience in conducting a 
preoperative cognitive assessment and awareness of the adverse 
consequences of their anesthetic technique on long-term brain 
health because of limited follow-up with their patients during a 
period when neurocognitive deficits may appear after surgery. 

Recent consensus guidelines from the Periopeartive Quality 
Initiative (POQI) report insufficient evidence to recommend the 
use of pEEG monitoring to minimize the risk of POD and POCD 
in older high-risk patients undergoing general anesthesia [23]. It 
is important to emphasize, however, that the POQI group of ex-
perts noted that three large, randomized trials demonstrated a de-
crease in POD with EEG-guided general anesthesia, while only 
the ENGAGES trial showed no effect. We anticipate that future 
work will explore the use of pEEG monitoring to detect unintend-
ed burst suppression that includes recommendations on spectral 
displays and alpha band power that clinicians can easily interpret 
to guide anesthetic delivery in the vulnerable brain population. 

In summary, when determining which anesthetic approach to 
use with a patient who is known to have or suspected of having 
vulnerable brain, EEG monitoring with focused attention on the 
suppression ratio, alpha band power, and pEEG indices, along 
with other measures, may prove useful to minimize postoperative 
neurocognitive decline. Avoiding excessive anesthesia and the use 
of anesthetics known to increase POD and providing prompt 
treatment of physiological and metabolic disorders (e.g., low he-
matocrit, hyponatremia, acidosis, etc.) are also important for min-
imizing POD. 

Reducing awareness during total intravenous 
anesthesia 

There are no monitors available for measuring the concentra-
tions of exhaled drugs when administering total intravenous an-
esthesia (TIVA). TIVAs commonly consists of a continuous infu-
sion of propofol in combination with bolus administrations or a 
continuous infusion of an opioid. Anesthesia care providers rely 
on clinical signs of an adequate depth of anesthesia to ensure con-

tinuous delivery of intravenous drugs. This is in stark contrast to 
potent inhaled agents, for which continuous monitoring of ex-
haled drug concentrations is routine. Anesthetic drug delivery is 
confirmed by the presence of exhaled drug concentrations. An-
other sign of inadequate anesthesia is patient movement. When a 
neuromuscular blockade is used, which removes patient move-
ment as a sign of inadequate anesthesia, the risk of awareness is 
higher with TIVA. 

Investigators have explored the incidence of awareness with 
varied results. In a retrospective observational study conducted by 
the Fifth National Audit Project (NAP5), over 2.8 million patient 
records over a 12-month period were reviewed to explore the in-
cidence of accidental awareness as spontaneously reported by pa-
tients during general anesthesia [24]. The authors reported that 
147 patients experienced accidental awareness with an overall in-
cidence of 1 : 19,000 or 0.005%. However, the incidence of aware-
ness varied according to the anesthetic technique. Twenty-eight 
patients undergoing TIVA reported awareness. TIVA was found 
to have a higher incidence of 1 : 14,000 or 0.007%, which in-
creased to 1 : 8,333 or 0.012% when it was combined with a neu-
romuscular blockade. The NAP5 report emphasized that, com-
pared to other anesthetic techniques, awareness with TIVA was 
largely avoidable and likely related to inadequate drug delivery. In 
the absence of monitoring to confirm propofol concentrations, 
the authors suggested that the use of pEEG monitors may help 
prevent awareness when using TIVA in combination with a neu-
romuscular blockade. This recommendation is especially import-
ant when considering propofol as the maintenance anesthesia. 
Variability in propofol effects is substantial and requires careful ti-
tration to achieve the desired effects while avoiding the adverse 
effects. For example, recommended target concentrations have 
been found to range from 3 to 6 μg/ml with target-controlled in-
fusions and can vary further depending on the co-administration 
of opioids and patient traits such as anxiety or frailty in elderly pa-
tients [25]. 

Exploring a similar question, Errando et al. [26] conducted a 
prospective single-center observational study investigating the in-
cidence of awareness using a structured interview in the PACU. 
Investigators, blinded to the anesthetic technique, interviewed 
4,001 patients who received anesthesia from 42 different anesthe-
sia care providers. Of these, over 1,200 patients received TIVA and 
the overall incidence of awareness was 1 : 100 or 1%. According to 
the anesthetic technique, the incidence with potent inhaled agents 
was 1 : 167 or 0.6% and with TIVA it was 1 : 91 or 1.1%. The au-
thors found that the incidence was higher in younger patients, 
with emergency procedures, and with anesthesia delivery at night 
and the incidence was lower in patients who were premedicated 
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with a benzodiazepine. 
The large difference in the incidence of awareness reported in 

these two studies is likely due to differences in the detection of 
awareness. The NAP5 study relied on patients’ self-reporting, fol-
lowed by documentation that could be identified in their retro-
spective analysis. In the prospective observational study, all pa-
tients were interviewed about awareness in the PACU and those 
that reported events consistent with awareness had follow-up in-
terviews 7 and 30 days later. As such, the methodology used to re-
port awareness likely played a significant role in the reported 
rates. With a larger patient population, it is more difficult to em-
ploy thorough reporting methods. 

Many investigators have explored whether pEEG monitoring 
can be used to detect brain electrical activity associated with 
awareness [27–29]. Although laudable, this effort is hampered by 
studying an adverse event that rarely occurs using a monitor that 
characterizes brain electrical activity but is not a direct measure of 
patient responsiveness or consciousness. As such, the notion that 
pEEG monitors could be reliable monitors of awareness remains 
somewhat controversial. Nevertheless, experts have recommend-
ed “the use of end-tidal anesthesia gas monitoring with alarms or 
pEEG to reduce the risk of awareness with recall in patients re-
ceiving general anesthesia” [23]. 

In summary, when administering anesthesia to patients who 
may benefit from TIVA and require a moderate-to-deep neuro-
muscular blockade (e.g., patients with a history of severe postop-
erative nausea and vomiting undergoing a laparoscope proce-
dure), pEEG monitoring and vigilant attention to intravenous 
drug administration may minimize the risk of awareness. 

Anesthetic titration in patients with 
hemodynamic instability 

Discovering an optimal approach for managing intraoperative 
hemodynamic instability can be difficult. For example, the best 
initial treatment of high or low blood pressure may be adjusting 
the anesthetic dose, administrating a vasoactive agent, or both. 
However, the most prudent choice is not always evident. As sug-
gested by Fehr et al. [30], pEEG monitors may offer information 
that would clarify which treatment to apply. However, there is a 
paucity of research exploring their benefits in this setting. Re-
searchers have explored how pEEG indices in combination with 
hemodynamic and anesthetic dosing levels may predict adverse 
outcomes and mortality with inconsistent results [31–34]. 

As an example, in a large retrospective single-center analysis 
conducted by Sessler et al. [35], the authors described a triple low 
phenomenon that consisted of a mean arterial pressure <  80 

mmHg, BIS value <  40, and MAC <  0.8, which served as a strong 
predictor of 30-days mortality. The authors concluded that the 
triple low was a promising triad, but additional studies are war-
ranted to confirm it is a predictor of perioperative mortality. Fol-
low-up prospective validation comparing mortality between two 
patient groups exhibiting triple low physiology was conducted. In 
one group, anesthesia care providers were advised via the elec-
tronic anesthetic record to “consider hemodynamic support,” 
while in the control group, no warning was offered. An effective 
response to the warning was to administer a vasoactive agent 
within 5 min of the warning or decrease the end tidal anesthesia 
by more than 20%. They found that the warning did not change 
90-days mortality. The anesthesia care providers, however, had ig-
nored the warning approximately half of the time, which was un-
anticipated. The authors had anticipated that anesthesia care pro-
viders in the advisory group would respond more frequently and 
fewer would respond in the non-advisory group. They concluded 
that their data were inadequate to properly explore whether a tri-
ple low advisory would improve outcomes [36].  

We suggest that this unanticipated finding may represent an 
education gap among anesthesia care providers. Specifically, anes-
thesia care providers may lack an understanding of how pEEG in-
dices in combination with other physiologic measures can be used 
to improve outcomes and address hemodynamic perturbations. 
We propose that pEEG monitoring could contribute to an ade-
quate discrimination between the need for a vasoactive agent, vol-
ume resuscitation, or an adjustment in the anesthesia in a variety 
of clinical scenarios. As an example, we considered the hemody-
namic pEEG profiles that inform intraoperative management. 
Fig. 2 presents options for normal, low, and high blood pressure 
conditions versus normal, low, and high pEEG indices. 

For example, if a patient exhibits high blood pressure but has a 
low pEEG index (e.g., a BIS value ≤  40), even though increasing 
the anesthesia is likely effective at lowering the blood pressure, it 
may lead to excessive anesthesia and prolonged emergence. 
Therefore, antihypertensive agents may be more appropriate. In 
this scenario, the likely source of high blood pressure is essential 
hypertension and not inadequate anesthesia. Considering hyper-
tension in the context of pEEG values is useful when caring for 
patients for whom unnecessary administration of anesthetics may 
increase the risk of worrisome postoperative adverse events [30]. 

Under select conditions of mild-to-moderate low blood pres-
sure, in addition to administering vasopressors, inotropic agents, 
and intravenous fluids, pEEG monitoring may inform appropriate 
adjustments of the anesthetic. For example, if a patient exhibits 
mild hypotension and low pEEG indices, corrective actions in-
clude reducing the anesthetic and administering vasoactive drugs 
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and intravenous fluids. Although less likely, if a patient exhibits 
hypotension and high pEEG indices, it may be prudent to restore 
the blood pressure with vasoactive agents and intravenous fluids 
before reducing the anesthesia. 

In instances of severe hypotension due to blood loss, pEEG 
monitoring may be especially helpful. Hemorrhagic shock results 
in an increase in the concentration of intravenous anesthesia due 
to altered distribution and metabolism. The increased drug levels 
produce a more pronounced anesthetic effect that is reflected in 
lower pEEG indices, providing a rational basis for anesthesia ad-
ministration [37]. Cardiac output is reduced by altering the phar-
macokinetics of anesthetic drugs. As the volume of distribution 
contracts, conventional dosing can lead to elevated blood and ef-
fect-site drug concentrations with pronounced effects. When 
managing an anesthesia under these conditions, anesthesia pro-
viders often decrease drug delivery. 

An example of this phenomenon was presented in a case report 
describing the blood pressure and BIS values resulting from sig-
nificant blood loss in a 70-year-old woman who underwent ab-
dominal aneurysm repair [38]. The patient was anesthetized with 
propofol-alfentanil (TIVA). Notably, the hemorrhage-associated 
drop in blood pressure was preceded by a drop in the BIS. The 
authors suggested that pEEG values may serve as an early warning 
of altered drug pharmacokinetics due to severe blood loss. 

In summary, we suggest that pEEG monitoring may play a role 
in anesthesia and resuscitative management when faced with ad-
verse changes in blood pressure. We also suggest addressing edu-

cation gaps that exist in clinicians’ understanding of how pEEG 
monitoring in combination with conventional physiological mon-
itors may be used to improve intraoperative and long-term patient 
outcomes.  

Patients with a history of substance abuse 

Formulating an appropriate anesthetic dose in patients with a 
history of substance abuse to achieve the desired level of sedation, 
analgesia, and immobility presents challenges. Prolonged expo-
sure to opioids, alcohol, and stimulants or the use of drugs to treat 
opioid use disorders may make it difficult to find an appropriate 
anesthetic dose. The primary concern is the risk of unintended 
awareness during general anesthesia [39]. Prior work exploring 
the scientific foundation behind this concern is limited, but that 
which exists is interesting and perhaps unexpected. The selected 
substances are briefly discussed below. 

Researchers have studied how painful stimuli processing is al-
tered in chronic pain. Chronic opioid use differentially affects the 
level of consciousness and spinal cord responses to surgical stim-
ulation. For example, Oh et al. [40] measured end-tidal sevoflu-
rane concentrations needed to maintain a BIS value <  50 (SEVO-

BIS50) in both chronic opioid users and opioid-naïve patients. They 
defined chronic opioid users as those who received a stable dose 
of oral morphine of at least 60 mg per day for at least 4 weeks. The 
SEVOBIS50 was determined using Dixon’s up-down method and 
probit analysis. The predetermined consistent end-tidal sevoflu-
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rane concentration was confirmed and maintained for 15 min to 
ensure equilibrium in end-tidal and effect site concentrations. 
Subsequently, BIS values were obtained for 1 min at 10-s intervals 
in the absence of a surgical stimulus. If the average of the five val-
ues was <  50, the authors decreased the sevoflurane by 0.2% for 
the next patient, and if the average was >  50, the authors in-
creased the sevoflurane by 0.2% for the next patient. They report-
ed a modest decrease in the SEVOBIS50 levels for chronic opioid 
users compared to opioid-naïve patients (0.84 [95% CI: 0.58, 1.11] 
and 1.18% [95% CI: 0.96, 1.40], respectively). Although not intui-
tive, patients who chronically consume opioids may require less 
maintenance anesthesia. 

The mechanism behind this observation is not well understood; 
however, it may be a function of how the data were collected and 
how the results were interpreted. SEVOBIS50 is not defined in the 
same manner as the MAC. The MAC is defined as the concentra-
tion needed to blunt a response to a standard stimulus such as 
surgical incision in 50% of patients, whereas the BIS is a pEEG in-
dex of brain electrical activity suppression. Although the authors 
did not explore changes in the MAC of sevoflurane due to chronic 
opioid use, they did evaluate how chronic opioid use influences 
brain electrical activity under general anesthesia. A limitation of 
this approach was that the SEVOBIS50 was not evaluated in the 
presence of a nociceptive stimulus. Unlike with MAC studies, the 
impact of sevoflurane on spinal cord transmission from nocicep-
tive stimuli has not been determined. 

As with the vulnerable brain, patients with chronic pain exhibit 
unique characteristics in the spectral display. Specifically, patients 
with chronic pain exhibit changes in the theta frequency band 
(3–8 Hz) that are not observed in opioid-naïve patients [41]. The 
clinical implications of these changes are yet to be elucidated. Fu-
ture work is warranted to explore how changes in the theta fre-
quency band can be used to titrate anesthetic delivery to this pa-
tient population. 

In response to the opioid epidemic, buprenorphine has been 
used to manage patients with opioid use disorders and chronic 
pain. Buprenorphine is a partial opioid mu receptor agonist and 
an opioid kappa and a delta receptor antagonist. It has a much 
higher affinity for mu receptors than several commonly used opi-
oids, such as fentanyl, hydrocodone, oxycodone, and morphine, 
but has a similar affinity as hydromorphone [42]. With a higher 
affinity, it displaces opioid agonists and competitively occupies up 
to 80%–95% of receptors at clinical doses. As a partial agonist, it is 
considered safer since there is an associated ceiling effect on ven-
tilatory depression, although the analgesic effect may be less pro-
nounced [43]. Conflicting concerns have emerged regarding its 
use during the perioperative period, such as a concern for inade-

quate acute pain control because buprenorphine occupies mu re-
ceptors, displacing pure opioid agonists. Conversely, cessation of 
buprenorphine increases the risk of opioid use disorder relapse 
and is associated with adverse outcomes.  

Recent recommendations propose maintaining buprenorphine 
at preoperative doses throughout the perioperative period [43,44]. 
Under select conditions, reducing the buprenorphine dosage may 
be considered with procedures associated with significant pain. 
This is done to allow for more receptors to be occupied by full 
opioid agonists. 

Although these guidelines focus on the challenges of providing 
adequate and safe perioperative care, they are based on lower lev-
els of evidence, such as case series, case reports, observational 
studies, studies without control groups, and expert consensus. Fu-
ture work is therefore warranted to establish evidence on how to 
best manage buprenorphine administration during the periopera-
tive period. Therefore, when determining the appropriate anes-
thesia for patients receiving buprenorphine, the anesthesia and 
the dose require individualized and timely adjustments to achieve 
the desired effects. Opioid analgesic efficacy and interactions with 
sedatives and potent inhaled agents are likely altered, making con-
ventional approaches to dosing challenging and even inadequate. 
Using pEEG indices and end-tidal inhaled agent concentrations 
may prove useful in titrating anesthetic delivery in this patient 
group. 

Alcoholics can have varied anesthesia requirements based on 
the state of inebriation. If acutely intoxicated, they require less an-
esthesia, and if sober, they can have increased anesthesia require-
ments. Acute alcohol intoxication slows the EEG and may influ-
ence BIS values. Gerstman et al. [45] found a moderate correla-
tion between BIS values and venous blood alcohol concentration 
(r =  –0.49, P =  0.029) in healthy young adults. In their study, 21 
participants consumed a median of 90 g of alcohol over a 3-hour 
period. The authors concluded that BIS values may decrease in 
the presence of alcohol. 

Fassoulaki et al. [46] compared the induction and maintenance 
propofol dose requirements in alcoholics and non-alcoholics. 
They defined chronic alcoholics as those who had consumed an 
average of 40 g/day of ethanol for at least 2 years. They defined 
non-alcoholics as those who consumed alcohol only occasionally 
or not at all. They found that with induction, the mean propofol 
dose required for loss of responsiveness was modestly increased 
in alcoholics compared to non-alcoholics (2.7 ±  0.4 vs. 2.2 ±  0.4 
mg/kg, respectively). Similarly, when using propofol as the main-
tenance anesthesia, the total amount was increased in alcoholics 
compared to non-alcoholics (4.2 ±  1.0 vs. 3.2 ±  0.8 mg/kg, re-
spectively) [46]. 
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In summary, providing anesthesia to patients with known or 
suspected substance use is difficult, since they may have unantici-
pated increased or decreased requirements. The use of pEEG 
monitoring with attentive hemodynamic monitoring may be bet-
ter for identifying anesthesia requirements and guiding anesthetic 
titration to avoid excessive or inadequate anesthesia administra-
tion. 

In conclusion, advances in understanding the nuances in intra-
operative EEG monitoring at the point of care are emerging to 
better guide anesthesia delivery in select patient populations. In 
this article, we reviewed well-supported, but perhaps poorly ap-
preciated, key features of EEG waveforms, and their clinical impli-
cations. These key features include EEG waveform morphology, 
spectral analysis, burst suppression, and alpha power. We recom-
mend anesthesia providers receive education to increase aware-
ness of the clinical utility of these key EEG features at the point of 
care. This review article also posits that in select patient groups 
and anesthetic techniques, pEEG monitors can improve patient 
outcomes and minimize adverse events. 
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