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Abstract

The extensive development of graph-theoretic analysis for functional connectivity has

revealed themultifaceted characteristics of brain networks.Network centralities iden-

tify the principal functional regions, individual differences, and hub structure in brain

networks. Neuroimaging studies using movie-watching have investigated brain func-

tion under naturalistic stimuli. Visual saliency is one of the promising measures for

revealing cognition and emotions driven by naturalistic stimuli. This study investigated

whether the visual saliency in movies was associated with network centrality. The

study examined eigenvector centrality (EC), which is a measure of a region’s influ-

ence in the brain network, and the participation coefficient (PC), which reflects the

hub structure in the brain, was used for comparison. Static and time-varying EC and

PC were analyzed by a parcel-based technique. While EC was correlated with brain

activity in parcels in the visual and auditory areas during movie-watching, it was only

correlated with parcels in the visual areas in the retinotopy task. In addition, high PC

was consistently observed in parcels in the putative hub both during the tasks and

the resting-state condition. Time-varying EC in the parietal parcels and time-varying

PC in the primary sensory parcels significantly correlated with visual saliency in the

movies. These results suggest that time-varying centralities in brain networks are dis-

tinctively associated with perceptual processing and subsequent higher processing of

visual saliency.
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1 INTRODUCTION

In functional magnetic resonance imaging (fMRI) studies, movie-

watching is used as naturalistic stimuli rather than experimental

stimuli.Movie-watching evokes an “experimental” brain state as all par-

ticipants receive similar stimuli, however, movie-watching also induces
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a resting state as no response is required throughout the experiment.

The brain activity during movie-watching is usually analyzed with

model-based methods (e.g. motion, Bartels et al., 2008; binocular

disparity, Ogawa et al., 2013), individual differences (Vanderwal

et al., 2017), and inter-subject correlation (Hasson et al., 2004, 2008;

Betzel et al., 2020; Finn et al., 2020; for review, Pajula et al., 2012).
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Analyzing the brain activity associated with visual saliency is one of

the potential measures for revealing cognitions and emotions driven

by naturalistic stimuli (Bordier et al., 2013; Nguyen et al., 2017; for

review, Sonkusare et al., 2019; Vanderwal et al., 2019).

The visual saliency of a scene characterizes spatially the strength

of bottom-up features. A visual saliency map computed with a biolog-

ically plausible model can encode the conspicuity of the visual scene

and provide a prediction of the attention deployment (Itti et al., 1998;

Itti & Koch, 2001; Harel et al., 2007). Visual saliency is known to mod-

ulate activation in higher-order visual areas, and posterior parietal

areas involved in visual attention (Gottlieb et al., 1998; Nardo et al.,

2011, 2014;Capotosto et al., 2013; Santangelo&Macaluso, 2013; San-

tangelo et al., 2015). In addition to static scenes, visual saliency can

serve to investigate the neural correlates of cognitive dynamics during

movie-watching (Nguyen et al., 2017).

The characteristics of large-scale functional networks in the brain

have been thoroughly investigated using graph-theoretic analysis

(Bullmore&Sporns, 2009;Rubinov&Sporns, 2010; Fornitoet al., 2013,

2016; Bassett & Sporns, 2017). During movie-watching, global and

nodal graph indices characterize large-scale functional networks (Kim

et al., 2017). Among the several graph-theoretic indices, network cen-

trality identifies regions important for information processing in the

brain network. While the eigenvector centrality (EC) indicates influen-

tial regions in the brain network both during tasks and in the resting

state (Joyce et al., 2010; Lohmannet al., 2010; Zuoet al., 2012), the par-

ticipation coefficient (PC) identifies the hub structure in the brain net-

work (Sporns et al., 2007; Power et al., 2013; van denHeuvel & Sporns,

2013; Sporns, 2014). Therefore, high PC brain regions work as hubs

for information processing, whereas high EC brain regions have a func-

tional relevance for the brain network.

The large-scale neural activity patterns underlying cognitive pro-

cesses and behaviors are associated with time-varying functional

connectivity (Sakoğlu et al., 2010; Hutchison et al., 2013; Leonardi

et al., 2014; Leonardi & Van De Ville, 2015; Lurie et al., 2020). Central-

ity changes along with temporary changes in functional connectivity

depending on task demands. Recent investigations in time-varying

network centralities have revealed several brain network charac-

teristics. Essentially, while the time-varying EC of the resting-state

appears to reflect individual differences (Wink, 2019), time-varying

PC demonstrates the changes in the network structure with increas-

ing integration of various brain regions (Thompson et al., 2020).

These centralities represent the diverse characteristics of the brain

network.

This study hypothesized that time-varying centralities reveal

brain network characteristics during movie-watching and examined

whether time-varying EC and PC in the visual areas and posterior

parietal regions correlatedwith visual saliency duringmovie-watching.

This study used fMRI data available from the public Human Connec-

tome Project database (HCP, Uğurbil et al., 2013; Van Essen et al.,

2013). Data pertaining to retinotopy task performance and the resting

state were also analyzed for comparison. While the retinotopy task

was expected to only evoke the activation of visual areas, no activation

related tomovie-watching was expected during the resting-state. HCP

Parcellation (Glasser et al., 2016) was employed for centrality analysis.

A parcel corresponded to a node in the brain network. The static

(time-averaged) and time-varying EC and PC during movie-watching,

retinotopy task, and resting state were calculated parcel-wise. Parcel-

based brain networks are preferred to voxel-wise centrality analysis

for analyzing time-varying centrality since the latter involves a con-

siderable amount of calculation load. Herein, the spatial map of PC

was analyzed for consistency between movie-watching, experimental

task, and resting state. Time-varying EC was used to evaluate the

relationship between visual saliency and functional network profile

duringmovie-watching.

2 METHODS

2.1 Human connectome project data

Functional images were downloaded from the HCP database. The

movie-watching, retinotopy task, and resting-state (both 7T and 3T

images) data of 168 participants (64 males and 104 females; partici-

pants’ IDs are listed in Table S1) in various age groups (22–25 years:

19 participants; 26–30 years: 82; 31–35 years: 65; and ≥ 36 years:

2) were analyzed. Functional images were scanned using gradient-

echo echo-planar imaging using a 7T scanner (Repetition Time (TR),

1000ms; EchoTime (TE), 22.2ms; FlipAngle, 45 degrees; Field ofView,

208 mm × 208 mm; Voxel size, 1.6 mm isotropic; 85 slices; Multiband

factor (Moeller et al., 2010), 5; Image acceleration factor, 2; Partial

Fourier sampling, 7/8; Echo spacing, 0.64ms; Band-width, 1924Hz/Px)

and in a 3T scanner (TR, 720 ms; TE, 33.1 ms; Flip Angle, 52 degrees;

Field of View, 208 mm × 180 mm; Voxel size, 2.0 mm isotropic; 72

slices; Multiband factor, 8; No image acceleration; Partial Fourier

sampling, 7/8; Echo spacing, 0.58 ms; Band-width, 2290 Hz/Px). The

downloaded 7T data corresponded to the re-processed fMRI data that

were released in April 2018.

Movie-watching (MOVIE hereafter), retinotopy task (RET here-

after), and resting-state (REST hereafter) data were analyzed. The pro-

cedure for MOVIE and RET analysis included the following steps: For

MOVIE, Creative Commons (CC), andHollywood (HO)movies (Cutting

et al., 2012) were presented on the screen (1024× 768 resolutionwith

24 frames per second). Earbuds (Sensimetrics Corp., MA) were used to

deliver the audio to participants. In the first fMRI run, CCmovies were

presented for a 15 min 21 s scan. In the second run, HO movies were

presented for 15 min 18 s. In the third run, the different CC movies

were presented for 15 min 15 s. In the fourth run, the different HO

movies were presented for 15 min 01 s. There were rest phases (20 s)

at the start and end of each fMRI run.

RET included six fMRI runs (Benson et al., 2018). Participants

watched retinotopic stimuli videos, including counter-clockwise

sweep, clockwise sweep, expanding circle, contracting circle, and two

multi-direction bar sweeps. The stimuli were presented within a visual

angle of 16◦ on the screen (1024 × 768 resolution with 15 frames

per second). Each fMRI run lasted 5 min. Further details of MOVIE

and RET tasks are described in the HCP reference manual chapter 2
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(humanconnectome.org/study/hcp-young-adult/document/1200-

subjects-data-release).

2.2 Image processing

The image preprocessing details are described elsewhere (Glasser

et al., 2013; Smith et al., 2013). Briefly, the following steps were per-

formed: First, image susceptibility induced distortions were corrected.

The images were spatially normalized into the standard space of Mon-

treal Neurology Institute coordinates. Next, the data were normal-

ized onto the standard surface (32,492 vertices in each hemisphere)

(Van Essen, 2005; Glasser et al., 2013). For REST data, a temporal

high-pass filter (0.0005 Hz) was applied to remove the linear trend.

FMRIB’s ICA-based Xnoiseifier (FIX, Salimi-Khorshidi et al., 2014) was

used to reduce noise and nuisance components automatically, such as,

head motion. Multimodal surface matching was applied to adjust the

normalization on the standard surface individually (MSMAll, Robin-

son et al., 2014, 2018). For MOVIE and RET data, a temporal high-

pass filter (0.005 Hz) was applied to remove low-frequency fluctua-

tions. The preprocessed files are available from the HCP web page

(db.humanconnectome.org, RRID:SCR_004830).

Figure 1A shows the procedure to calculate a centrality map on

the standard brain surface. The time-series of the preprocessed data

were averaged across vertices in each parcel. For this purpose, theHCP

parcellation, including 180 parcels in each hemisphere (Glasser et al.,

2016), was employed. The averaged time-series in each parcel for each

fMRI run was normalized to mean and standard deviation values of 0

and 1, respectively. The time-series were subsequently concatenated

across the fMRI runs of each participant for centrality analysis. A cor-

relationmatrix was calculated for the concatenated time-series across

all parcels.

Midnight Scan Club scripts (github.com/MidnightScanClub, Gordon

et al., 2017) were used to read and write CIFTI files. The HCP Connec-

tomeWorkbench (Marcus et al., 2011, RRID:SCR_008750)was used to

calculate the correlationmatrix and visualize the results.

2.3 Network analyses

A proportional 7.5% threshold was applied to the correlationmatrix to

generate an adjacency matrix, which represented a binary undirected

network (van den Heuvel et al., 2017; Figure 1). The adjacency matrix

was used for calculating EC and PC. The threshold was determined

based on the flow coefficient (Honey et al., 2007). As opposed to EC

and PC, the flow coefficient is a local centrality metric.With respect to

thenetwork construction, thenetworknodes areexpected to influence

or communicatewith each othermore intensively. Themean flow coef-

ficients across participantswere calculated at 2.5%, 5.0%, 7.5%, 10.0%,

12.5%, and 15% proportions. The peakwas found at 7.5%.

EC evaluates the importance of each network node—parcel—

(Lohmann et al., 2010; Zuo et al., 2012). All connections in the adja-

cency matrix were used to calculate EC. Therefore, EC integrates the

connectivity information about all functionally connected parcels. EC

F IGURE 1 Procedure for calculating centrality map and visual
saliency inmovies. (A) Procedure for calculating centrality maps. The
denoised functional magnetic resonance imaging (fMRI) time-series
are averaged in each parcel. Temporal correlation coefficients of the
averaged time-series are calculated between parcels. A threshold is
applied to the correlationmatrix to generate the adjacencymatrix
where each element indicates the presence or absence of connection
between parcels. Then, network centrality in each parcel is calculated
and projected onto the standard brain surface to generate a centrality
map. (B) Calculation of visual saliency inmovies. The visual saliency
map of eachmovie frame is calculated. Themaps within each scan are
spatially averaged to generate themean visual saliency signal. A
low-pass filter is applied to themean visual saliency signal

can be used to capture brain-wide large-scale characteristics. Thus, a

high EC brain region is functionally crucial in the brain network (e.g.

network resilience). The EC of parcel iwas calculated as below:

ECi =
1
𝜆1

A 𝜇1 =
1
𝜆1

N∑
j = 1

aij𝜇1 (j) (1)

A is the adjacency matrix, λ1 is the first eigenvalue, µ1 is the first

eigenvector, and N is the number of parcels. PC of parcel i was also

calculated for the brain network (Guimerà & Nunes Amaral, 2005;
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Power et al., 2013):

PCi = 1 −
∑
m∈M

(
Ki (m)
Ki

)2

(2)

M is the total set of network communities estimated using Louvain

community detection (Rubinov & Sporns, 2010), Ki is the number of

connections associated with parcel i, and Ki (m) is the number of con-

nections between parcel i and all parcels in community m. PC can be

used to define a parcel acting as a connector hub between modules

(i.e. local sub-networks) (Guimerà & Nunes Amaral, 2005; Rubinov &

Sporns, 2010; Bertolero et al., 2015; Cohen&D’Esposito, 2016).While

parcels with higher PC have connections across modules, parcels with

lower PC tend to have connections within amodule. In contrast to that

of EC, the spatial profile of PC, that reflects the hub structure in the

brain, was consistent between the tasks and resting-state condition.

Both time-varying eigenvector centrality (tEC) and participation

coefficient (tPC) were calculated using the sliding window technique

(Shakil et al., 2016). The window was set to 50 s (from before 25 s to

after 25 s). The tEC and the tPC were calculated every second in time

with the scan TR in MOVIE, except the first and the last 25 s. At time

t, the adjacency matrix A(t) was calculated. Then, the tEC of parcel i at

time twas calculated as below:

tECi (t) =
1

𝜆1 (t)
A (t) 𝜇1 (t) =

1
𝜆1 (t)

N∑
j = 1

aij (t) 𝜇1 (j, t) (3)

The first eigenvalue λ1(t) and first eigenvector µ1(t) were calculated

from the adjacency matrix A(t). The tPC of parcel i was also calculated

as below:

tPCi (t) = 1 −
∑

m∈M(t)

(
Ki (m, t)
Ki (t)

)2

(4)

The total set of network communities of time t, M(t), was estimated

from the adjacencymatrix A(t).

The brain connectivity toolbox (Rubinov & Sporns, 2010,

RRID:SCR_004841) was used to calculate flow coefficient, EC,

PC, tEC, and tPC.

2.4 Visual saliency

The saliency toolbox (version 2.3, saliencytoolbox.net;Walther&Koch,

2006) was used to calculate the visual saliency map (Itti et al., 1998)

of every movie frame (Figure 1B). Visual saliency was calculated as fol-

lows. Eachmovie framewasdecomposed into image features: intensity,

color, and orientation. Feature maps were computed from the Gaus-

sian pyramid procedure using the center-surround mechanism. Then,

each feature map was normalized. Finally, the visual saliency map was

obtained by combining the feature maps. The visual saliency map of

eachmovie framewas 64 pixels in width and 45 pixels in height.

The visual saliency maps within each fMRI scan were spatially aver-

aged across pixels and temporally averaged across frames to gen-

erate the mean visual saliency signal over time for each scan, as

follows:

s̄ (t) =
1
F

1
X
1
Y

∑
f∈t

∑
x

∑
y
s (x, y, f) (5)

F indicates the number of frames in time t (i.e. 24 frames),X indicates

the number of pixels in the x-axis in the visual saliency map, and Y indi-

cates the number of pixels in the y-axis in the visual saliency map. A

low-pass filter (0.1 Hz) was applied to the mean visual saliency signal.

FMRI signals in visual areas were expected to reflect visual saliency.

The correlation between the fMRI signal in each parcel and the mean

visual saliency signal was examined.

2.5 Parcel-wise relations between visual saliency
and time-varying centralities

The temporal correlation between the mean visual saliency signal and

tEC was calculated for each parcel in each participant. The tempo-

ral correlation between the mean visual saliency signal and tPC was

also calculated. Subsequently, the correlation coefficients were trans-

formed to Fisher-z value and statistically compared for each parcel.

Bonferroni correction was applied for the number of parcels, although

the Bonferroni correction might be conservative and cause false nega-

tives. Statistical threshold was set to Z> 4.3 (P-FWE< 0.01).

3 RESULTS

3.1 Network construction

Figure 2 shows the correlationmatrices ofMOVIE, RET, and REST. The

parcels were aligned for Yeo’s seven resting-state networks (RSN, Yeo

et al., 2011). Applying the proportional threshold to the correlation

matrices generated adjacency matrices showing dense connections in

each RSN, and sparse connections between RSNs (Figure S1). Each

adjacency matrix represents the brain network for each of MOVIE,

RET, and REST.

3.2 Centralities

EC and PC were calculated for each parcel, and for MOVIE, RET,

and REST. Figure 3A shows the EC maps for MOVIE and RET. The

correlation coefficient between MOVIE and RET was 0.60. Fig-

ure 3B shows the PC maps for MOVIE and RET. The correlation

coefficient between MOVIE and RET was 0.78. The correlation for

PC was significantly higher than the correlation for EC (Z = 3.28,

P = 0.001). EC and PC maps for REST are shown in Figure S2. Cor-

relations of MOVIE-REST and RET-REST with MOVIE-RET were

consistently higher (0.73 and 0.85) for PC, and also for EC (0.80 and

0.64) (Figure S2). These indicate that the spatial distribution of PC
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F IGURE 2 Correlationmatrices inMOVIE, RET, and REST aligned
with Yeo’s seven RSNs. A threshold is applied to thesematrices to
generate the networks for calculating centralities. rfMRI, resting-state
functional magnetic resonance imaging; tfMRI, task-based fMRI; VIS,
visual; SM, somatomotor; VA, ventral attention; DA, dorsal attention;
FP, fronto-parietal; DM, default mode; LIM, limbic; RSNs, resting-state
networks; MOVIE, movie-watching; RET, retinotopy task, REST,
resting-state

was consistent during movie-watching, experimental task, and resting

state.

ECs inMOVIE were compared with those in RET and REST for each

parcel. The parcels in visual areas showed higher EC for MOVIE com-

pared with RET and REST (Figure 4A,B, Table S2; paired t tests with

Bonferroni correction for the number of parcels). The parcels in the

inferior parietal lobule, lateral prefrontal cortex, andmedial prefrontal

cortex had higher EC for RET compared with MOVIE and REST (Fig-

ure S3A,B, Table S6). The parcels in the somatomotor network showed

higher EC for REST comparedwithMOVIE and RET (Figure S3C,D).

Likewise, PCs inMOVIEwere comparedwith those inRET andREST

for each parcel. Although the PC maps were similar among MOVIE,

RET, and REST, the parcels in the default-mode network showed sig-

nificantly higher PC for MOVIE compared with RET and REST (Fig-

ure 4C,D, Table S3; paired t tests with Bonferroni correction for the

number of parcels). The other comparisons are shown in Figure S4 (see

also Table S7).

We also examined whether the head motion influenced network

centrality. The average head motion in each fMRI run was available

from the HCP database (file: Movement_RelativeRMS_mean.txt). The

mean head motion was calculated across fMRI runs for each partici-

pant in each condition. The correlation betweenmeanheadmotion and

network centralities across participants was calculated in each parcel.

The results showed low correlations between head motion and net-

work centralities (Figure S5).

F IGURE 3 Relationship of centralities betweenMOVIE, RET, and
REST. (A) ECmaps. ECmaps inMOVIE and RET are spatially
correlated. Each dot represents a parcel. (B) PCmaps. PCmaps in
MOVIE and RET are spatially correlated. EC, eigenvector centrality;
PC, participation coefficient; MOVIE, movie-watching; RET, retinotopy
task, REST, resting-state

3.3 Visual saliency

The correlation coefficients between the fMRI signal in each parcel

and themean visual saliency signal were Fisher-z transformed and sta-

tistically tested (one sample t test). As expected, the fMRI signals in

the parcels in visual areas were significantly correlated with the mean

visual saliency signal (Figure 5A, Table S4; paired t-testwithBonferroni

correction for the number of parcels). Significant correlations were

also observed in parcels in the auditory areas. The visual saliency could

emphasize the auditory signals. Figure 5B shows the group-averaged r-

map of the same correlation. The averaged correlation coefficient was

higher in parcels in the visual areas.

3.4 Relationship between visual saliency
and time-varying eigenvector centrality
and participation coefficient

The mean saliency signal was calculated for each TR scan and tem-

porally filtered (Low-pass 0.1 Hz). Correlations between mean visual

saliency signal, and tEC and tPC, were calculated for each parcel.

Fisher-z-transformed correlations were compared in each parcel

(paired t test with Bonferroni correction for the number of parcels).
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F IGURE 4 Comparisons of EC and PC in each parcel. (A) Result of
MOVIE> RET of EC. Parcels in visual areas show significantly higher
EC forMOVIE. (B) Result ofMOVIE>REST of EC. Parcels in visual
areas also show significantly higher EC forMOVIE. (C) Result of
MOVIE> RET of PC. Parcels in the default-mode network show
significantly higher EC forMOVIE. (D) Result ofMOVIE>REST of PC.
Parcels in the default-mode network also show significantly higher EC
forMOVIE. EC, eigenvector centrality; PC, participation coefficient;
MOVIE, movie-watching; RET, retinotopy task, REST, resting-state

The posterior parietal parcels showed a significant correlation

between saliency and tEC (Figure 6A, Table S5), while the primary

sensory area parcels showed a significant correlation between saliency

and tPC (Figure 6B, Table S5).

4 DISCUSSION

This study investigated the association between time-varying network

centrality in the brain and visual saliency during movie-watching. A

parcel-based technique was used to construct a brain network from

the functional connectivity between parcels. When comparingMOVIE

and RET, the PC maps were similar, while the spatial distributions of

EC were less similar. The correlation analysis between visual saliency

and time-varying network centralities showed that tEC in the posterior

parietal parcels, and tPC in the primary sensory areas, tracked visual

saliency. These results suggest that tECand tPCmaybeassociatedwith

different perceptual features of visual saliency.

The parcels in the posterior parietal cortex showed a significant

correlation between tEC and visual saliency. Previous studies have

demonstrated the role of the posterior parietal cortex in higher

processing for visual saliency (Gottlieb et al., 1998; Arcizet et al., 2011;

Santangelo et al., 2015; Chen et al., 2020). The results of this study sug-

gest that large-scale brain networks are associatedwith visual saliency

processing: The ventral attention network for stimulus-driven atten-

tional capture (Yantis & Egeth, 1999) and the dorsal attention network

F IGURE 5 Parcels associated with visual saliency. (A) Parcels
correlated with themean visual saliency signal. Parcels in the visual
and auditory areas show significant correlations. (B) Group-averaged r
map. The Fisher-z-transformed correlation in each parcel was
averaged across participants and Fisher-z-inverse-transformed into
the group-average correlation coefficient

for top-down attentional direction to contextually relevant objects

(Connor et al., 2004). Consequently, time-varying network centralities

can be used to characterize the profile of large-scale brain activity.

However, large motion in movie frames may influence attention and

eye movement, a fact to be considered when viewing this sort of

data.

While in MOVIE EC was high in visual areas, in RET it was high in

parcels in the ventral attention and somatomotor networks (Figure 4).

These may reflect the task features of MOVIE and RET conditions.

Compared with MOVIE, RET required pressing a button when the cue

appeared. To detect the cue quickly, the activity in the parcels in the

ventral attention network may correlate with the cue appearance. The

parcels in the somatomotor networkmay increase the activity in a syn-

chronizedmanner to prepare for the button press.

The spatial distribution of PC was highly consistent in MOVIE, RET,

and REST. The correlation for PC was significantly higher than that for

EC in MOVIE. In addition, although the magnitude of the static mag-

netic field and other variations in scan settings may have influenced

functional connectivity, PC was found to be consistent in the resting

state in the different static magnetic fields of 3T and 7T (Figure S6).

These results indicate that PC reflects the stable hub structure and

may be related to anatomical connections (Power et al., 2013; van den
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F IGURE 6 Parcels with higher correlations between visual
saliency and time-varying network centrality. (A) Contrast of
Fisher-z-transformed correlations of tEC> tPCwith visual saliency.
Posterior parietal parcels show a higher correlation between tEC and
visual saliency. (B) Contrast of Fisher-z-transformed correlation of
tPC> tECwith visual saliency. Parcels in primary sensory areas show a
higher correlation between tPC and visual saliency. tEC, time-varying
eigenvector centrality; tPC, time-varying participation coefficient

Heuvel & Sporns, 2013). A set of connected parcels with high PC called

rich-club nodes may play an important role in information integration

and network robustness (van den Heuvel & Sporns, 2011; Crossley

et al., 2013). Complementary to PC, which can detect a parcel acting as

a connector hub between modules, within-module degree z-score can

beused todetect a parcelwith connectionswithin amodule (i.e. provin-

cial hub) (Guimerà & Nunes Amaral, 2005; Rubinov & Sporns, 2010;

Baumet al., 2017). To reveal the functional integration and segregation

of brain networks, the combination of complemental network indices

can be considered.

This study adoptedaparcel-based technique to analyze thenetwork

centrality during movie-watching. Parcel-based analysis is becoming

popular, not only for the resting state but for task-induced activation

(Allan et al., 2019; Osada et al., 2019; Fujimoto et al., 2020; Suda et al.,

2020). The main benefit of the parcel-based analysis, over voxel-wise

or vertex-wise analysis of the whole brain, is lower computational load

in both time and memory. However, one important limitation of the

parcel-based analysis is its lower spatial resolution. Nevertheless, as a

tool for analysis of the spatial distribution of network centrality in the

whole brain, as in this case, the parcel-based analysis is more suitable

than the vertex-wise analysis.

Time-varying network centrality may be beneficial for characteriz-

ing brain activity (Calhoun et al., 2014). The dynamics of network cen-

tricity calculated from functional connectivity are greatly affected by

the nature of time-varying functional connectivity. In this study, the

correlation between tEC and visual saliency was significant mainly in

the posterior parietal cortex. In contrast, a higher EC was observed

in the early visual cortex. The correlation between tPC and visual

saliency was significant in primary sensory areas, whereas a higher PC

was observed mainly in the prefrontal and posterior parietal cortices.

Figure 6 shows significant parcels where centrality changes as visual

saliency changes. tPC being higher in the visual cortex when visual

saliency is also high likely reflects the fact that information is sent from

the visual cortex to various areas when visual saliency is increased.

Thus, time-varying network centralitymay not be related to the nature

of static (or time-averaged) network centrality. Caution should be exer-

cised in the interpretation of time-varying centrality, as its polarities

are temporally not always equal to those of static network centrality

(Thompson et al., 2020).

Many resting state functional connectivity studies of brain net-

works use the Pearson’s product-moment correlation coefficient and

Fisher-z-transformation. When time series of the fMRI signals exhibit

high temporal autocorrelation, the effective degrees of freedom are

reduced and the standard error may be biased. Therefore, care should

be taken when assessing the effective degrees of freedom influencing

the network formation. The proportional threshold would be less sen-

sitive to the effective degrees of freedom than the absolute threshold.

A solution would thus be to use the effective degrees of freedom for

the Pearson’s correlation that considers the temporal autocorrelation

of the time series (Afyouni et al., 2019).

This study investigated the relationship between time-varying net-

work centrality and visual saliency during movie-watching. The results

showed a significant correlation between visual saliency and tEC in

posterior parietal parcels and between visual saliency and tPC in pri-

mary sensory area parcels. The results also suggest that tEC is asso-

ciated with spatial attention control in the parietal cortex evoked by

visual saliency. These findings suggest that network centralities can

be used for investigating brain activity characteristics in response

to time-varying stimulus features, albeit with some caution in the

interpretation.
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Duarte-Carvajalino, J. M., Uğurbil, K., . . . Andersson, J. L. R. (2013). Push-

ing spatial and temporal resolution for functional and diffusion MRI in

the Human Connectome Project.Neuroimage, 80, 80–104.
van den Heuvel, M. P., de Lange, S. C., Zalesky, A., Seguin, C., Yeo, B. T. T., &

Schmidt, R. (2017). Proportional thresholding in resting-state fMRI func-

tional connectivity networks and consequences for patient-control con-

nectome studies: Issues and recommendations. Neuroimage, 152, 437–
449.

van den Heuvel MP, & Sporns, O. (2011). Rich-club organization of the

Human Connectome. Journal of Neuroscience, 31, 15775–15786.
van den Heuvel MP, & Sporns, O. (2013). Network hubs in the human brain.

Trends in Cognitive Sciences, 17, 683–696.
VanEssen,D.C. (2005). A population-average, landmark- and surface-based

(PALS) atlas of human cerebral cortex.Neuroimage, 28, 635–662.
Van Essen, D. C., Smith, S. M., Yacoub, E., Barch, D. M., Behrens, T. E. J.,

& Ugurbil, K. (2013). The WU-Minn Human Connectome Project: An

overview.Neuroimage, 80, 62–79.
Vanderwal, T., Eilbott, J., & Castellanos, F. X. (2019). Movies in the magnet:

Naturalistic paradigms indevelopmental functional neuroimaging.Devel-
opmental Cognitive Neuroscience, 36, 100600.

Vanderwal, T., Eilbott, J., Finn, E. S., Craddock, R. C., Turnbull, A., &

Castellanos, F. X. (2017). Individual differences in functional connec-

tivity during naturalistic viewing conditions. Neuroimage, 157, 521–
530.

Walther, D., & Koch, C. (2006). Modeling attention to salient proto-objects.

Neural Networks, 19, 1395–1407.
Wink, A. M. (2019). Eigenvector centrality dynamics from resting-state

fMRI: Gender and age differences in healthy subjects. Frontiers in Neu-
roscience, 13, 648.



10 of 10 OGAWA

Yantis, S., & Egeth, H. E. (1999). On the distinction between visual salience

and stimulus-driven attentional capture. Journal of Experimental Psychol-
ogy. Human Perception and Performance, 25, 661–676.

Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,

Hollinshead, M., Roffman, J. L., Smoller, J. W., Zollei, L., Polimeni, J. R.,

Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human

cerebral cortex estimated by intrinsic functional connectivity. Journal of
Neurophysiology, 106, 1125–1165.

Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O.,

&Milham,M. P. (2012). Network centrality in the human functional con-

nectome. Cerebral Cortex, 22, 1862–1875.

SUPPORTING INFORMATION

Additional supporting informationmay be found online in the Support-

ing Information section at the end of the article.

How to cite this article: Ogawa, A. (2021). Time-varying

measures of cerebral network centrality correlate with visual

saliency duringmovie watching. Brain and Behavior, 11, e2334.

https://doi.org/10.1002/brb3.2334

https://doi.org/10.1002/brb3.2334

	Time-varying measures of cerebral network centrality correlate with visual saliency during movie watching
	Abstract
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Human connectome project data
	2.2 | Image processing
	2.3 | Network analyses
	2.4 | Visual saliency
	2.5 | Parcel-wise relations between visual saliency and time-varying centralities

	3 | RESULTS
	3.1 | Network construction
	3.2 | Centralities
	3.3 | Visual saliency
	3.4 | Relationship between visual saliency and time-varying eigenvector centrality and participation coefficient

	4 | DISCUSSION
	ACKNOWLEDGMENTS
	COMPETING INTERESTS
	DATA AVAILABILITY STATEMENT
	PEER REVIEW

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


