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Abstract

Background: Understanding complex networks that modulate development in humans is hampered by genetic and
phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in
highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The
aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human
patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human
disease candidate genes.

Methodology: We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence
brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J6DBA/
2J, BXD strains) using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical
phenotype with genetic data from patients with abnormal corpus callosum (ACC) development.

Principal Findings: From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified.
Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with
a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with
human syndromes (involving ACC) and those covered by copy number variations (CNV) yielded a single overlap, namely
HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus
callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at
Hnrpul1 (F = 22.48, p,9.87*1025).

Conclusion: This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge
to study the etiology of human developmental disorders, such as autism and schizophrenia.
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Introduction

The corpus callosum is the fibrous structure that connects both

hemispheres of the cortex in all placental mammals [1,2]. In

humans, this bridge is made up of more than 100 million axons of

neocortical neurons routing information between the left and the

right sides of the brain [3,4]. Improper development of the corpus

callosum may manifest itself in infancy by feeding problems, delays

in acquiring proper posture and the ability to walk, and

impairments in hand-eye coordination, speech, and visual and

auditory memory. In mild cases, symptoms such as repetitive

speech, social awkwardness, rigid thinking, poor problem solving,

and odd communication patterns may appear during elementary

school years. During puberty, children with an abnormal corpus

callosum (ACC) often fall behind in social understanding, social

communication, comprehension of non-literal language, problem

solving, executive skills, recognition of emotions, self-awareness,

and personal insight. Given the lack of specificity of symptoms of

an ACC, it is critical to properly diagnose an ACC, which may

either occur as an isolated clinical entity, as part of a syndrome (for

reviews see: [1,2,5,6]) or in association with complex phenotypes

such as autism or pontocerebellar hypoplasia [7,8]. Recent studies

have put forward potential candidate genetic mechanisms

underlying an ACC in humans, however, the question remains

how these genes contribute to abnormal development of this brain

region relevant to proper human functioning.

For example, developmental processes in mammals are

presumed to be controlled by complex genetic networks often

involving interaction of several loci and genes [9,10]. Unraveling

the myriad interactions within these networks is a major task in

clinical genetics, which faces the challenge of correctly interpreting

the phenotypic manifestations of perturbed development in
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relation to data on genome alterations. Since these fundamental

developmental processes are among the evolutionary most

conserved, we hypothesize that the underlying genetic networks

and their interaction patterns are also highly conserved. Here, we

present an approach to interpret human genomic data relating to

perturbed developmental disease processes by making use of their

evolutionary conservation through natural genetic variation within

and across species. As a test case, we have analyzed a locus

involved in the development of the corpus callosum in the human

and the mouse brain.

Results

Prioritizing candidate loci and genes
Following a procedure used in a recent study of patients with

multiple congenital anomalies and mental retardation [11] we

used a disease cohort-specific compilation of genes involved in

syndromes involving an ACC to prioritize contributing loci, genes,

and biological processes. For the 61 autosomal recessive and

dominant, X-linked, metabolic, and chromosomal syndromes

which involve an ACC, 51 human candidate genes have been

identified (Table 1). Of these 19 (ARX, ATRX, DCX, EFNB1,

EP300, FCMD, FGFR1, FLNA, GLI3, HESX1, L1CAM, LARGE,

MID1, PAFAH1B1, PAX6, PTCH, RELN, WHSC1, and ZFHX1B)

fit into the Gene Ontology (GO) category of development

(GO:0007275; p value,0.0001 and Bayes Factor 15). The more

narrow category of neurogenesis (GO:0007399) includes 11 genes

(DCX, EFNB1, EP300, FCMD, FLNA, HESX1, L1CAM, LARGE,

PAFAH1B1, PAX6, and ZFHX1B; p,0.0001 and Bayes Factor 16).

Both the p values (assuming a normal distribution of likelihoods)

and the Bayes factor, indicating the fold-likelihood that a model

fits the data vs. the neutral null-hypothesis, indicate a highly

significant association of these GO categories with an ACC [12].

Accordingly, an ACC may result from defective functioning of any

or several genes from a relatively limited set of genes required for

proper neurodevelopment.

From recent studies of structural genome rearrangements, 15

loci and consensus regions have emerged [13–25]. Results from

several studies converge onto regions 1q44, 6q27, and 15q21.2.

One could even interpret these studies as describing shared

consensus regions within bands 1q44, 6q27 and 15q21.2. The

studies of 1q44 deletions, however, have thus far resulted in three

mutually exclusive consensus regions [13–15,26,27]. The initially

proposed candidate gene AKT3 has subsequently been disputed

[14,15,28]. Submitting the candidate genes indicated by these

studies of structural genome rearrangements to an analysis of

shared Gene Ontologies did not yield a similar signature biological

process as found with syndromal genes (see above). This is not too

surprising since some of the CNVs are relatively large and often

contain ‘‘bystander’’ genes that are not likely to be involved in a

patient’s phenotype. To overcome this drawback, we sought a

novel approach by reasoning that the evolutionary conservation of

the development of the corpus callosum among mammals may

provide us with a clue.

Gene mapping with crosses of inbred mouse strains
Unbiased phenotype-driven approaches in mice may also

contribute to identification of genetic loci relevant to the

development of the corpus callosum in humans. Analyses of

mouse genetic reference populations (GRPs) allow for systematic

identification of quantitative trait loci (QTL) using controlled

genetic background and environmental conditions. For instance, a

recombinant inbred (RI) panel which is generated from a cross

between two inbred strains [29,30] (e.g., C57BL/6J6DBA/2J

(BXD)) [31]; followed by an F1 intercross and 20 generations of

inbreeding has proven to be a powerful instrument for studies of

complex genetic traits on the basis of natural variation [29–31].

Here, we focused our analysis on the corpus callosum volume

spanning a wide range (,8.5 to 17.6 mm3) across individuals of

the BXD panel (with known genotypes). Through interval

mapping (using the online GeneNetwork system at www.genenet-

work.org) we identified a single significant QTL on mouse

chromosome 7 for corpus callosum volume with a QTL peak

located between approximately 25.5 and 26.7 Mb (Figure 1A).

The peak of the QTL-interval just reached genome-wide

significance level with a log of odds (LOD) score of 2.8

(permutation likelihood ratio statistic, or LRS, threshold is

computed of the genome-wide p value of 0.05 using 1000

permutations). This locus on chromosome 7 contains approxi-

mately 46 genes.

Comparing the genes in this QTL region with those associated

with syndromes involving an ACC (Table 1) and those covered by

CNVs yielded a single gene overlap, namely the HNRPU gene in

humans and its homolog Hnrpul1 in mice. Further analysis in BXD

strains revealed that the corpus callosum was significantly larger in

strains with a B genotype at the Hnrpul1 locus (15.5361.90 mm3)

compared to strains with a D genotype (10.8562.65 mm3)

(ANOVA analysis: F = 22.48, p,9.87*1025)). The gene encoding

HNRPU is located in the q44 region of human chromosome 1 and

is included in the hemizygous 1q44 losses of 32 out of the 41

published cases showing an ACC on MRI (Figure 1B). Taken

together, these suggest that humans and mice share a single locus

encompassing one gene that may control corpus callosum

development. Interestingly, the mouse locus also contains Zfp260

and Dmpk, two highly polymorphic genes associated with cis eQTL

in the neocortex (data not shown), suggesting that there may also

be a small complex of genes that modulate neocortical

development in close proximity on chromosome 7 in mouse.

Under the proviso that an ACC is the outcome of a perturbation

of neurodevelopment, it is conceivable that proper development of

the corpus callosum is controlled by a gene involved in the

processing of primary transcripts in the nucleus, which functions in

the mouse as a quantitative trait locus.

Discussion

Here we have presented an approach to identify genes that may

control brain development associated with human disease. For

this, we made use of evolutionary conservation of the development

of the corpus callosum in relation to natural genetic variation.

Thus, mapping of loci for an inherited defect in human patients is

complemented by experimental data generated by crossing inbred

mouse strains. Such crosses of inbred mice strains provide a tool

for ‘‘genetic experiments’’ to test such hypotheses and select

relevant human candidate genes from the many genes currently

associated with syndromes involving an ACC. We hypothesize that

comparing patterns of genetic control of conserved developmental

processes among animal species may be fruitful for other, not only

neurological, developmental processes. Very recent studies

indicated that cross-species genome comparisons in relation to

preserved phenotypes may also apply to other complex disorders,

such as hypertension [32] and psychiatric disorders [33], and thus

may open new roads for understanding disease etiology.

This conjecture prompts several ramifications. First, the

development of the corpus callosum may be under the control

of a transcriptional network composed of HNRPU and its putative

downstream targets. Second, hemizygous losses of HNRPU may

not be the sole genetic cause of an ACC. Several studies have
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Table 1. Syndromes involving an abnormal corpus callosum (ACC).

Syndrome Locus Gene OMIM Syndrome Locus Gene OMIM

Autosomal-dominant

Apert 10q26 FGFR2 101200 Lissencephaly 3 12q12-q14 TUBA1A 611603

Basal cell nevus 9q22.3 PTCH 109400 Rubinstein-Taybi 16p13.3 CREBBP 180849

22q13 EP300 180849

Greig cephalo-polysyndactyly 7p13 GLI3 175700 Septo-Optic dysplasia (SOD) 3p21.2-p21.1 HESX1 182230

Kallmann 2 8p11.2-p11.1 FGFR1 147950 Sotos 5q35 NSD1 117550

Autosomal-recessive

Acrocallosal 7p13 GLI3 200990 Lissencephaly 2 7q22 RELN 257320

Andermann 15q13-q14 SLC12A6 218000 Marden-Walker 248700

Aniridia type II 11p13 PAX6 106210 Meckel-Gruber 17q22-q23 249000

Coffin-Siris 7q32-q34 135900 Microcephalic
osteodysplastic primordial
dwarfism (MOPD) type 1

210710

Dincsoy 601016

Fryns 229850

Fukuyama congenital muscular
dystrophy

9q31 FCMD 253800 MOPD type 3 210730

Hydrolethalus 11q24.2 HYLS1 236680 Mowat-Wilson 2q22 ZFHX1B 235730

Joubert 9q34.3 213300 Muscle-eye-brain disease 1p34-p33 POMGNT1 253280

11p12-q13.3 608091 Neu-Laxova 256520

8q21.13-q22.1 TMEM67 610688 Septooptic dysplasia 3p21.2-p21.1 HESX1 182230

6q23.3 AHI1 608629 Toriello-Carey 217980

2q13 NPHP1 609583 Vici 242840

3q11.2 ARL13B 612291 Walker-Warburg 9q34.1 POMT1 607423

4p15.3 CC2D2A 612285 14q24.3 POMT2 607439

16q12,2 RPGRIP1L 611560 19q13.3 FKRP 606596

12q21.3 CEP290 610188 22q12.3-q13.1 LARGE 603590

Lowry-Wood 226960 9q31 FKTN 607440

Lyon 225740 Warburg-Micro 2q21.3 RAB3GAP 600118

X-linked

Aicardi Xp22 304050 X-linked lissencephaly Xq22.3-q23 DCX 300067

ATR-X Xq13 ATRX 301040 Lissencephaly X-linked 2 Xp22.13 ARX 300215

Aqueductal stenosis/ hydrocephalus
(MASA syndrome; X linked) or
Hydrocephalus due to congenital
stenosis of aqueduct of Sylvius

Xq28 L1CAM 307000 Lujan-Fryns Xq13 309520

Microphthalmia with
linear skin defects

Xp22.31 309801

Opitz Xp22 MID1 300000

Opitz-Kaveggia Xq13 MID12 305450

Oro-facial digital type 1 Xp22.3-p22.2 CXORF5 311200

Craniofrontonasal Xq12 EFNB1 304110 Periventricular heterotopia Xq28 300049

Lenz micropthalmia Xq27-q28 309800 Proud Xp22.13 ARX 300004

Metabolic disorders

Fumarase deficiency 1q42.1 FH 606812 Smith-Lemli-Opitz 11q12-q13 DHCR7 270400

Glycine encephalopathy 9p22 GCSP 606812

PDH deficiency Xp22 PDHA1 312170 Zellweger 6q23-q24 PEX3 214100

Chromosomal (contiguous gene and deletion) syndromes

ACC with ectodermal dysplasia
(hypohidrotic)

225040 Miller Dieker
Lissenecephaly

17p13.3 247200

Delleman syndrome
(Oculocerebrocutaneous)

164180 Ocular motor apraxia
(Cogan-syndrome)

2q13 257550

Interspecies Convergence Mapping of Disease Genes
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Syndrome Locus Gene OMIM Syndrome Locus Gene OMIM

Lissencephaly type I 17p13.3 LIS1 607432 Opitz GBBB 22q11.2 145410

Lissencephaly type III 17p13 PAFAH1B1 601545 Wolf–Hirschhorn 4p16.3 WHSC1 194190

doi:10.1371/journal.pone.0018612.t001

Table 1. Cont.

Figure 1. Genetic mapping of corpus callosum volume in the BXD mouse genetic reference panel. Likelihood ratio (LRS; ordinate) of the
association or linkage between differences in corpus callosum volume and natural genetic variation as a function of position in the mouse genome
(chromosome number and coordinates in megabses given; abscissa). Note the single genome-wide significant peak in mouse chromosome 7 (A).
Overlapping deletions in genomic region 1q44 in patients with an ACC (B). Black bars and arrows indicate hemizygously deleted regions. Grey bars
and arrows indicate hemizygous deletions found in subject with a normal corpus callosum. Vertical lines indicate the region that is hemizygous in 32
out of 41 cases, and overlaps with the mouse QTL.
doi:10.1371/journal.pone.0018612.g001
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demonstrated that hemizygosity for HNRPU is not sufficient to

cause an ACC [14,15,34]. However, any mutation affecting

proper functioning of the HNRPU gene product and its interaction

with other proteins may lead to an ACC. These mutations are not

necessarily limited to the HNRPU gene product, but may include

genes encoding downstream targets. Such genes may either have

been identified in syndromes involving an ACC or may be covered

by the CNVs found in sporadic patients with an ACC, or have as

yet not been identified. This offers a potential explanation for the

phenotypic diversity of patients with hemizygous losses in 1q44. It

also suggests an explanation for the heterogeneity of loci and genes

potentially involving an ACC. Given the clinical importance of an

ACC, and the many ramifications of this hypothesis, functional

experimental tests appear worthwhile. Furthermore, this approach

of integrating mouse genetic mapping data of evolutionary

conserved phenotypes may also proof useful for a wide variety of

complex human diseases, such as congenital heart disease, eating

disorders, and autism spectrum disorders.

Materials and Methods

Prioritizing candidate loci and genes
To systematically determine genes or CNVs that were

specifically found among patients with an ACC, or in syndromes

involving an ACC, we analyzed our data using the Gene

Annotation Tool to Help Explain Relationships (GATHER)

developed by Chang and Nevins [12]. The algorithms embedded

herein allow to determine significance of association with regards

to shared biological processes (using Gene Ontology: http://www.

geneontology.org/GO.doc.shtml), chromosomal locations or bio-

chemical pathways (using KEGG: http://www.genome.jp/kegg/).

The algorithms generate p values (assuming a normal distribution

of likelihoods) and a Bayes factor, indicating the fold-likelihood

that a model fits the data vs. the neutral null-hypothesis, to

indicate significance of association of GO categories with an ACC

[12].

Gene mapping with crosses of inbred mouse strains
To study genetic factors that contribute to differences in brain

structure we focused on a subset of fully inbred BXD RI strains,

where each of the strains contains a unique genetic pattern of the

genomes from the maternal and paternal strains. Age-matched

pairs (male and female) of mice belonging to 11 inbred strains (56–

64 days of age) were obtained directly from the Jackson

Laboratory (www.jax.org): C57BL/6J (B6), DBA/2J (D2), and

the following nine BXD recombinant inbred strains—BXD1,

BXD6, BXD15, BXD16, BXD24, BXD28, BXD29, BXD34, and

BXD40. We intentionally studied age-matched male–female pairs

from different litters. To ensure that the low levels of within-strain

variance are not simply due to a common litter effects, we chose

that same strain mice coming from different litters. (This is

analogous to the situation of monozygotic human twins raised in

different environments.)

To study structural variation of the brain in this family of strains

we used high-resolution magnetic resonance microscopy (MRM)

imaging techniques [35] of actively stained brain specimens,

followed by semi-automated segmentation of the brain images

[36–39] into 33 major regions — gray matter nuclei, white matter

fibers, and ventricular space.

Imaging was performed at the Duke Center for In Vivo

Microscopy. All experiments were conducted in accordance with

NIH guidelines, using protocols approved by the Duke University

Institutional Animal Care and Use Review Committee under

IACUC protocol number A123-07-04. The Duke animal

program has AAALAC accreditation number 363, since 1976;

NIH/PHS assurance number A3195-01, current through 2013.

Mice were anesthetized with 100 mg/kg pentobarbital (i.p.) and

then fixed by transcardial perfusion, first with a flush of a mixture

of 0.9% saline and gadoteridol contrast agent —ProHance

(Bracco Diagnostics, Princeton, NJ) (10:1, v:v), followed by a

mixture of 10% formalin and ProHance (10:1, v:v). Whole heads

were stored overnight in formalin, and then trimmed to remove

the lower jaw and muscle. Brains were scanned within the cranial

vault to avoid distortions or damage to the tissue during excision

from the cranium. The fixed specimens were imaged using a 9.4

T (400 MHz) vertical bore Oxford magnet with a GE EXCITE

console (Epic 11.0). A 14-mm diameter solenoid RF coil was used

for the ex-vivo, in-situ mouse brains. We used a 3D spin warp

sequence with the readout gradient applied along the long

(anterior–posterior) axis of the brain. The multispectral data

consist of a T1- and a T2-weighted imaging protocols. The T1-

weighted sequence was acquired with an echo time (TE) of

5.1 ms, repetition time (TR) 50 ms, 62.5 kHz bandwidth, field of

view (FOV) of 11611622 mm. A T2 multiecho sequence was

acquired with a Carr Purcell Meiboom Gill sequence using the

same FOV and bandwidth, with TR of 400 ms and echo spacing

of 7 ms (16 echoes). To produce data heavily dependent on T2

differences the 16 echoes were MEFIC processed, i.e. Fourier

transformed along the echo time line [40]. Asymmetric sampling

of k-space with dynamic adjustment of receiver gain, and partial

zero filling of k-space were used to achieve an image matrix size

of 102465126512, resulting in an isotropic 21.5 mm resolution,

in 2 h 7 min for the T1-weighted dataset. A matrix of

51265126256 with isotropic resolution of 43 mm was generated

for the T2-weighted data with total acquisition time of 4 h,

20 min.

We used the T1-weighted images and an atlas of the C57BL/6

mouse brain [36] as a basis for an atlas based segmentation. The

T1 images were downsampled to 43 microns in order to decrease

memory and computational demands. IRTK [41] was used to

perform a suite of affine and nonrigid (free-form) registration

between the atlas and the query datasets. The atlas labels were

subjected to the same transformation that maximizes the

normalized mutual information among the atlas and query images

provided label sets for each query image. The resulting labels

where manually corrected where necessary, using both the T1 and

the T2 weighted scans, to improve the results based on local

alignment.

The volumes of the segmented brain regions were calculated

using MATLAB (MathWorks, Natick, MA). Strain averages for

volumes of 35 independent and compound regions were entered

into GeneNetwork (GN) (www.genenetwork.org). Exiting software

tools within GN, including web QTL [42] were used for mapping

of quantitative trait loci (QTLs) contributing to corpus callosum

volume. Since only two genotypes can be investigated in these

strains (B/B and D/D), all effects are analyzed under an additive

model.
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