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Sepsis-induced acute kidney injury (SI-AKI) is a serious condition in critically ill patients. Currently, the diagnosis is based on either
elevated serum creatinine levels or oliguria, which partially contribute to delayed recognition of AKI. Metabolomics is a potential
approach for identifying small molecule biomarkers of kidney diseases. Here, we studied serum metabolomics alterations in rats
with sepsis to identify early biomarkers of sepsis and SI-AKI. A rat model of SI-AKI was established by intraperitoneal injection
of lipopolysaccharide (LPS). Thirty Sprague-Dawley (SD) rats were randomly divided into the control (CT) group and groups
treated for 2 hours (LPS2) and 6 hours (LPS6) with LPS (10 rats per group). Nontargeted metabolomics screening was
performed on the serum samples from the control and SI-AKI groups. Combined multivariate and univariate analysis was used
for pairwise comparison of all groups to identify significantly altered serum metabolite levels in early-stage AKI in rats with
sepsis. Orthogonal partial least squares discriminant analysis (OPLS-DA) showed obvious separation between the CT and LPS2
groups, CT and LPS6 groups, and LPS2 and LPS6 groups. All comparisons of the groups identified a series of differential
metabolites according to the threshold defined for potential biomarkers. Intersections and summaries of these differential
metabolites were used for pathway enrichment analysis. The results suggested that sepsis can cause an increase in systemic
aerobic and anaerobic metabolism, an impairment of the oxygen supply, and uptake and abnormal fatty acid metabolism.
Changes in the levels of malic acid, methionine sulfoxide, and petroselinic acid were consistently measured during the
progression of sepsis. The development of sepsis was accompanied by the development of AKI, and these metabolic disorders
are directly or indirectly related to the development of SI-AKI.

1. Introduction

The clinical mortality rate from sepsis is approximately 20%
to 50% and can exceed 70% if sepsis is combined with acute
kidney injury [1]. Sepsis-induced acute kidney injury (SI-
AKI) is defined as AKI occurring simultaneously with or sub-
sequent to sepsis without other aetiologies [2] and is charac-
terized by high mortality and poor prognosis mainly due to
the lack of early and reliable diagnostic markers of AKI,
which results in delayed initiation of effective interventions
[3]. The serum creatinine (SCR) level and urine volume are
affected by many factors, and the sensitivity and specificity
of these markers are insufficient. Clinical studies have shown
that appropriate measures can be taken to prevent and treat
AKI in the early stages of kidney injury [4]. Therefore, iden-

tifying new and early markers of kidney injury is required for
timely treatment [5]. New biomarkers have been identified in
the past few years, including cystatin-C, neutrophil
gelatinase-associated lipocalin (NGAL), and interleukin
(IL)-18; however, these markers are not sensitive enough to
diagnose AKI in the intensive care unit [6].

Metabolomics refers to comprehensive and systematic
identification and quantification of all small molecule metab-
olites in biological samples, such as blood and tissues, under
physiological or pathological conditions [7]. Metabolites are
the end products of an organism’s biochemical activities
and provide direct and comprehensive biomarker informa-
tion that reflects the physiological phenotype. Thus, metabo-
lomics is becoming a powerful analytical approach for
studying functional changes in biological systems. Indeed,
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biomarkers that reflect the changes in cellular metabolism
may be identified by metabolomics [8–10].

Our previous study found that during the development of
sepsis, the pathological changes corresponding to kidney
injury occur earlier than the increases in serum creatinine
and urea nitrogen (BUN) levels [11]. Therefore, the present
study is aimed at investigating serum metabolomics alter-
ations in rats with SI-AKI and to identify early biomarkers
of SI-AKI through gas chromatography/time-of-flight mass
spectrometry (GC-TOFMS) for early clinical diagnosis and
treatment.

2. Materials and Methods

2.1. Generation of an Animal Model and Grouping. A rat
model of SI-AKI was established based on our previous
research [11]. Specific pathogen-free (SPF) male Sprague-
Dawley (SD) rats weighing 200-250 g were purchased from
the Department of Laboratory Animal Science, Shanghai Jiao
Tong University. The present study was approved by the
Animal Ethics Committee of Shanghai Jiao Tong University.
Thirty SD rats were randomly divided into the control (CT),
LPS 2h (LPS2), and LPS 6 h (LPS6) groups (10 rats per
group). Rats in the CT group received an intraperitoneal
injection of PBS. In the LPS2 group, the samples were col-
lected 2 hours after intraperitoneal injection of LPS; in the
LPS6 group, the samples were collected 6 hours after intra-
peritoneal injection of LPS. The rats were housed and fed
for one week without interventions prior to the treatments.
The rats in the LPS2 and LPS6 groups were injected with
LPS (dose: 5mg/kg; concentration: 5mg/mL; dissolved in
PBS), while rats in the CT group were injected with the same
volume of PBS solution. The samples were collected from rats
anaesthetized with pentobarbital sodium 2 hours and 6 hours
after LPS treatment according to the grouping. Blood sam-
ples were collected from the inferior vena cava of rats in all
groups. The blood was incubated in a centrifuge tube for 30
minutes and then centrifuged for 10 minutes at 3,000 rpm.
The serum was collected for metabolomics analysis and bio-
chemical assays. All serum samples were stored in a freezer at
-80°C.

2.2. Reagents and Instruments. LPS (Escherichia coli 055: B5),
methoxyamine hydrochloride, fatty acid methyl esters (C7-
C30, FAMEs), anhydrous pyridine, and anhydrous sodium
sulfate were purchased from Sigma-Aldrich (St. Louis, MO,
USA). PBS, the derivatization reagent N-methyl-N-(tri-
methylsilyl) trifluoroacetamide (MSTFA; containing 1%
chlorotrimethylsilane (TMCS)), methanol (Optima; LC-MS
grade), and n-ethane were purchased from Thermo Fisher
(Fair Lawn, NJ, USA). Dichloromethane, chloroform, and
acetone were purchased from the China National Pharma-
ceutical Group Corporation. An AXSYM automatic immu-
noassay analyser for liver and kidney function tests was
purchased from Abbott Laboratories, Illinois, USA. Ultra-
pure water was obtained from a Millipore Reference ultra-
pure water system (Billerica, MA, USA) equipped with a
liquid chromatography-coupled 0.22μm filter. A GC-

TOFMS system was purchased from LECO Corp. (St. Joseph,
MI, USA).

2.3. Histopathological Examination of the Kidney. In the pilot
experiments, the kidney tissues were harvested from control
rats, rats injected with LPS 2 hours after the injection, and
rats injected with LPS 6 hours after the injection, and the
samples were used for pathological analysis. Paraffin sections
of the kidney tissues were prepared and used for
haematoxylin-eosin and periodic acid-Schiff staining.

2.4. Biochemical Examination of the Serum. Kidney func-
tional parameters were measured in the serum of rats in all
groups by an AXSYM automatic immunoassay analyser.

2.5. Metabolomics Analysis. Sample preparation, GC-TOF-
MS, and data analysis for serum metabolomics were
described in our previous study [12].

2.5.1. Sample Preparation. Serum samples were slowly
thawed in a salt-ice bath, and 50μL of the serum was trans-
ferred by a pipettor into a precooled high-speed microcentri-
fuge tube. Ten microlitres of aqueous solution of an internal
standard was added to the mixture, and 200μL of precooled
methanol-chloroform solution was added to extract the
supernatant. The supernatant was obtained by centrifugation
at 13,500 rpm for 20 minutes at 4°C.

Two hundred microlitres of the serum was transferred to
a 1.5mL autosampling glass vial and placed in a vacuum cen-
trifugal concentrator for 5 minutes. The chloroform was
removed, and the content was transferred to a cryogenic
freeze-dryer for complete freeze-drying. Next, the samples
were returned to room temperature and stored under high-
purity nitrogen gas with autocapping. The samples were sily-
lated using the Xplore MET platform. The derivation steps
were as follows: addition of 50μL of methoxyaminopyridine
solution, incubation at 30°C for 2 hours, addition of 50μL of
MSTFA, and incubation at 37.5°C for 1 hour. The derivatized
samples were automatically injected by an injection arm.

2.5.2. GC-TOFMS Instrument Settings. In GC settings, an
Rxi-5MS chromatographic column (30m, 250 μm× 0:25 μ
m) was used. The samples (1.0μL) were injected into the col-
umn in splitless mode. Helium was used as a carrier gas at a
flow rate of 1.0mL/minute; the inlet temperature was 270°C,
and the transmission interface temperature was 270°C. The
programmed temperature conditions of the oven were as fol-
lows: 80°C for 2 minutes, an increase to 300°C at 12°C/min-
ute, an increase to 320°C at 4°C/minute over 4.5 minutes,
and holding at 320°C for 1 minute.

In MS settings, the ionization mode was electron colli-
sion, the electron energy was 70 eV, the detector voltage
was 1450V, and the source temperature was 220°C. The data
were acquired in the full-scan mode with the acquisition rate
of 25 spectra per second and the mass range of 50-550Da.

2.5.3. Data Preprocessing. The in-house-developed metabolo-
mics software Xplore MET was used to automatically com-
pare the retention index of deconvoluted peak signals and
MS fragment ions with those in JIALIB, the largest database
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of endogenous metabolites based on silylation derivatization
GC-MS (including more than 1500 currently defined endog-
enous metabolites) [12]. The raw data generated by GC-
TOFMS were automatically exported to Xplore MET by
ChromaTOF software for baseline smoothing and correc-
tion, deconvolution, extraction, and alignment of the original
chromatographic peak signals, retention index correction,
metabolite identification, and data preprocessing (normali-
zation and standardization).

Xplore MET software was developed by Metabo-Profile
Biotechnology, Inc., based on their published pipeline for
GC/MS data processing [13] and has been widely used in
dozens of published articles [14–18]. The overall data pro-
cessing procedure is reliable.

2.6. Statistical Analysis. SPSS 19.0 software (SPSS, Chicago,
IL, USA) was used for statistical analysis, and GraphPad
Prism 6.0 (GraphPad Software Inc., San Diego, USA) soft-
ware was used for plotting. In independent samples t-tests,
p < 0:05 indicated that the difference was statistically signifi-
cant. Xplore MET software performed data processing, inter-
pretation, and visualization. The data automatically imported
into Xplore MET were analysed by multivariate statistical
methods, such as principal component analysis (PCA) and
orthogonal partial least squares discriminant analysis
(OPLS-DA), and by univariate statistical methods, such as
Student’s t-test and the Mann–Whitney U test; the model
was evaluated according to the relevant parameters.

3. Results

3.1. Changes in Kidney Function in Rats after Intraperitoneal
Injection of LPS. As shown in Figure 1, comparison with the
CT group indicated the lack of significant changes in the
serum creatinine and urea nitrogen levels in the LPS2 group
(p > 0:05); the serum creatinine and urea nitrogen levels were
significantly increased in the LPS6 group (p = 0:0009 and p
= 0:0113, respectively); comparison with the LPS2 group
indicated that the serum creatinine and urea nitrogen levels
were significantly increased in the LPS6 group (p = 0:0100
and p = 0:0156, respectively).

3.2. Pathological Changes in the Kidneys of Rats after
Intraperitoneal Injection of LPS. HE staining (Figure 2) dem-
onstrated that renal tubular epithelial cells in the LPS2
(Figure 2(b)) and LPS6 (Figure 2(c)) groups were denatured
and manifested vacuolar degeneration with detachment of
the brush border, and the tubular lumen was enlarged com-
pared with those in the control group (Figure 2(a)); necrotic
shedding of epithelial cells and tubular formation were
detected.

PAS staining (Figure 3) demonstrated that the structure
and morphology of the glomerulus, renal tubules, and renal
interstitium were normal in the CT group; the staining of
the basement membrane indicated full integrity, and abnor-
mal changes, such as inflammatory cell infiltration and fibro-
sis, were not detected (Figure 3(a)). In the LPS2 (Figure 3(b))
and LPS6 groups (Figure 3(c)), the lumen of the renal tubules
was obviously dilated; the staining of the basement mem-

brane of tubular epithelial cells was discontinuous, and epi-
thelial cells were irregular and of different sizes. The
arrangement of renal tubular epithelial cells was more disor-
dered than that in the CT group, and cell shedding was
detected.

3.3. Pairwise Comparisons (CT vs. LPS2). An overview of
metabolite classifications is shown in Supplementary
Figure 1. Multivariate statistical analysis (CT vs. LPS2)
according to the principal component analysis (PCA) and
orthogonal partial least squares discriminant analysis
(OPLS-DA) models is shown in Supplementary Figures 2
and 3. Supplementary Figures 4 and 5 summarize
differential metabolites identified by univariate statistical
analysis.

The Venn diagram of differential metabolites identified
by multivariate and univariate statistical analyses is shown
in Figure 4(a). In this analysis, the screening criteria for
potential biomarkers were as follows: (1) in univariate statis-
tical analysis, p < 0:05 and ∣log 2fc ∣ >0, and (2) in multivari-
ate statistical analysis, VIP > 1. The Z score plots of 24
potential biomarkers are shown in Figure 4(b). Figure 4(c)
shows the Z score heat map of these potential biomarkers
labelled according to the types of metabolites. In pathway
analysis (CT vs. LPS2), the differential metabolites included
potential biomarkers defined by the screening criteria. The
results of pathway enrichment analysis for these differential
metabolites are summarized in Figure 4(d) and Table 1.

3.4. Pairwise Comparisons (LPS2 vs. LPS6). An overview of
metabolite classifications is shown in Supplementary
Figure 6. Multivariate statistical analysis (LPS2 vs. LPS6)
according to PCA and OPLS-DA models is shown in
Supplementary Figures 7 and 8. Supplementary Figures 9
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Figure 1: Effect of PBS or LPS treatment on renal function in rats.
There were no differences in serum SCR and BUN levels between
the LPS2 and control (CT) groups. The serum SCR and BUN
levels in the LPS6 group were higher than those in the LPS 2 and
control groups (CT).
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and 10 summarize differential metabolites obtained by
univariate statistical analysis.

The Venn diagram of differential metabolites identified
by multivariate and univariate statistical analyses is shown
in Figure 5(a). The screening criteria for potential biomarkers
were as follows: (1) in univariate statistical analysis, p < 0:05
and ∣log 2fc ∣ >0, and (2) in multivariate statistical analysis,
VIP > 1. The Z score plots of 36 potential biomarkers are
shown in Figure 5(b). Figure 5(c) shows the Z score heat
map of these potential biomarkers labelled by the types of
metabolites. In pathway analysis (LPS2 vs. LPS6), the differ-
ential metabolites included potential biomarkers defined by
the screening criteria. The results of pathway enrichment
analysis for these differential metabolites are summarized in
Figure 5(d) and Table 2.

3.5. Pairwise Comparisons (CT vs. LPS6). An overview of
metabolite classifications is shown in Supplementary
Figure 11. Multivariate statistical analysis (CT vs. LPS6)
according to PCA and OPLS-DA models is shown in
Supplementary Figures 12 and 13. Supplementary
Figures 14 and 15 summarize differential metabolites
identified by univariate statistical analysis.

In screening of potential biomarkers (CT vs. LPS6), the
Venn diagram of differential metabolites identified by multi-
variate and univariate statistical analyses is shown in
Figure 6(a). The screening criteria for potential biomarkers

were as follows: (1) in univariate statistical analysis, p < 0:05
and ∣log 2fc ∣ >0, and (2) in multivariate statistical analysis,
VIP > 1. The Z score plots of 48 potential biomarkers are
shown in Figure 6(b). Figure 6(c) shows the Z score heat
map of these 48 potential biomarkers labelled according to
the types of metabolites. In pathway analysis (control vs.
LPS6), the differential metabolites included potential bio-
markers defined by the screening criteria. The results of path-
way enrichment analysis for these differential metabolites are
summarized in Figure 6(d) and Table 3.

3.6. Comparison of All Three Groups (CT vs. LPS2 vs. LPS6).
An overview of metabolite classifications is shown in Supple-
mentary Figure 16. Multivariate statistical analysis (CT vs.
LPS2 vs. LPS6) according to PCA and PLS-DA models is
shown in Supplementary Figures 17 and 18. Supplementary
Figures 19 and 20 summarize differential metabolites
obtained by univariate statistical analysis.

In screening of potential biomarkers (CT vs. LPS2 vs.
LPS6), this comparison was performed in multiple groups;
thus, OPLS-DA cannot be used. Hence, potential bio-
markers included differential metabolites identified by uni-
variate statistical analysis. The Z score plots of 55 potential
biomarkers are shown in Figure 7(a). Figure 7(b) shows
the Z score heat map of these 55 potential biomarkers
labelled according to the types of metabolites. In pathway
analysis (CT vs. LPS2 vs. LPS6), the differential

(a)

(b) (c)

Figure 2: Histological assessment of kidney injury in PBS- or LPS-treated rats by HE staining. (a) HE staining of the kidney tissue in the
control (CT) group. (b) HE staining of the kidney tissue in the LPS2 group. (c) HE staining of the kidney tissue in the LPS6 group. HE
staining demonstrated that renal tubular epithelial cells in the LPS2 (2B) and LPS6 (2C) groups were denatured and manifested vacuolar
degeneration with detachment of the brush border, and the tubular lumen was enlarged compared with those in the control group (2A);
necrotic shedding of epithelial cells and tubular formation were detected.
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metabolites included potential biomarkers defined by the
screening criteria. The results of pathway enrichment anal-
ysis for these differential metabolites are summarized in
Figure 7(c) and Table 4.

3.7. Summary of Differential Metabolites. Each group com-
parison identified a series of differential metabolites (poten-
tial biomarkers) according to defined thresholds for
potential biomarkers. The results of each group comparison
identifying differential metabolites were summarized, and
the summary Venn diagram (or petal diagram) of the differ-
ential metabolites is shown in Figure 8. The data indicated
that three metabolites were consistently significantly differ-
ent during the development of SI-AKI. These three metabo-
lites, malic acid, methionine sulfoxide, and petroselinic
acid, are potential biomarkers for SI-AKI.

4. Discussion

In this study, our data showed that in rats, pathological
changes occurred in the kidneys 2 hours after intraperito-
neal injection of LPS, but renal function indicators, such
as serum creatinine and urea nitrogen levels, were not
changed until 6 hours after LPS injection. Additionally,
we used a metabolomics platform to identify three metab-

olites that were consistently changed during the develop-
ment of SI-AKI: malic acid, methionine sulfoxide, and
petroselinic acid. Accordingly, the dysregulated metabolic
pathways associated with SI-AKI included the citric acid
cycle, oxidative stress pathways, and fatty acid metabolism
pathways. These altered metabolic pathways are directly or
indirectly associated with SI-AKI.

Malic acid is an important organic acid produced dur-
ing metabolic processes in the body and an important
metabolic intermediate in the tricarboxylic acid (TCA)
cycle that directly participates in mitochondrial energy
metabolism [19]. Malic acid is an important component
of the malate-aspartate shuttle and plays an important role
in regulating the transfer of reducing equivalents between
the cytosol and mitochondria [20]. As the malic acid con-
centration increases, mitochondrial ATP synthesis is
enhanced, and the utilization of ATP is also enhanced
[21]. An increase in the malic acid concentration indicates
an increase in the concentration of the TCA substrates
and in flux through the TCA cycle. In addition, an
increase in the malic acid concentration enhances the
effects on the malate-aspartate shuttle and the amount of
NADH in the mitochondrial matrix. An increase in the
mitochondrial respiratory rate may be related to the com-
bined effects of these two events [20]. Animal experiments

(a)

(b) (c)

Figure 3: Histological assessment of kidney injury in PBS- or LPS-treated rats by PAS (periodic acid-Schiff) staining. (a) Control (CT) group.
(b) LPS2 group. (c) LPS6 group. PAS staining demonstrated that the structure and morphology of the glomerulus, renal tubules, and renal
interstitium were normal in the CT group; the staining of the basement membrane indicated full integrity, and abnormal changes, such as
inflammatory cell infiltration and fibrosis, were not detected (a). In the LPS2 (b) and LPS6 groups (c), the lumen of the renal tubules was
obviously dilated; the staining of the basement membrane of tubular epithelial cells was discontinuous, and epithelial cells were irregular
and of different sizes. The arrangement of renal tubular epithelial cells was more disordered than that in the CT group, and cell shedding
was detected.
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Figure 4: (a) Venn diagram of differential metabolites identified by multivariate and univariate statistical methods. (b) Z score plots of 24
potential biomarkers. (c) Z score heat map of 24 potential biomarkers according to the classes with names (CT vs. LPS 2). (d) Overview of
pathway analysis. Metabolic pathway enrichment analysis (MPEA) was performed to identify the most relevant metabolic pathways.

Table 1: Differential metabolic pathways (CT vs. LPS2). The results of enriched compounds after screening and metabolic metabolic pathway
enrichment analysis (MPEA) between CT and LPS2 groups are summarized in this table.

Total in
pathway

Expected Hits Raw P ′ − log pð Þ Holm P FDR Impact
Enriched

compounds

Arginine and proline metabolism 44 0.65906 5 0.000338 7.9912 0.027413 0.027413 0.18368

Citrulline
Fumaric acid
L-Arginine
L-Proline
Urea

Aminoacyl-tRNA biosynthesis 67 1.0036 5 0.002405 6.0301 0.19243 0.097416 0.10415

L-Alanine
L-Arginine
L-Asparagine
L-Cysteine
L-Proline

Alanine, aspartate, and glutamate
metabolism

24 0.35949 3 0.004792 5.3407 0.3786 0.11482 0.04
Fumaric acid
L-Alanine

L-Asparagine

Taurine and hypotaurine
metabolism

8 0.11983 2 0.00567 5.1726 0.44225 0.11482 0.5
L-Cysteine
Taurine

Pantothenate and CoA biosynthesis 15 0.22468 2 0.019959 3.9141 1 0.32333 0.07692
L-Cysteine
Uracil

Holm: Holm-Bonferroni method; FDR: false discovery rate.
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Figure 5: (a) Venn diagram of differential metabolites identified by multivariate and univariate statistical methods. (b) Z-sZ score plots of 36
potential biomarkers. (c) Z-sZ score heat map of 36 potential biomarkers according to the classes with names (LPS2 vs. LPS6). (d) Overview of
pathway analysis. Metabolic pathway enrichment analysis (MPEA) was performed to identify the most relevant metabolic pathways.

Table 2: Differential metabolic pathways (LPS2 vs. LPS6). The results of enriched compounds after screening and metabolic pathway
enrichment analysis (MPEA) between the LPS2 and LPS6 groups are summarized in this table.

Total in
pathway

Expected Hits Raw P ′ − log pð Þ Holm
P

FDR Impact
Enriched

compounds

Biosynthesis of unsaturated fatty
acids

42 0.95863 4 0.013612 4.2968 1 1 0

Arachidonic acid
Linoleic acid
Palmitic acid
Stearic acid

Histidine metabolism 15 0.34237 2 0.044048 3.1225 1 1 0.23077
1-Methylhistidine

L-Histidine

Holm: Holm-Bonferroni method; FDR: false discovery rate.
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have shown that when the body’s ATP demand increases,
the concentration of malic acid in the liver mitochondria
increases, and the role of mitochondria in ATP synthesis
from the corresponding substrates is intensified. Malic acid
may be the driving force for ATP production in mito-
chondria [21]. A stress response can occur in rats with
sepsis. This stress-induced metabolic response involves
the neuroendocrine, inflammatory, and immune systems.
Stress-induced oxygen metabolism is characterised by
increased oxygen consumption and decreased efficiency
of the oxygen supply. Our results showed that with the
development of SI-AKI, the intermediate products of the
TCA cycle, such as malic acid, fumaric acid, isocitric acid,
and pyruvic acid, increased. In addition, we observed a
gradual increase in the lactic acid levels. These data sug-
gested that rats with SI-AKI manifested increased oxygen
requirements and an increase in both aerobic and anaero-
bic respiration. Moreover, these data indicated that as SI-
AKI progresses, the imbalance in oxygen metabolism
becomes more severe.

Methionine is one of the most vulnerable amino acids
in proteins, and its oxidation causes a series of changes in
the protein structure, function, and signal transduction,
which are related to many diseases and conditions, such
as ageing, cancer, and neurodegenerative diseases [22].

Methionine sulfoxide is an oxidation product of a reaction
of methionine with reactive oxygen species via a 2-electron
mechanism. Such oxidants can be generated by activated
neutrophils; therefore, methionine sulfoxide can be
regarded as a biomarker of oxidative stress in vivo [23].
Numerous studies have shown pathological dependence
on oxygen supply in experimental animals during the
development of sepsis. This pathological dependence
occurs because oxygen uptake cannot meet the oxygen
demand of the tissue and manifests as dysregulation of
systemic tissue uptake and oxygen utilization [24, 25]. In
the early stage of sepsis, blood flow is abnormally distrib-
uted throughout the body, which may lead to a relative
excess of blood flow in some organs with low metabolism,
while organs with high metabolism have insufficient blood
flow, resulting in tissue hypoxia and a decrease in VO2.
Moreover, endotoxin and some inflammatory mediators
impair the regulation of microcirculation, leading to the
formation of microthromboses and a decrease in the cap-
illary density. These processes result in insufficient DO2
and increased capillary permeability manifested as intersti-
tial leakage and oedema and consequent oxygen diffusion
from microvessels to the cells. Subsequent damage to cyto-
skeletal filaments aggravates the dysfunction of oxygen
uptake and utilization [26, 27]. Andersen et al.

Biosynthesis of unsaturated acids
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Glyoxylate and dicarboxylatemetabolism
Aminoacyl-tRNAbiosynthesis

Citrate cycle (TCA cycle)

Arginine and proline metabolism
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Figure 6: (a) Venn diagram of differential metabolites identified by multivariate and univariate statistical methods. (b) Z score plots of 48
potential biomarkers. (c) Z score heat map according to the classes with names (CT vs. LPS6). (d) Overview of pathway analysis.
Metabolic pathway enrichment analysis (MPEA) was performed to identify the most relevant metabolic pathways.
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demonstrated that the level of methionine sulfoxide is
decreased during the development of sepsis in patients
with septic shock [28]. In septic rats in the present study,
serum methionine sulfoxide levels were gradually
decreased during the development of septic AKI. These
findings suggested that a wide range of oxygen supply
and oxygen uptake disorders affect tissues and organs
throughout the body.

Lucchi et al. demonstrated that patients with uraemia
often have abnormal lipid metabolism [29]. Deng et al.
reported that 14(15)-epoxyeicosatrienoic acid (14(15)-
EET) and 19(20)-epoxydocosapentaenoic acid (19(20)-
EDP), the major epoxide metabolites of arachidonic acid
(ARA) and docosahexaenoic acid (DHA), respectively,
had contrasting effects on kidney injury in a mouse model
of ischaemia/reperfusion- (I/R-) induced AKI. Specifically,
14(15)-EET mitigated and 19(20)-EDP exacerbated I/R
kidney injury [30]. Moran et al. demonstrated that cyto-
chrome P450-mediated epoxidation of linoleic acid in a
rabbit renal proximal tubule model produced biologically
active metabolites that resulted in acute renal failure
[31]. Concentration-dependent studies have shown that
linoleic acid and linoleic acid monoepoxides are the most
toxic species that induce mitochondrial dysfunction prior
to cell death [31]. Lucchi et al. demonstrated that the

levels of retinol are increased in patients with end-stage
chronic renal failure (ESCRF) due to reduced excretion
of retinol-binding protein and detected a significant
increase in the levels of conjugated linoleic acid (CLA),
palmitoleic acid (16:1) and oleic acid (18:1) in the plasma
samples from these patients because retinol influences
lipid metabolism [32]. Istvan et al. demonstrated that oleic
acid increased ROS production in renal proximal tubule
cells via mitochondria and, to a lesser extent, via NADPH
oxidase, resulting in ROS-dependent mitochondrial depo-
larization and consequent injury [33]. Petroselinic acid is
a fatty acid that can enhance mitochondrial activity in
humans [34]. Petroselinic acid is involved in arachidonic
acid metabolism, and an increase in its concentration
may be related to immune inflammation [35]. The data
of the present study indicated that the levels of docosahex-
aenoic acid, arachidonic acid, linoleic acid, oleic acid, pal-
mitic acid, and stearic acid were gradually increased
during the development of SI-AKI and that the serum
concentration of petroselinic acid was increased during
the onset of SI-AKI. Abnormalities in lipid metabolism,
especially elevated serum concentration of petroselinic
acid, may be early serum markers of SI-AKI, which are
more sensitive than traditional renal functional indicators,
such as serum creatinine level.

Table 3: Differential metabolic pathways (CT vs. LPS6). The results of enriched compounds after screening and metabolic pathway
enrichment analysis (MPEA) between the CT and LPS6 groups are summarized in this table.

Total in
pathway

Expected Hits Raw P ′ − log pð Þ Holm P FDR Impact Enriched compounds

Biosynthesis of
unsaturated fatty acids

42 1.2882 5 0.007835 4.8492 0.63462 0.28969 0

(4Z,7Z,10Z,13Z,16Z,19Z)-
Docosahexaenoic acid

Arachidonic acid
Linoleic acid
Palmitic acid
Stearic acid

Pantothenate and CoA
biosynthesis

15 0.46006 3 0.009458 4.6609 0.75666 0.28969 0.07692
Beta-alanine
L-Cysteine
Uracil

Glyoxylate and
dicarboxylate metabolism

16 0.49073 3 0.011394 4.4747 0.90014 0.28969 0.16666
Glyceric acid
Glycolic acid
Isocitric acid

Aminoacyl-tRNA
biosynthesis

67 2.0549 6 0.014306 4.2471 1 0.28969 0.12498

L-Arginine
L-Cysteine
L-Histidine
L-Methionine
L-Proline

L-Tryptophan

Citrate cycle (TCA cycle) 20 0.61341 3 0.021295 3.8493 1 0.30896 0.10345
Fumaric acid
Isocitric acid

Oxoglutaric acid

Taurine and hypotaurine
metabolism

8 0.24536 2 0.022886 3.7772 1 0.30896 0.5
L-Cysteine
Taurine

Arginine and proline
metabolism

44 1.3495 4 0.042713 3.1532 1 0.49425 0.18368

Citrulline
Fumaric acid
L-Arginine
L-Proline

Holm: Holm-Bonferroni method; FDR: false discovery rate.
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Figure 7: (a) Z score plots of 55 potential biomarkers. (b) Z score heat map of 55 potential biomarkers according to the classes with names
(CT vs. LPS2 vs. LPS6). (c) Overview of pathway analysis. Metabolic pathway enrichment analysis (MPEA) was performed to identify the
most relevant metabolic pathways.
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5. Conclusion

In conclusion, we used metabolomics techniques to demon-
strate that sepsis could cause an increase in systemic aerobic
and anaerobic metabolism, impairments in oxygen supply,
and uptake and abnormal fatty acid metabolism. In particu-
lar, changes in malic acid, methionine sulfoxide, and petrose-
linic acid consistently occur during the progression of sepsis.
The development of sepsis was accompanied by the develop-
ment of AKI, and these metabolic disorders are directly or
indirectly related to the development of SI-AKI. Our under-
standings of the metabolic disorders described herein and
their underlying mechanisms are far from clear. The exact
mechanism between these metabolic alterations and sepsis
development need to be validated subsequently by animal
experiments with a larger sample.

Data Availability

All the data used to support the findings of this study are
included within the article. Please address all requests about
the data to the authors.

Table 4: Differential metabolic pathways (CT vs. LPS2 vs. LPS6). The results of enriched compounds after screening and metabolic pathway
enrichment analysis (MPEA) (CT vs. LPS2 vs. LPS6) are summarized in this table.

Total in
pathway

Expected Hits Raw P ′ − log pð Þ Holm P FDR Impact Enriched compounds

Pantothenate and CoA
biosynthesis

15 0.52425 4 0.001355 6.6038 0.10977 0.10864 0.15384

Beta-alanine
L-Cysteine

Pantothenic acid
Uracil

Biosynthesis of
unsaturated fatty acids

42 1.4679 6 0.002682 5.9211 0.21459 0.10864 0

(4Z,7Z,10Z,13Z,16Z,19Z)-
Docosahexaenoic acid
Arachidonic acid
Linoleic acid
Oleic acid

Palmitic acid
Stearic acid

Aminoacyl-tRNA
biosynthesis

67 2.3417 7 0.007184 4.936 0.5675 0.19395 0.14581

L-Alanine
L-Arginine
L-Cysteine
L-Histidine
L-Methionine
L-Proline

L-Tryptophan

Glyoxylate and
dicarboxylate metabolism

16 0.5592 3 0.016309 4.116 1 0.33026 0.16666
Glyceric acid
Glycolic acid
Isocitric acid

Taurine and hypotaurine
metabolism

8 0.2796 2 0.029294 3.5304 1 0.40633 0.5
L-Cysteine
Taurine

Citrate cycle (TCA cycle) 20 0.699 3 0.030099 3.5033 1 0.40633 0.13794
Fumaric acid
Isocitric acid
Pyruvic acid

Alanine, aspartate, and
glutamate metabolism

24 0.8388 3 0.048471 3.0268 1 0.56088 0.04
Fumaric acid
L-Alanine
Pyruvic acid

Holm: Holm-Bonferroni method; FDR: false discovery rate.

CT_vs_LPS2 CT_vs_LPS6

LPS2_vs_LPS6
6

11

11
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234

6

Figure 8: Summary of differential metabolites. The circles of
different colour represent different comparisons. The overlapping
parts of the circles represent the intersections of the corresponding
comparisons. The number in each region indicates the number of
differential metabolites in the corresponding set. The data
indicated that three metabolites were consistently significantly
different during the development of SI-AKI. These three
metabolites, malic acid, methionine sulfoxide and petroselinic
acid, are potential biomarkers for SI-AKI.
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Supplementary Materials

Supplementary Figure 1. Classification of metabolites in the
control (CT) and LPS 2h (LPS2) groups. The stacked histo-
gram showing the relative abundance statistics of the median
values of various metabolites in each group of samples is
shown in Supplementary Figure 1(A). The stacked histogram
showing the relative abundances of various types of metabo-
lite in each sample is shown in Supplementary Figure 1(B).
Supplementary Figure 2: PCA score plots for the CT and
LPS2 groups. The 2D and 3D PCA scores are shown in Sup-
plementary Figures 2A and 2B, respectively. Supplementary
Figure 2(C) shows the 2D PCA score plot for analysed sam-
ples and box plots corresponding to the principal component
scores. Supplementary Figure 3: OPLS-DA score plot, per-
mutation test results, and volcano plot: the OPLS-DA 2D
score plot is shown in Supplementary Figure 3(A); the per-
mutation test results are shown in Supplementary Figure
3(B). Visualization of differential metabolite profiles by vol-
cano plot is shown in Supplementary Figure 3(C). Supple-
mentary Figure 4(A): enhanced volcano plot and Z-score
plot showing differential metabolites selected by univariate
analysis. The volcano plot shows differential metabolites
identified by univariate statistical analysis (Supplementary
Figure 4(A)). The threshold settings for the volcano plot were
as follows: (1) p < 0:05 and (2) an absolute value of log 2fc > 0
(where fc is the fold change, i.e., the factor of the intergroup
change). Highlighted metabolites in the upper right corner
were increased, and highlighted metabolites in the upper left
corner were decreased in the LPS2 group compared with
those in the CT group (Supplementary Figure 4(A)). The
screening criteria were used to identify 25 differential metab-
olites by univariate statistical analysis (p < 0:05). Supplemen-
tary Figure 4(B) shows the Z-score plot of these 25
differential metabolites. Supplementary Figure 5: top ranking
differential metabolites between the two groups. Nine repre-
sentative differential metabolites (top ranking) identified by

univariate statistical analysis and the corresponding p value
rankings are shown. Supplementary Figure 6: classification
of metabolites in the LPS 2 h (LPS2) and LPS 6h (LPS6)
groups. The stacked histogram showing the relative abun-
dance statistics of the median values of various metabolites
in each group of samples (Supplementary Figure 6(A)). The
stacked histogram showing the relative abundances of vari-
ous types of metabolites in each sample (Supplementary Fig-
ure 6(B)). Supplementary Figure 7: PCA score plots for the
LPS2 and LPS6 groups. The 2D and 3D PCA scores are
shown in Supplementary Figures 7(A) and 7(B), respectively.
Supplementary Figure 7(C) shows the 2D PCA score plot of
the analysed samples and box plots corresponding to the
principal component scores. Supplementary Figure 8:
OPLS-DA score plot, permutation test results, and volcano
plot. The OPLS-DA 2D score plot is shown in Supplementary
Figure 8(A); the permutation test results are shown in Sup-
plementary Figure 8(B); visualization of differential metabo-
lite profiles by volcano plot is shown in Supplementary
Figure 8(C). Supplementary Figure 9: enhanced volcano plot
and Z Z sscore plot showing differential metabolites identi-
fied by multivariate analysis. The volcano plot shows differ-
ential metabolites identified by univariate statistical analysis
(Supplementary Figure 9(A)). In this analysis, the threshold
settings for the volcano plot were as follows: (1) p < 0:05
and (2) an absolute value of log 2fc > 0 (where fc is the fold
change, i.e., the factor of the intergroup change). Highlighted
metabolites in the upper right corner were increased, and
highlighted metabolites in the upper left corner were
decreased in the LPS6 group compared with those in the
LPS2 group (Supplementary Figure 9(A)). The screening cri-
teria were used to identify 38 differential metabolites by uni-
variate statistical analysis (p < 0:05). Supplementary Figure
9(B) shows the Z score plot of these 38 differential metabo-
lites. Supplementary Figure 10: top ranking differential
metabolites between the two groups. Nine representative dif-
ferential metabolites (top ranking) identified by univariate
statistical analysis and their p value rankings are shown. Sup-
plementary Figure 11: classification of metabolites in the CT
and LPS 6h (LPS6) groups. The stacked histogram showing
the relative abundance statistics of the median values of var-
ious metabolites in each group of samples (Supplementary
Figure 11(A)). The stacked histogram showing the relative
abundances of various types of metabolites in each sample
(Supplementary Figure 11(B)). Supplementary Figure 12:
PCA score plots for the CT and LPS6 groups. The 2D and
3D PCA scores are shown in Supplementary Figures 12(A)
and 12(B), respectively. Supplementary Figure 12(C) shows
the 2D PCA score plot of the analysed samples and box plots
corresponding to the principal component scores. Supple-
mentary Figure 13: OPLS-DA score plot, permutation test
results, and volcano plot. Individual metabolic profiles from
the two predefined groups were differentiated using a more
sophisticated multivariate statistical OPLS-DA model (Sup-
plementary Figure 13(A)). Permutation testing (see Materials
and Methods for details) was used to validate the
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classification model (Supplementary Figure 13(B)). A vol-
cano plot (Supplementary Figure 13(C)) was used to identify
reliable metabolic markers. Supplementary Figure 14(A):
enhanced volcano plot showing differential metabolites identi-
fied by univariate analysis; (B) Z score plot of these 51 differ-
ential metabolites. The volcano plot shows differential
metabolites identified by univariate statistical analysis (Sup-
plementary Figure 14(A)). The threshold settings for the vol-
cano plot were as follows: (1) p < 0:05 and (2) an absolute
value of log 2fc > 0 (where fc is the fold change, i.e., the factor
of the intergroup change). Highlighted metabolites in the
upper right corner were increased, and highlighted metabo-
lites in the upper left corner were decreased in the LPS6 group
compared with those in the CT group (Supplementary Figure
14(A)). According to the screening criteria, 51 differential
metabolites were identified by univariate statistical analysis.
Supplementary Figure 14(B) shows the Z score plot of these
51 differential metabolites. Supplementary Figure 15: top
ranking differential metabolites between the two groups. Nine
representative differential metabolites (top ranking) identified
by univariate statistical analysis and the corresponding p value
rankings are shown. Supplementary Figure 16: classification of
metabolites in the CT, LPS2, and LPS6 groups. The stacked
histogram showing the relative abundance statistics of the
median values of various metabolites in each group of samples
(Supplementary Figure 16(A)). The stacked histogram show-
ing the relative abundances of various types of metabolites in
each sample (Supplementary Figure 16(B)). Supplementary
Figure 17: PCA score plots for the CT, LPS2, and LPS6 groups.
The 2D and 3D PCA scores are shown in Supplementary Fig-
ures 17(A) and 17(B), respectively. Supplementary Figure
17(C) shows the 2D PCA score plot of the analysed samples
and box plots corresponding to the principal component
scores. Supplementary Figure 18: PLS-DA score plot of subject
classifications. (A) 2D PLS-DA score plot, (B) 3D PLS-DA
score plot, (C) PLS-DA score plot with corresponding box
plots. Widely used supervised multivariate classification
model, PLS-DA, was used to comparemultiple groups because
this model maximizes the intergroup differences (Supplemen-
tary Figure 18(A), 2D PLS-DA score plot; Supplementary Fig-
ure 18(B), 3D PLS-DA score plot). Supplementary Figure
18(C) shows the PLS-DA score plot with the corresponding
box plots. Supplementary Figure 19: Z score plot of 55 differ-
ential metabolites. These 55 differential metabolites were iden-
tified by univariate statistical analysis. Supplementary Figure
19 shows the Z score plot of these 55 differential metabolites.
Supplementary Figure 20: top ranking differential metabolites
among the three groups. Nine representative differential
metabolites (top ranking) identified by univariate statistical
analysis and their p value rankings are shown.
(Supplementary Materials)
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