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Abstract: Background/Objectives: The accurate quantification of ground-glass opacities (GGOs)
and consolidation volumes has prognostic value in COVID-19 patients. Nevertheless, the accurate
manual quantification of the corresponding volumes remains a time-consuming task. Deep learn-
ing (DL) has demonstrated good performance in the segmentation of normal lung parenchyma
and COVID-19 pneumonia. We introduce a Human-in-the-Loop (HITL) strategy for the segmenta-
tion of normal lung parenchyma and COVID-19 pneumonia that is both time efficient and quality
effective. Furthermore, we propose a Gaussian Mixture Model (GMM) to classify GGO and consoli-
dation based on a probabilistic characterization and case-sensitive thresholds. Methods: A total of
65 Computed Tomography (CT) scans from 64 patients, acquired between March 2020 and June
2021, were randomly selected. We pretrained a 3D-UNet with an international dataset and imple-
mented a HITL strategy to refine the local dataset with delineations by teams of medical interns,
radiology residents, and radiologists. Following each HITL cycle, 3D-UNet was re-trained until the
Dice Similarity Coefficients (DSCs) reached the quality criteria set by radiologists (DSC = 0.95/0.8
for the normal lung parenchyma/COVID-19 pneumonia). For the probabilistic characterization,
a Gaussian Mixture Model (GMM) was fitted to the Hounsfield Units (HUs) of voxels from the
CT scans of patients with COVID-19 pneumonia on the assumption that two distinct populations
were superimposed: one for GGO and one for consolidation. Results: Manual delineation of the
normal lung parenchyma and COVID-19 pneumonia was performed by seven teams on 65 CT scans
from 64 patients (56 ± 16 years old (µ ± σ), 46 males, 62 with reported symptoms). Automated
lung/COVID-19 pneumonia segmentation with a DSC > 0.96/0.81 was achieved after three HITL
cycles. The HITL strategy improved the DSC by 0.2 and 0.5 for the normal lung parenchyma and
COVID-19 pneumonia segmentation, respectively. The distribution of the patient-specific thresh-
olds derived from the GMM yielded a mean of −528.4 ± 99.5 HU (µ ± σ), which is below most of
the reported fixed HU thresholds. Conclusions: The HITL strategy allowed for fast and effective
annotations, thereby enhancing the quality of segmentation for a local CT dataset. Probabilistic
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characterization of COVID-19 pneumonia by the GMM enabled patient-specific segmentation of
GGO and consolidation. The combination of both approaches is essential to gain confidence in DL
approaches in our local environment. The patient-specific probabilistic approach, when combined
with the automatic quantification of COVID-19 imaging findings, enhances the understanding of
GGO and consolidation during the course of the disease, with the potential to improve the accuracy
of clinical predictions.

Keywords: COVID-19; Chest CT; Artificial Intelligence; Deep Learning; Human-in-the-Loop; Gaussian
Mixture Model

1. Introduction

Computed Tomography (CT) is a fundamental tool for the assessment of disease,
as it allows for the visualization of anatomical involvement and the determination of its
extent. Furthermore, it is a valuable aid for predicting clinical outcomes [1]. The most
prevalent findings in the early stages of the disease are ground-glass opacities (GGOs) and
consolidation, with a variable extent that tends to be patchy and bilateral [2–5]. In GGO,
underlying bronchial structures and pulmonary vessels can still be observed through a
hazy lung density increment. In contrast, in consolidation these structures are completely
obscured [6]. These imaging features manifest differently during disease evolution and are
histopathologically associated with degrees of alveolar damage, which in turn influence
pulmonary functional involvement and, consequently, the clinical outcome [7]. In the
initial stages of the disease, GGO can be observed as a result of the inflammatory process
occurring within the parenchyma, which leads to the exudation of fluid into the alveoli and
interstitial edema [8–10]. As pneumonia progresses, GGOs may transition to consolidation,
a process that can be explained by the complete filling of alveolar spaces and interstitial
edema. The presence of GGO and/or consolidation has been associated with the severity
of a patient’s illness. Pure GGO is observed in patients with a milder illness, while the
volume of consolidation progressively increases as the disease progresses. Larger volumes
of consolidation are associated with higher odds and unfavorable clinical outcomes in
patients [7,11,12].

The quantitative characterization of COVID-19 pneumonia in the lung parenchyma
is valuable for predicting the functional progression of the disease and making proactive
decisions to reduce the risk of respiratory distress. Manual delineation of regions of interest is
a time-consuming and resource-intensive process that relies on the level of expertise of local
specialists. To quantify the extent of disease in the parenchyma, automated segmentation
methods using deep learning (DL) approaches have been employed [13–17]. The proposal of
efficient workflows and interaction between human experts and DL models in Human-in-
the-Loop (HITL) methods has been put forth as a means of enhancing the efficiency of the
annotation process, with the close monitoring of model quality performance [18–20].

DL approaches for the segmentation of COVID-19 pneumonia led to high-quality
results [21,22]. However, its success hinges on the availability of extensive training data
representative of the local manifestations of the disease. Recommendations exist to identify
COVID-19 pneumonia in CT scans by fixed thresholds within the HU, ranging from −368
to −100 HU for non-contrast CT scans [23–30]. Alternative approaches propose the use of
clustering methods combined with extensive preprocessing of the CT scans [31,32]. The
classification of GGO and consolidation within volumes of COVID-19 pneumonia can be
achieved based on a fixed threshold of −300 HU [23–30]. One limitation of this approach
is that it might not capture the dynamics of the imaging findings over the course of the
disease or variations due to patient characteristics and acquisition protocols.

We tested a HITL strategy using a 3D-UNet [33] initially trained with an international
dataset, which underwent iterative retraining cycles with local CT scans. This was carried
out on the basis of three hierarchical levels of expertise that improve delineations and
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generate ground truth labels for the normal lung parenchyma and COVID-19 pneumonia.
Furthermore, we propose a voxel-wise probabilistic approach for the segmentation of GGO
and consolidation. This is achieved by fitting a GMM [34] to the HU frequency distribution
of voxels within COVID-19-infected volumes, and we discuss the use of fixed and patient-
specific thresholds for the discrimination of GGO and consolidation. The combination of
the HITL strategy with the GMM provides rapid and precise quantitative results, thus
enhancing the radiological analysis of CT scans of COVID-19 patients and facilitating the
investigation of disease progression based on histopathological criteria.

2. Materials and Methods

This research was approved by the Scientific Ethics Committee of the Clinical Hos-
pital of the University of Chile, Certificate No. 35. All CT scans were fully anonymized
by the removal of any sensitive information. In accordance with guidelines to enhance
reproducibility [35,36], we have provided a report of the TRIPOD checklist in Table S1.

2.1. Datasets

Local CT dataset: 65 CT scans (44 non-contrast and 21 contrast-enhanced) acquired
with a Siemens SOMATON Definition Edge CT Scanner between March 2020 and June
2021 were randomly selected. Acquisition protocols are shown in Table 1. The first CT scan
performed on a total of 64 patients following the suspicion of COVID-19 was used (Table 2).
Only one patient underwent both a contrast-enhanced and a non-contrast CT scan.

Table 1. Acquisition protocols for 44 non-contrast and 21 contrast-enhanced CT scans.

Parameters Non-Contrast CT Contrast-Enhanced CT

Voltage [kV] 120 80

Rotation time [s] 0.5 0.33

Slice thickness [mm] 1.5 1.5

Collimation [mm] 0.6 0.6

Image resolution 512 × 512 512 × 512

Slides reconstruction 1.5 × 1 1.5 × 1

Algorithm 70f I70f

Seven teams, comprising experts at varying levels of expertise, manually delineated
the normal lung parenchyma and COVID-19 pneumonia using the HITL strategy described
below. The average percentage of infection of our labeled dataset was 37.5%, ranging
from 3.12% to 86.05%. For the HITL strategy, two 3D-Unet models were trained, one for
non-contrast and one for contrast-enhanced CT scans; these were trained using 36 non-
contrast and 16 contrast-enhanced CT scans, respectively. The remaining 8 non-contrast
and 5 contrast-enhanced CT scans were used as a test set, with the objective of evaluating
the generalization performance of our model over data not used during the training phase.

International CT dataset (“coronacases” dataset [37]): 10 public non-contrast CT scans
were available, with a resolution of 512 × 512 pixels and a slice thickness of 1 mm in
7 samples and 1.5 mm in 3 samples. Each scan was manually delineated to show the
normal lung parenchyma and COVID-19 pneumonia. The average percentage of infection
was 11.52%, with a range of 0.01% to 59.73%.

Local and international CT scans were preprocessed by clipping the voxel intensities
between −1250 and 250 HU, normalizing to a grayscale range of [0, 255], and resampling
to a target spacing of 1.58 × 1.58 × 2.70 mm based on [15] to ensure homogeneous input
conditions for the HITL approach and 3D-UNet training (Figures 1 and 2).
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Table 2. Demographics and clinical variables of patients with COVID-19 pneumonia.

Variable n (%)

Male 46 (71.9)

No symptoms * 0 (0)

Fever * 29 (45.3)

Cough * 47 (73.4)

Expectoration * 13 (20.3)

Dyspnea * 54 (84.4)

Diabetes mellitus 11 (17.2)

Hypertension 26 (40.6)

Chronic obstructive pulmonary disease 0 (0)

Cardiovascular disease 5 (7.8)

Hospitalization 56 (87.5)

Intensive care unit admission 36 (56.3)

Death 11 (17.2)

Hospitalization days ** 20.5 [0, 84]

Intensive care unit days ** 13.6 [0, 73]
* Clinical symptoms with 2 missing values. All others have 1 missing value. ** Hospitalization and intensive care
unit days are reported as mean [min, max].
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Figure 1. Hierarchical Human-in-the-Loop (HITL) strategy for fast and improved segmentation
of normal lung parenchyma and COVID-19 pneumonia through manually corrected delineations
by a 3-level hierarchy: (i) basic level for correction of normal lung parenchyma by medical interns;
(ii) intermediate level for correction of COVID-19 pneumonia by radiology residents; and (iii) expert
level for final corrections or approval by radiologists. HITL cycles permit iterative training of the
3D-UNet with local CT scans, improving the results of the initial training performed using publicly
available international CT datasets.

2.2. Segmentation of Normal Lung Parenchyma and COVID-19 Pneumonia with 3D-UNet

We performed automatic segmentation using a 3D-UNet [33] (Figure 2), implemented
through the TensorFlow-based framework Medical Image Segmentation with Convolu-
tional Neural Networks (MIScnn) [38]. During the training phase, we employed data
augmentation techniques [15], including mirroring, scaling [0.85, 1.25], rotation [−15, 15]
(degrees), elastic deformation with alpha in the range of [0, 900] and sigma [9, 13], Gaussian
noise [0, 0.05], random contrast [0.3, 3], and brightness adjustment [0.5, 2]. To streamline
the input data, we randomly extracted 160 × 160 × 80 voxel patches from the original CT
scans. The models were trained on an NVIDIA Tesla V100 GPU, provided by Amazon Web
Services and the National Laboratory for High-Performance Computing (NLHPC). Training
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was performed using early stopping, a batch size of 2 patches, a loss function that sums the
Tversky index [39] and the categorical cross-entropy, and Adam [40] as the optimization
method, as described in [15]. The patient-level cross-validation strategy implemented
in [38] was applied to the training set, with 5-fold model validation and selection. The
cross-validation strategy partitions data into multiple folds. The model is then trained
using k-1 folds, while the remaining fold is used for validating. This process is repeated
until each fold has been used as the validation set. Final evaluations were performed using
the test set, which consisted of CT scans that were not seen by the model during the training
or validation processes. The quality of the segmentation was evaluated in comparison to
the manual delineations in terms of Dice Similarity Coefficients (DSCs) [41] for the normal
lung parenchyma and COVID-19 pneumonia.
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Figure 2. 3D-UNet architecture for the segmentation of imaging data. The DL architecture consists
of 3D convolutional layers organized in a contraction and an expansive path. The contraction path
captures the context and features from the input volume at multiple scales, while the expansive path
captures spatial information that was lost across the contraction path. The use of skip connections
preserves the content and location of the regions of interest, resulting in the output volume containing
a segmentation map.

2.3. Human-in-the-Loop (HITL) Strategy for the Fast Optimization and Characterization of
Normal Lung Parenchyma and COVID-19 Pneumonia

To ensure the optimal training of DL algorithms, it is essential that critical structures
in CT scans are manually delineated by experienced radiologists. As the manual delin-
eation of normal lung parenchyma and COVID-19 pneumonia in CT scans from scratch
is time consuming, we propose a hierarchical HITL strategy [27] (Figure 1). Expert teams
correct delineation errors from the automatic segmentation results and generate ground
truth images. HITL is composed of two phases: the initial prediction of the segmented
structure by the automatic segmentation system, followed by the revision and correction
of the delineated structure by experts. The initial segmentation results were generated
by a 3D-UNet trained on the international dataset [15,37]. Subsequently, the correction
process was executed on three levels of expertise: (i) medical interns corrected the normal
lung parenchyma; (ii) radiology residents validated the corrections and improved the
delineation of COVID-19 pneumonia; and (iii) radiologists performed final corrections.
Batches containing the improved delineations were incorporated into the training set for
each cycle of the HITL approach. Radiologists established the convergence criteria using a
DSC ≥ 0.95/0.8 for the lung parenchyma/COVID-19 pneumonia.

We tested the variation between expert teams in relation to the segmentation of the
normal lung parenchyma and COVID-19 pneumonia. Seven expert teams delineated
three randomly assigned non-contrast CT scans. For each CT scan, three independent
segmentations were obtained. The mean values and corresponding standard variation
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(µ ± σ) were derived from a total of 9 DSCs. Volumes of normal lung parenchyma (VL)
and COVID-19 pneumonia (VI) were calculated by the number of voxels and the xyz size

of the CT metadata. Percentage of infection (PI) was calculated as PI =
VI

VL ∗ 100
, and

Bland–Altman plots [42] were used to compare the PIs from the automated and manual
segmentation.

2.4. Gaussian Mixture Model (GMM) to Characterize Ground-Glass Opacity (GGO) and
Consolidation

We propose a voxel-wise probabilistic GMM for the characterization of GGO and
consolidation within areas of COVID-19 pneumonia in volumetric CT scans (Figure 3).
Considering the underlying histopathologic processes involved in GGO and consolidation
formation, the GMM approximates the distribution of the COVID-19-pneumonia HU
intensity values [34]. The GMM works with a univariate mixture of Gaussians distributions,
which is composed of K normal distributions. Each of these is defined by means {µi}K

i=1,

variances
{

σ2
i
}K

i=1, and mixing coefficients {πi}K
i=1. When the K normal distributions are

combined, they model the overall distribution of data through a mixture probability density
function (PDF). The mixture PDF is p(x)= ∑K

i=1 πi
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idation, the method was assessed in comparison with fixed thresholds that have been pre-
viously reported [23–30]. 

Figure 3. Segmentation of GGO and consolidation in chest CT scans by voxel-wise probabilistic
GMM. (A) From CT images (left panel), normal lung parenchyma (purple and yellow) and COVID-19
(yellow) infection are segmented automatically by a 3D-UNet (right panel). (B) Area normalized
histograms (upper panel) are generated from the voxel intensities (HU) within the COVID-19-infected
area, and a GMM (K = 2) is fitted to the data to identify areas with GGO or consolidation (blue and
red Gaussian, respectively) together with the mixture probability density function (PDF, gray dotted
line). (C) A voxel-wise probabilistic characterization is color coded and scaled independently (0–1)
for GGO (left panel) and consolidation (right panel).

We collected the HU intensity values of the voxels classified as infection by the 3D-
UNet and fitted a GMM through the expectation–maximization algorithm independently
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for each patient’s CT scan. Free parameters were initialized randomly. In the expectation
step, the probability of each data point being generated by a specific Gaussian distribution
from the mixture of Gaussians is calculated. In the maximization step, the parameters of
the distribution were adjusted. The process was repeated until the log-likelihood reached
a plateau, indicating convergence (Figure 4). Due to the differences in HU density and
texture between GGO and consolidation, we identified each imaging finding in the dis-
tribution using the means defined by the model. The lower mean value was associated
with GGO [23–30]. Using voxel probabilities, color maps for GGO and consolidation were
generated (Figure 3C). Probability distributions and patient-specific thresholds for GGO
and consolidation were computed independently for each CT scan in a patient-specific
manner, based on the HU intensity value of voxels with a 0.5 probability for either of the
two classes: GGO or consolidation. In the absence of ground truth labels for GGO and
consolidation, the method was assessed in comparison with fixed thresholds that have
been previously reported [23–30].
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Figure 4. GMM training and optimization for a K = 2 population. (A) Gaussian distributions for
GGO (blue) and consolidation (red) are initialized for the area-normalized Hounsfield histograms
(gray), and the probabilities, p, for each data point to adhere to GGO or consolidation (low to high
opacity for each respective color codifies p = 0–1) are computed together with the mixture probability
density function (PDF, gray dotted line). (B) Mean values, mixing coefficients, and covariances (µ, π,
σ2) are updated for each iteration, together with the probabilities for each data point. (C) Iterations
are repeated until convergence of the GMM.

3. Results

A total of 65 CT scans of 64 patients diagnosed with COVID-19 pneumonia were
analyzed. The patients presented to the Emergency Department with at least one symptom
and were 56 ± 16 years old (µ ± σ); 72% were male, 17% had a history of diabetes mellitus,
and 41% had hypertension. The majority of patients (88%) were admitted to the hospital,
with 42% of these patients requiring admission to the Intensive Care Unit. The median
overall in-hospital length of stay was 21 days (IQR, 0–84), and this was 14 days (IQR, 0–73)
for patients admitted to the Intensive Care Unit. In total, 11 patients died during in-hospital
admission (Table 2).

The implemented HITL strategy (Figure 1) met the quality criteria established by
local radiologists in only three HITL cycles. The teams corrected 21 CT scans for the first
HITL cycle, 14 CT scans for the second, and 12 for the third and final cycle. Segmentation
results improved with each iteration. Manual delineations of normal lung parenchyma and
COVID-19 pneumonia of the expert teams were used as ground truths for calculating the
quality of segmentation with the DSC (Table 3). The performance of the HITL approach
in terms of the DSC for non-contrast and contrast-enhanced CT scans yielded values that
were superior to the coefficients defined by radiologists (DSC ≥ 0.95/0.8 for normal lung
parenchyma/COVID-19 pneumonia). The DSCs increased with each cycle, with higher
DSCs obtained for the normal lung parenchyma in comparison to COVID-19 pneumonia for
non-contrast and contrast-enhanced CT scans. For comparison purposes, we determined
the DSC among seven expert teams who performed manual segmentation of the normal
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lung parenchyma and COVID-19 pneumonia in non-contrast CT scans from scratch in
randomly assigned non-contrast CT scans. The DSC yielded 0.98 ± 0.01 for the normal lung
parenchyma and 0.86 ± 0.03 for COVID-19 pneumonia (µ ± σ), which was comparable to
or within the quality of the automated segmentation achieved after the third HITL cycle.

Table 3. Quality of 3D-UNet segmentation at initial training and third HITL cycle over test set, and
agreement between expert teams over three independent CT scans.

DSC (µ ± σ)
3D-UNet (Initial Training)

DSC (µ ± σ)
3D-UNet (3 HITL Cycles)

DSC (µ ± σ)
Expert Teams

Non-Contrast CT Contrast-
Enhanced CT Non-Contrast CT Contrast-

Enhanced CT Non-Contrast CT

Normal lung
parenchyma 0.77 ± 0.15 0.84 ± 0.03 0.97 ± 0.02 0.97 ± 0.03 0.98 ± 0.01

COVID-19
pneumonia 0.31 ± 0.19 0.41 ± 0.14 0.82 ± 0.12 0.90 ± 0.11 0.86 ± 0.03

Bland–Altman plots show differences in the percentage of infection, calculated from
the results obtained after three HITL cycles and the delineations of expert teams for
COVID-19 pneumonia (Figure 5). The error margin for non-contrast and contrast-enhanced
CT test images was within 5%. For non-contrast and contrast-enhanced CT, the mean
differences and 95% confidence intervals were −1.12% [−4.55%, 2.30%] and 0.54% [−6.56%,
7.64%], respectively.
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Figure 5. Differences in the percentage of infection calculated for the HITL approach (PIP) and the
standard of reference percentage (PIR) for COVID-19 pneumonia for non-contrast (left panel) and
contrast-enhanced CT scans (right panel) after three HITL cycles. Mean values and 95% confidence
intervals are plotted as dashed and dotted lines, respectively.

Following the successful training and validation of the HITL approach for the seg-
mentation of COVID-19 pneumonia in non-contrast and contrast-enhanced CT scans, we
proceeded to address the challenge of classification and quantification of GGO and consoli-
dation within areas of COVID-19 pneumonia. Figures 3, 4 and 6 show the results for the
segmentation of GGO and consolidation in chest CT scans using a voxel-wise probabilistic
GMM approach. Figure 4 shows the application of a two-component GMM (K = 2), rep-
resenting GGO and consolidation, along the mixture of both Gaussian distributions as a
mixture PDF. A GMM is fitted to the HU of voxels within the segmented COVID-19 pneu-
monia region. The initial mean values, mixing coefficients, and covariances (Figure 4A) are
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updated with each iteration (Figure 4B) until the final convergence of the GMM (Figure 4C),
which allows for the calculation of the probabilistic characterization and voxel-wise color
coding for GGO and consolidation (Figure 3).
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Figure 6. Patient-specific characterization of GGO and consolidation using a GMM. (A) Non-contrast
CT scan with balanced voxel populations for GGO and consolidation. (B) Contrast-enhanced CT scan
where GGO voxels outweigh consolidation. For A and B, area-normalized histograms (gray) in HU
with Gaussian distributions for GGO (blue) and consolidation (red) are shown with mixture PDF
(dotted line), fixed threshold at −300 HU (dashed line), and CT patient-specific GMM thresholds
(black line). For A and B from left to right, we show original CT images, color-coded results obtained
by GMM classification at variable HU threshold (GGO in blue and consolidation in red), and GGO
and consolidation GMM with corresponding color-coded probability scale p = 0–1.

The final results of the GMM for GGO and consolidation in contrast-enhanced and
non-contrast-enhanced CT scans, together with the patient-specific thresholds derived from
the GMM, are presented in Figure 6. Figure 6A presents a representative example of a
nearly balanced COVID-19 pneumonia in terms of the number of voxels representing GGO
or consolidation areas (55 vs. 45%). In Figure 6B, voxels associated with GGO strongly
outweigh consolidation (89 vs. 11%). In both cases, the patient-specific thresholds are less
than −300 HU (−372 HU for A and −376 for B). The distribution of the patient-specific
thresholds for 65 CT scans yielded −528.4 ± 99.5 HU (µ ± σ). Patient-specific thresholds
(Figure 7) exhibited a range from a minimum value of −697 HU to a maximum value of
−256 HU, contingent on the stage of pneumonia progression of the individual patients.

While the HU threshold leads to a binary classification of each voxel (see GMM
classification images in Figure 6A,B), the patient-specific GMM provides two probability
estimates for each voxel identified as COVID-19 pneumonia (see voxel-wise color coding
for GGO GMM and consolidation GMM in Figure 6A,B). The voxel-wise color coding,
in conjunction with the patient-specific threshold, facilitates the identification of regions
associated with the transition of the histopathologic processes of the disease. The voxel-
wise color coding for the consolidation GMM in Figure 6B shows that lung blood vessels
are predominantly classified as consolidation, with a lower probability of being identified
as GGO (comparing red and blue coded voxels in the respective CT images).



J. Clin. Med. 2024, 13, 5231 10 of 14

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 11 of 16 
 

 

 

 
Figure 7. Histogram of patient-specific thresholds based on GMM for 64 CT scans from the local 
dataset, including non-contrast and contrast-enhanced CT scans. 

While the HU threshold leads to a binary classification of each voxel (see GMM clas-
sification images in Figure 6A,B), the patient-specific GMM provides two probability es-
timates for each voxel identified as COVID-19 pneumonia (see voxel-wise color coding 
for GGO GMM and consolidation GMM in Figure 6A,B). The voxel-wise color coding, in 
conjunction with the patient-specific threshold, facilitates the identification of regions as-
sociated with the transition of the histopathologic processes of the disease. The voxel-wise 
color coding for the consolidation GMM in Figure 6B shows that lung blood vessels are 
predominantly classified as consolidation, with a lower probability of being identified as 
GGO (comparing red and blue coded voxels in the respective CT images). 

4. Discussion 
The HITL approach, trained with the international dataset and re-trained with local 

CT scans, demonstrated an improvement in the DSC for automatic segmentation by ~0.2 
for the normal lung parenchyma and ~0.5 for COVID-19 pneumonia for non-contrast and 
contrast-enhanced CT scans. Improving the quality of segmentation for a local CT dataset 
holds clinical promise with the potential to improve the accuracy of clinical predictions, 
which remains to be further studied. The approach accelerated the annotation process, 
minimizing the time that expert teams dedicated to manual delineation. The final DSCs of 
the automatic segmentation were found to be similar to those determined among seven 
expert teams (0.98 ± 0.01 for the normal lung parenchyma and 0.86 ± 0.03 for COVID-19 
pneumonia (µ ± 𝜎)), which proves that HITL cycles are not only time efficient, but also 
accurate. The formation of teams comprising three levels of expertise contributed to the 
advancement of knowledge and skills, which is of particular importance in the context of 
emerging diseases and the need for rapid adaptation to protocols within a value chain.  

A recent review of HITL machine learning [18] categorizes the approaches into three 
main groups: active learning (system in control), interactive machine learning (interaction 
between users and system), and machine teaching (domain experts have control over the 
learning process). Our approach combines interactive machine learning with a teaching 
methodology. Domain experts, including interns, residents, and radiologists, utilize the 
outcomes and oversee the quality of the visualization and DSC. Residents and radiologists 
participated in the design, development, and training phases of the system, actively con-
tributing regarding usability, design, and color representation. Our results also support 
the reported key benefit [19] of including end users in DL supported systems in terms of 
the best data selection, interaction with GMM outputs, consideration of the daily clinical 
practice, and future prospective. Finally, our findings are in line with those in [20] in terms 
of shortcutting time-intensive annotations in CT scans for the spleen, liver, kidneys, 

Figure 7. Histogram of patient-specific thresholds based on GMM for 64 CT scans from the local
dataset, including non-contrast and contrast-enhanced CT scans.

4. Discussion

The HITL approach, trained with the international dataset and re-trained with local
CT scans, demonstrated an improvement in the DSC for automatic segmentation by ~0.2
for the normal lung parenchyma and ~0.5 for COVID-19 pneumonia for non-contrast and
contrast-enhanced CT scans. Improving the quality of segmentation for a local CT dataset
holds clinical promise with the potential to improve the accuracy of clinical predictions,
which remains to be further studied. The approach accelerated the annotation process,
minimizing the time that expert teams dedicated to manual delineation. The final DSCs of
the automatic segmentation were found to be similar to those determined among seven
expert teams (0.98 ± 0.01 for the normal lung parenchyma and 0.86 ± 0.03 for COVID-19
pneumonia (µ ± σ), which proves that HITL cycles are not only time efficient, but also
accurate. The formation of teams comprising three levels of expertise contributed to the
advancement of knowledge and skills, which is of particular importance in the context of
emerging diseases and the need for rapid adaptation to protocols within a value chain.

A recent review of HITL machine learning [18] categorizes the approaches into three
main groups: active learning (system in control), interactive machine learning (interaction
between users and system), and machine teaching (domain experts have control over the
learning process). Our approach combines interactive machine learning with a teaching
methodology. Domain experts, including interns, residents, and radiologists, utilize the
outcomes and oversee the quality of the visualization and DSC. Residents and radiologists
participated in the design, development, and training phases of the system, actively con-
tributing regarding usability, design, and color representation. Our results also support
the reported key benefit [19] of including end users in DL supported systems in terms of
the best data selection, interaction with GMM outputs, consideration of the daily clinical
practice, and future prospective. Finally, our findings are in line with those in [20] in
terms of shortcutting time-intensive annotations in CT scans for the spleen, liver, kidneys,
stomach, gallbladder, pancreas, aorta, or IVC. The use of HITL cycles proved effective in
reducing bias among expert teams, detecting automated delineation errors, and enabling
teams to identify and rectify the most salient mistakes.

The 3D-Unet HITL training cycles yielded a DSC on non-contrast CT scans for the
normal lung parenchyma and COVID-19 pneumonia that was in close agreement with the
results of seven expert teams. The third HITL cycle fulfilled the expert quality criteria and
exceeded our expectations. The DSCs for the normal lung parenchyma in non-contrast
and contrast-enhanced CT scans show comparable performance. The DSC for COVID-19
pneumonia provides a higher DSC on contrast-enhanced CT scans, due to the medium
that enhances the pattern in the CT images. Non-contrast CT scans for the normal lung
parenchyma segmentation showed higher DSC values (0.97 ± 0.02) with respect to the best
DSC value (0.86 ± 0.1) reported with a similar approach [14]. COVID-19 pneumonia in non-
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contrast CT (0.82 ± 0.12) was lower than the highest DSC (0.92 ± 0.1) reported in [27], but
higher than the values reported in [14,15] (0.67 ± 0.22, 0.76). To the best of our knowledge,
DSCs have not yet been reported for COVID-19 pneumonia in contrast-enhanced CT scans.

The automatic calculation of PI enriches the radiological report by adding quantitative
information about the extent of COVID-19 pneumonia signs. Currently, quantitative
information in terms of volumes or PI is not routinely included in the radiological reports,
with only subjective extent or visual estimation being employed. Our findings suggest
that mean values of PIP–PIR exhibit a 1% deviation from zero, both in non-contrast and
contrast-enhanced CT scans, representing a low deviation. According to the participating
radiologists, the mean error and confidence interval suggest that the proposed method
could be used in clinical practice after clinical validation.

In addition to the results of the HITL cycles, in terms of DSC and PI for the automatic
segmentation of normal lung parenchyma and COVID-19 pneumonia, the GMM offers
a probabilistic characterization of GGO and consolidation in the CT scans of COVID-19
patients. Within the voxels identified with COVID-19 pneumonia, HU histograms show
patterns that suggest two underlying Gaussian distributions (Figures 3B, 4 and 6). HU
arbitrarily scales physical attenuation coefficients of distilled water to 0, and air to −1000
at standard pressure and temperature, representing a relative quantitative unit for radio
density, since the density of tissue is proportional to the attenuation of X-ray beams [43].
To our knowledge, there is no universally accepted standard for HU thresholds for GGO
or consolidation. Indeed, a review of the literature reveals a wide range of reported
values [23–30,43]. In [23], they defined a HU lower than −300 for GGO, −300 to 50 for
sub-solid tissue, and greater than 50 for solid tissue. Similarly, the authors in [24,26] used
HU thresholds for GGO at −703/−368, and consolidation at −100/5. In the study on HU
thresholds by [25], the highest diagnostic efficacy and effectiveness for GGO was reported
at a HU lower than—300. Issues of concerns for a standard HU are raised in [43], such as
X-ray beam energy variations, CT parameters, or CT artifacts like beam-hardening, which
might affect tissue absorption and hence HU.

Patient-specific HU thresholds based on a GMM allows for characterization of the
infection (Figure 6A,B). This approach facilitates the identification of regions that are more
likely to manifest as GGO or consolidation, as well as the detection of transitions between
GGO and consolidation. A dynamic threshold can be calculated for voxel-wise binary
classification into GGO, or consolidation based on probabilities, which allows quantification
in response to local conditions. Our patient-specific thresholds based on the GMM yielded
−528.4 ± 99.5 HU (µ ± σ), on average ∼75% below −300 HU (Figure 7). Clinical correlation
of the imaging findings identified with the proposed method is a potential avenue for
further study.

COVID-19 can manifest with a wide spectrum of radiological findings, which vary
according to the stage of the disease. We analyzed a patient cohort of the first stage of the
pandemic, with a high number of patients with symptoms, lung parenchyma disease, and
clinical burden, particularly with high in-hospital and Intensive Care Unit admission, and
death events. Therefore, lung parenchyma disease evaluated on CT scans may represent
changes secondary to acute COVID-19 pneumonia with a higher likelihood compared
to the post-vaccine era, wherein chronic lung parenchyma changes may be found on
imaging. Whether this may decrease the prognostic value of automatic lung parenchyma
quantification in the acute setting warrants further evaluation.

The transition of GGO to consolidation is gradual, and there is no exact visual thresh-
old that can be used to define the borders in CT scans. Delineation may vary according to
the slice thickness, the acquisition protocol, the patient-specific morphometric composition,
the degree of pulmonary involvement, the viewing window levels, and the particular CT
scanner vendor/model.

The HITL-GMM approach is robust to accommodate these many variables in the
quantification of lung parenchyma disease. However, there are still some limitations that
require attention. Firstly, it is acknowledged that the reliance on retrospective data in
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this study may potentially introduce a degree of selection bias, given that the dataset
was collected over a limited period of time and may not fully represent the population of
patients confirmed as having COVID-19 at the included institution. Secondly, the HITL
approach was designed for implementation in a specific health institution; the results
may not be generalizable to other institutions or to patients with different demographic
or clinical characteristics. Thirdly, as previously stated, the current study focused on the
acute phase of COVID-19, with data collected during the early stages of the pandemic. It is
currently unclear as to whether our findings can be applied to the post-vaccine era. Finally,
the segmentations made by physicians may be biased due to inter- and intra-observer
variability, as well as inherent technical factors such as the presence of artifacts.

It would be beneficial for future research to validate our approach with larger, multi-
centric datasets, including longitudinal studies to assess the clinical significance of the
HITL-GMM method over time. Additionally, we can explore the use of radiomics combined
with machine learning models, as its potential capacity to predict the risk of occurrence
of clinical outcomes has been demonstrated [44–46]. The efficiency of HITL cycles could
be improved by ranking and prioritizing samples through attention maps calculated in
terms of inconsistency, uncertainty, and overlap to enhance regions that radiologists should
focus on for correction [20]. Integration into clinical workflows and PACS, along with
the development of a user-friendly interface, will be essential for the broad adoption and
clinical validation of this quantitative platform.
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