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ABSTRACT Quantum dots (QDs) possess optical properties of superbright fluores-
cence, excellent photostability, narrow emission spectra, and optional colors. Labeled
with QDs, single molecules/viruses can be rapidly and continuously imaged for a
long time, providing more detailed information than when labeled with other fluo-
rophores. While they are widely used to label proteins in single-molecule-tracking
studies, QDs have rarely been used to study virus infection, mainly due to a lack of
accepted labeling strategies. Here, we report a general method to mildly and readily
label enveloped viruses with QDs. Lipid-biotin conjugates were used to recognize
and mark viral lipid membranes, and streptavidin-QD conjugates were used to light
them up. Such a method allowed enveloped viruses to be labeled in 2 h with speci-
ficity and efficiency up to 99% and 98%, respectively. The intact morphology and
the native infectivity of viruses were preserved. With the aid of this QD labeling
method, we lit wild-type and mutant Japanese encephalitis viruses up, tracked their
infection in living Vero cells, and found that H144A and Q258A substitutions in the
envelope protein did not affect the virus intracellular trafficking. The lipid-specific
QD labeling method described in this study provides a handy and practical tool to
readily “see” the viruses and follow their infection, facilitating the widespread use of
single-virus tracking and the uncovering of complex infection mechanisms.

IMPORTANCE Virus infection in host cells is a complex process comprising a large
number of dynamic molecular events. Single-virus tracking is a versatile technique to
study these events. To perform this technique, viruses must be fluorescently labeled
to be visible to fluorescence microscopes. The quantum dot is a kind of fluorescent
tag that has many unique optical properties. It has been widely used to label pro-
teins in single-molecule-tracking studies but rarely used to study virus infection,
mainly due to the lack of an accepted labeling method. In this study, we developed
a lipid-specific method to readily, mildly, specifically, and efficiently label enveloped
viruses with quantum dots by recognizing viral envelope lipids with lipid-biotin con-
jugates and recognizing these lipid-biotin conjugates with streptavidin-quantum dot
conjugates. It is not only applicable to normal viruses, but also competent to label
the key protein-mutated viruses and the inactivated highly virulent viruses, provid-
ing a powerful tool for single-virus tracking.
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Single-particle tracking is a powerful tool to study the dynamic molecular events in
living cells (1). An essential prerequisite to perform this technique is fluorescent

labeling of the targets. In the past decade, various fluorescent tags such as organic dyes
(2, 3), fluorescent proteins (4), metal complex of dipyridophenazine (dppz) (5), and
quantum dots (QDs) (6) have been used to label the target molecules/viruses. The
excellent optical properties make QDs unparalleled in single-molecule/virus tracking.
Single molecules/viruses illuminated with QDs can be rapidly and continuously tracked
for a long time (7), and their interactions with multiple other molecules can be
monitored simultaneously (8, 9), providing more detailed information to dissect cellular
events than with those labeled by other fluorophores. Thanks to these advantages, QDs
have been widely used to label proteins for single-molecule-tracking studies (10–17).
But due to lack of an accepted labeling method, QDs were rarely used to label viruses,
which in turn limited the widespread use of single-virus tracking.

To label viruses with QDs, more than a dozen of methods have been developed,
which could be roughly divided into three groups. By directly (e.g., virus-NH2-COOH-
QD) or indirectly (e.g., virus-NH2-COOH-biotin-streptavidin [SA]-NH2-COOH-QD) attach-
ing QDs to the amino on viral proteins, both enveloped and nonenveloped viruses can
be labeled with efficiencies of 70% to 97% (group 1) (18–21). Similarly and more
ingeniously, QD-labeled viruses can be obtained by genetically engineering specific
viral proteins to combine them with reactive biomolecules and then with the corre-
spondingly modified QDs (group 2) (22–24). The labeling efficiencies of this kind of
method are �90%. Besides, by modifying the membranes of host cells and propagating
viruses in them, viruses with reactive membranes can be harvested and then labeled
with QDs (group 3) (25–28). Such methods have labeling efficiencies of 70% to 90% and
labeling specificity of �90%. Although so many methods have been reported, none of
them has been broadly used in practical studies due to the concerns that they may
affect the bioactivity of the target proteins (group 1), they are too complicated and time
consuming (group 2), or the labeling efficiency greatly varies with the cell and the virus
(group 3).

The aim of this work was to provide a universal and convenient method to
specifically and efficiently label enveloped viruses with QDs while preserving the native
state of viral proteins. In conventional virology, lipophilic dyes such as DiO and DiD that
can readily insert into lipid bilayer membranes are widely used to label viruses. Learning
from the use of these long-chain lipophilic dyes, we developed a convenient method
to label viruses with QDs by modifying viral lipid membranes with lipid-biotin conju-
gates and lighting these extraneous lipids up with SA-QD conjugates. Such a method
leaves viral proteins uninvolved, and its effect on viral infectivity was negligible. It
allowed enveloped Japanese encephalitis virus (JEV), porcine reproductive and respi-
ratory syndrome virus (PRRSV), and influenza A virus (IAV) to be labeled with specificity
and efficiency �95% and �93%, respectively. The whole labeling procedure comprised
just five brief steps and can be performed within 2 h. With the aid of this lipid-specific
QD labeling method, both wild-type (WT) and envelope (E) protein-mutated JEVs were
fluorescently labeled, and their infection behaviors were thus visually analyzed.

RESULTS AND DISCUSSION
Labeling design. Labeling with high specificity and high efficiency and without

affecting virus infectivity is essential to obtain high-fidelity information about virus
infection, while labeling with great convenience and universal applicability is essential
for a method to be widely used. To develop a QD labeling method meeting these
requirements, we learned from the use of lipophilic dyes and designed a strategy to
label viruses by targeting the lipid membrane. An amphipathic lipid-biotin conjugate,
1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-polyethylene glycol (PEG)-
biotin (Fig. 1A), was used to recognize viral lipid membranes by the hydrophobic
interaction between DSPE and lipid membranes and to mark the membranes with
biotin. SA-QD conjugates were used to combine with the exogenous lipid through
interaction with biotin and thus light the virus up (Fig. 1B). As seen in Fig. S1 in the
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supplemental material, DSPE-PEG-biotin inserted into lipid membranes as fast as DiD.
After incubation with DSPE-PEG-biotin for 30 min and then with SA-QD for 10 min, cells
were efficiently labeled with QDs. To apply this strategy to viruses, we optimized the
labeling procedure as illustrated in Fig. 1C, clearing cell debris from the virus solution
by low-speed centrifugation and syringe filtration, biotinylating viral lipid membranes
by incubation with DSPE-PEG-biotin under shaking, removing unincorporated lipid-
biotin molecules by gel filtration, preattaching biotinylated viruses to cell surfaces by
incubation with cells at 4°C, and coupling SA-QDs to the lipid-biotin on viral mem-
branes by incubation with the cells at 4°C. Unbound viruses and QDs were removed just
by washing the cells. Such a strategy can thoroughly evade ultracentrifugation, dialysis,
and ultrafiltration processes that are indispensable for removing the cell-derived reac-
tive molecules, redundant functional reagents, unlabeled viruses, or unbound QDs in
many other labeling strategies (29–34). This strategy further minimized and simplified
the handling of viruses, making the QD labeling milder and more convenient. However,
it should be noted that it might not apply to the viruses whose host cells cannot
tolerate 4°C treatment during the labeling process.

Specifically, efficiently, and mildly labeling viruses. JEV of approximately 50 nm
in diameter was used as the model virus to experimentally evaluate the labeling
strategy. Raw JEV and biotinylated JEV were prebound to glass slides and labeled with
SA-QD 705 and anti-E protein-DyLight 488, respectively. As seen in Fig. 2A, there was

FIG 1 Lipid-specific QD labeling of enveloped viruses. (A) Structure of DSPE-PEG (2000)-biotin. (B) Using the rapid insertion
of the lipid-biotin conjugate into lipid membranes and the specific high-affinity interaction between biotin and SA to label
viruses. (C) The entire labeling procedure comprising five brief steps (1 to 5). The last panel is a fluorescence image of JEV
labeled as thus on a Vero cell. Bar, 10 �m.
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no obvious QD signal that colocalized with DyLight-stained raw JEV, while almost all
the DyLight-stained biotinylated JEV was colocalized with QDs. These data indicated
that DSPE-PEG-biotin inserted into the lipid membranes of viruses, and SA-QDs effi-
ciently bound to viruses modified with the lipid-biotin conjugate specifically through
interactions with biotin. The overlapping peaks of QD and DyLight fluorescence in the
line profile (Fig. 2B) and the scarcity of negative values of the product of differences
from the mean (PDM) of pixel intensities in the two channels (Fig. 2C) visually showed
that almost all the QD and DyLight signals were colocalized. Statistically, approximately
99% of QD signals were colocalized with the DyLight-stained viruses (ratio of the
summed intensities of the QD signal in each of the pixels colocalized with DyLight
signals to the total intensities of QD signals in all pixels [tMQD] � 0.986 � 0.008), and
approximately 98% viruses were colocalized with QDs (ratio of the summed intensities
of the DyLight signal in each of the pixels colocalized with QD signals to the total

FIG 2 Specifically, efficiently, and mildly labeling JEV with QDs. (A) JEV and biotinylated JEV were prebound to glass slides and labeled
with SA-QD 705 (red) and anti-E-DyLight 488 (green). (B) Line profile showing distributions of the signals on the line in panel A. (C) PDM
image showing the colocalized (PDM � 0) and uncolocalized (PDM � 0) spots in the lower merge panel in A. Bars, 10 �m. (D) The tMQD,
tMDyLight, and ICQ values calculated from 20,000 viral particles from three experiments. (E) The numbers of genome-containing particles
(GCPs), titers, and specific infectivity of viruses before and after ultracentrifugation. (F) Titers of viruses before and after biotinylation and
SA-QD 705 labeling (n � 3). (G) TEM images of SA-QD 705, JEV, and QD-labeled JEV (arrowheads). Bars, 100 nm.
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intensities of DyLight signals in all pixels in thresholded images [tMDyLight] �

0.976 � 0.021) (Fig. 2D). In other words, the QD labeling specificity and efficiency on
glass slides were 99% and 98%, respectively. The high intensity correlation quotient
(ICQ) value (0.298 � 0.014) further confirmed this nearly complete colocalization
(Fig. 2D) (35). Labeling viruses on Vero cell surfaces showed that the QD and DyLight
signals still colocalized to a very high degree (94%) (see Fig. S2). The tMQD, tMDyLight,

and ICQ values were 0.979 (� 0.018), 0.957 (� 0.030), and 0.291 (� 0.026), respectively
(Fig. S2D). The specificity and efficiency of this method are superior to those of the
previously reported QD labeling methods to different degrees and significantly superior
to the specificity and efficiency of DiD and DiO labeling (see Fig. S3).

To determine the effect of QD labeling on viruses, both the pretreatment and the
labeling processes were analyzed. In our lipid-specific method, viruses were just
processed with low-speed centrifugation and syringe filtration before labeling, while in
many other methods, they would need further purification by ultracentrifugation (20,
36). Comparing unultracentrifuged viruses with viruses ultracentrifuged under the
generally used conditions showed that high-speed centrifugation greatly reduced virus
infectivity (Fig. 2E). By evading such violent pretreatment, the native infectivity of
viruses was greatly preserved. During the labeling process, no cumbersome operation
was performed, and no interaction involving viral proteins was used. Measuring the
titer of viruses before and after QD labeling showed that the labeling process had no
obvious effect on virus infectivity (Fig. 2F). As seen in the transmission electron
microscope (TEM) image, QD-labeled viruses were morphologically as intact as unla-
beled viruses (Fig. 2G). In aggregate, labeling viruses with QDs by the above-described
lipid-specific method could preserve virus infectivity further.

Stably and universally labeling viruses. Under the labeling conditions we used,
approximately 2,836 DSPE-PEG-biotin molecules were incorporated into the lipid mem-
branes of JEVs during biotinylation (see Fig. S4), and 2 or 3 QDs were coupled to the
biotinylated virus afterwards (Fig. S5). To evaluate the stability of QDs combining with
viruses, we dually labeled JEVs with QD 605 and QD 705 and allowed the viruses to
infect Vero cells for different times. It was observed that the two kinds of QDs remained
colocalized with the DyLight-stained viral envelope during 2 h of virus infection
(Fig. 3A). Almost no QD signal was observed alone (Fig. 3B). The steady Manders’
coefficients and ICQ values of DyLight versus QD 605, DyLight versus QD 705, and QD
605 versus QD 705 suggested that the colocalization relationships among DyLight, QD
605, and QD 705 barely changed during virus infection (Fig. 3C). These results indicated
that QDs coupled to viruses would not separate from the envelope and could stably
point viruses out during virus infection, ensuring reliable information.

Then, we applied the above-described method to PRRSV and IAV to see how it
performed when used to label other enveloped viruses. It was found that almost all the
QD and DyLight used to label PRRSV colocalized with each other, with tMQD, tMDyLight,
and ICQ values of 0.950 (� 0.022), 0.946 (� 0.022), and 0.352 (� 0.037), respectively
(Fig. 3D and S6). The infectious titers of biotinylated PRRSV and QD-labeled PRRSV
were nearly the same as that of the raw PRRSV (Fig. 3E), suggesting that QD labeling
did not affect PRRSV infection. When used to label IAV, the method still showed
high specificity and efficiency (tMQD � 0.955 � 0.028, tMDyLight � 0.933 � 0.027,
and ICQ � 0.320 � 0.022) (Fig. 3F and S7). Comparing DiD labeling and the QD labeling
based on covalent interactions with amino acids on viral surfaces (37, 38), the lipid-
specific QD labeling method was superior for preserving virus infectivity (Fig. 3G). These
results demonstrated that the method described in Fig. 1 is universally applicable for
the specific, efficient, and mild labeling of enveloped viruses.

Imaging the infection of WT and mutant JEVs. JEV E protein on the envelope
plays essential roles in virus infection. In our previous work, site mutations were
introduced to the E protein, and several amino acids were proved to be important for
the virus membrane fusion (39). But their roles in the virus transport within cells remain
unresolved, since it is difficult to study the dynamic trafficking of viruses by traditional
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FIG 3 Stability and universality of the QD labeling method. (A) JEV was dually labeled with SA-QD 605 (green) and SA-QD 705 (red). Vero cells infected by the
double-labeled viruses for 0, 30, 60, 90, and 120 min were fixed and stained with anti-E-DyLight 488 (blue). Bars, 10 �m. (B) Line profiles showing distributions
of the fluorescence signals on the lines in panel A. (C) The tMDyLight/tMQD 605/ICQ, tMDyLight/tMQD 705/ICQ, and tMQD 605/tMQD 705/ICQ values calculated from 30
randomly selected cells. (D to G) PRRSV and IAV were labeled with QDs using the lipid-specific method. (D and F) The tMQD, tMDyLight, and ICQ values calculated
from 30 cells. (E and G) Titers of viruses, biotinylated viruses, QD-labeled viruses, DiD-labeled viruses, and viruses covalently biotinylated with NHS-biotin (n � 3
for PRRSV and 5 for IAV).
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methods. Here, we labeled the WT, H144A mutant, and Q258A mutant JEVs with QDs
to visually analyze the effect of the two substitutions on virus infection. The nearly
overlapping one-step growth curves of the viruses before and after QD labeling
showed that QD labeling had no evident effect on the infectivity of WT, H144A, and
Q258A JEVs (Fig. 4A). To analyze the virus entry activity, the same amounts of WT and
mutant viruses were bound to cell surfaces (Fig. 4B) and allowed to infect cells at 37°C
for different times. Then, the cells were immediately transferred to 4°C and incubated
with SA-Cy3 to additionally stain the QD-labeled viruses remaining on cell surfaces,
making them distinguishable from the QD-labeled viruses internalized in the cells
(Fig. 4C). By counting the viruses solely labeled with QDs, the amount of viruses inside
cells was determined. It was found that after synchronization at 4°C, most WT viruses
entered cells in the first 25 min, and the number of viruses inside cells plateaued in the
next 2 h (Fig. 4D), consistent with the viruses’ internalization kinetics into B104 cells
(40). H144A and Q258A viruses followed similar entry kinetics to that of the WT virus.
Except for individual time points, the amounts of mutant viruses internalized into cells
at most time points were similar to those of the WT virus, indicating that replacing the
H144 and Q258 amino acids in the E protein with alanines did not affect JEV uptake into
Vero cells.

Then, we visually analyzed the transport behaviors of WT and mutant JEVs in the
cytoplasm after their entry via endocytosis by tracking individual QD-labeled virions.
The dynamic transport process of single WT viruses from the cell periphery toward the

FIG 4 The entry activity of WT, H144A, and Q258A JEVs. (A) One-step growth curves of WT, H144A, and Q258A JEVs (n � 2). The black, blue, and red lines are
the curves of raw, biotinylated, and QD-labeled viruses, respectively. (B) WT and mutant JEVs were attached to Vero cell surfaces and labeled with QD 705. Cells
were imaged in three dimensions (3D) and analyzed with Fiji software. The left panels are the z-projection images of cells attached with WT, H144A, and Q258A
JEVs. The histogram is the QD-labeled WT/H144A/Q258A JEV spots per cells (n � 100). (C and D) WT and mutant viruses were labeled with QD 705 and allowed
to infect cells for 0, 5, 10, 15, 20, 25, 30, 60, 90, 120, and 150 min. Then, the viruses that remained on cell surfaces were stained with Cy3. After fixation, the
cells were imaged in 3D and analyzed with Velocity software. (C) Cells infected for the indicated times. Horizontal and vertical scale bars, 10 �m. (D) Numbers
of viruses internalized in cells after infection for different times (n � 30).
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interior region was observed (Fig. 5A). It was divided into two stages, viruses moving
slowly and irregularly in the cell periphery (green lines in Fig. 5B to D) and those
moving rapidly and actively toward the interior of cells (blue lines in Fig. 5B to D),
according to the viruses’ speeds, relationships between mean square displacement
(MSD) and Δt (time interval), and location in cells. As indicated by drug inhibition, the
infection of JEV and its rapid active motion in Vero cells were dependent on microtu-
bules and dynein while independent of microfilaments (Fig. S8). Dynein is the molec-
ular motor protein responsible for powering cargo moving along microtubules toward
the cell nucleus (41). Therefore, virus motion in the second stage was the process by
which dynein drove JEV-carrying endosomes to move along microtubules toward the
interior region, consistent with our previous findings that dynein directionally drove
IAV-carrying endosomes along microtubules during virus infection (42, 43). On the
other hand, among the known motions, the anomalous or confined motion on cell
membranes and the slow active motion on microfilaments were reported occurring
before the rapid active motion on microtubules (42, 44), both of which differed from
the slow irregular motion found here. Considering that the intermediate filament

FIG 5 Intracellular transport behaviors of WT, H144A, and Q258A JEVs. QD-labeled WT/H144A/Q258A JEV virions were allowed to infect living Vero cells at 37°C
and imaged in real time by a spinning-disk confocal microscope. (A, E, and I) Snapshots of QD-labeled viruses (red) infecting cells. (B, F, and J) Trajectories of
the circled viruses in panels A, E, and I. (C, G, and K) Speed versus time plots of the viruses. (D, H, and L) MSD versus Δt plots of the viruses (green and blue
symbols). The green symbols cannot be fitted. The blue lines are the fits to MSD � 4DΔt � (VΔt)2 with D � 0.081/0.053/0.039 �m2/s and V � 0.29/0.19/
0.55 �m/s. D and V are the diffusion coefficient and mean velocity, respectively. (M) Statistics of the instantaneous speeds of viruses. (N) Statistics of the D and
V of WT/H144A/Q258A JEV moving actively.
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network has been found to physically hinder the transport of organelles (45), we
speculated that the dense actin network could also hinder the transport of vesicles. The
slow irregular motion of JEV was the process by which the virus-carrying endosomes
diffused across the dense actin-rich region near the plasma membrane. Tracking the
movement of single H144A and Q258A JEV virions showed that the two types of
mutant viruses moved toward the cell interior in a similar two-stage pattern (Fig. 5E to
L). Statistically analyzing virus speeds in the two stages revealed that H144A and Q258A
JEVs moved with speeds of �1.0 �m/s in the first stage and with speeds up to several
microns per second in the second stage, just as the motion of WT viruses (green and
blue histograms in Fig. 5M). The diffusion coefficients and mean velocities of H144A
and Q258A viruses in the second stage had no significant differences with those of the
WT viruses (Fig. 5N). These results indicated that these two substitutions in the E
protein did not affect the intracellular transport behaviors of JEV.

Sequentially, we analyzed the fusion activity of the mutant JEVs. Since it was difficult
to follow the membrane fusion process of viruses using the above-described QD
labeling method, a previously reported dual-wavelength imaging method was used in
this part (46). The viruses were dually labeled with lipophilic DiO and R18 at concen-
trations allowing them to be solely illuminated by R18 before virus membrane fusion
and simultaneously illuminated by R18 and DiO after membrane fusion (46). Thus, the
fusion of virus membranes with acidic endosome membranes could be determined by
measuring the fluorescence intensity of DiO (47). As seen in Fig. 6A, the amount of WT
viruses fused with endosomes was greater than that of H144A and Q258A viruses. The
fluorescence intensity of DiO in the cells infected by WT viruses increased rapidly in the
second and third hours and plateaued gradually in the following 4 h, while the DiO
fluorescence in cells infected by mutant viruses increased very slowly (Fig. 6B). The

FIG 6 The fusion activity of WT, H144A, and Q258A JEVs. (A) DiO/R18 double-labeled viruses were allowed to infect Vero
cells for different times. Bar, 10 �m. (B) Mean fluorescence intensities (MFIs) of DiO in cells infected by the double-labeled
viruses for different times measured by flow cytometry (n � 3). (C) MFIs of DiO in cells treated with drugs and infected by
JEV for 1 h. NH4Cl and chloroquine (CQ) were used to block virus-endosome fusion (n � 3).
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amounts of H144A and Q258A viruses fused with endosomes were just 23% and 12%
of WT viruses after infection for 7 h. In the presence of low-pH inhibitors, the fluores-
cence intensity of DiO in cells infected by WT and mutant viruses reduced at the same
degree (Fig. 6C). These results indicated that H144A and Q258A substitutions reduced
the membrane fusion activity of JEV. Taken together, H144 and Q258 are dispensable
for the uptake and intracellular transport of JEV but essential for its membrane fusion
with endosomes.

Conclusion. We developed a lipid-specific method to mildly, readily, specifically,
and efficiently label enveloped viruses with QDs. The unique optical properties of QDs,
the high specificity and efficiency, and the comparative convenience make them
superior to DiD and DiO labeling. The advantages in convenience and universality make
this lipid-specific method prevail over other QD labeling methods. More importantly,
since the target molecules are lipids, this method is capable of labeling key protein-
mutated viruses, which is significant for in-depth study of virus infection mechanisms.
Because this labeling method does not involve virus propagation, it can also be used
to study inactivated highly virulent viruses such as HIV and Ebola virus. The labeling
technique described in this study provides a powerful tool to visually investigate the
dynamic infection of enveloped viruses.

MATERIALS AND METHODS
Cells. Vero, Madin-Darby canine kidney (MDCK), baby hamster kidney (BHK-21), and MARC-145 cells

were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Gibco) supplemented with 10% fetal
bovine serum (FBS; South American origin, PAN Biotech) under 5% CO2 at 37°C.

Viruses. JEV SA-14-14-2 and WT JEV AT31 were propagated in BHK-21 cells. H144A and Q258A
mutant JEV virions were packaged using cDNA clones of JEV AT31 as described previously (39). PRRSV
(HN07-1 strain) was propagated in MARC-145 cells. Collected JEV- and PRRSV-containing cell culture
supernatants were centrifuged at 1,500 rpm and 4°C for 10 min and filtered with 0.2-�m-pore-size filters
(Millipore) to remove cell debris. To evaluate the effect of ultracentrifugation on virus infectivity, part of
the JEV SA-14-14-2 sample was further purified by ultracentrifugation (48, 49). In brief, viruses were
concentrated by centrifugation at 100,000 � g and 4°C in a Ty45 Ti rotor (Beckman) for 2 h, purified by
gradient centrifugation on 10% to 35% potassium tartrate-glycerol (30%) at 125,000 � g in a SW32 Ti
rotor for 2 h, and then desalted at 180,000 � g in the Ty45 Ti rotor for 1 h. IAV [A/chicken/Hubei/01-
MA01/1999(H9N2) strain] was propagated in pathogen-free chicken eggs and purified by sucrose
gradient ultracentrifugation as described previously (50). All the harvested viruses were subpackaged
and stored at �80°C until use.

Virus labeling. Viruses were incubated with 30 �M DSPE-PEG (2000)-biotin (Avanti) at room tem-
perature for 1 h. Unincorporated biotin and aggregated viruses were removed by NAP-5 gel filtration
columns (GE Healthcare) and 0.2-�m-pore-size filters, respectively. Then, biotinylated viruses and 2 nM
SA-QD 705 (Wuhan Jiayuan Quantum Dots Co., Ltd.) were successively incubated with cells at 4°C for 30
and 10 min, respectively, allowing viruses to prebind to cell surfaces and QDs to bind to viruses. Unbound
viruses and QDs were removed by washing cells with ice-cold phosphate-buffered saline (PBS). To track
virus infection, the cells were immediately warmed to 37°C and imaged on a spinning-disk confocal
microscope equipped with a cell culture system.

To stain the QD-labeled viruses on cell surfaces with Cy3, cells infected by QD-labeled viruses were
immediately shifted to 4°C and incubated with 2 nM SA-Cy3 (Thermo) for 10 min, allowing Cy3 to bind
to the QD-labeled biotinylated viruses through the interaction between SA and biotin. After fixation with
ice-cold paraformaldehyde and washing with PBS, cells with QD-labeled viruses in the interior and
Cy3-QD-double-labeled viruses on the surface were imaged on the confocal microscope.

Labeling of viruses with DiD/DiO was performed by incubating viruses with 5 �M DiD/DiO (Beyotime
Biotechnology) while shaking and in the dark at room temperature for 1 h. Labeling of viruses with both
DiO and R18 was performed by incubating viruses with 0.2 �M DiO and 0.4 �M R18 (Millipore) under the
same conditions. Unbound dyes and aggregates were removed by gel filtration and syringe filtration.

Immunofluorescence assay. Anti-Japanese encephalitis E (mouse monoclonal; Millipore), influenza
A H9N2 HA (mouse monoclonal; Sino Biological Inc.), and PRRSV nucleocapsid protein (rabbit monoclo-
nal; VMRD) antibodies were used to localize JEV, IAV, and PRRSV, respectively. DyLight 488/649-
conjugated secondary antibodies (Abbkine) were used to label the primary antibodies, illuminating the
viruses.

Virus infectivity. The infectious infectivity of JEV and the number of genome-containing particles
(GCPs) were measured by plaque assay on BHK-21 cells and quantitative PCR (qPCR) as described
previously (39). To compare the specific infectivity of JEV and ultracentrifuged JEV, ultracentrifuged
viruses were resuspended to the original volume after ultracentrifugation. Then, the GCP and PFU in the
samples with or without ultracentrifugation were measured. The specific infectivity was determined by
dividing GCPs by the number of PFU. PRRSV infectivity was measured by TCID50 on Vero cells. IAV
infectivity was measured by 50% tissue culture infective dose (TCID50) assay on MDCK cells and
hemagglutination assay on red blood cells (51). N-Hydroxysuccinimide (NHS)-biotin-IAV was obtained as
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described previously (50). Briefly, 100 �l of IAV was incubated with 0.1 mg Sulfo-NHS-long-chain (LC)-
biotin (Thermo) at room temperature for 2 h. Unbound biotin and aggregates were removed by filtration.

TEM imaging. Twenty microliters of 10 nM SA-QD 705, JEV, and biotinylated JEV incubated with
0.1 nM SA-QD 705 were dropped on carbon-coated copper grids. After 0.5 h (for SA-QD 705) or 15 h (for
JEV and QD-labeled JEV) at 4°C, the grids were drained by using filter papers and washed with ultrapure
water. After being stained with sodium phosphotungstate for 3 min (for JEV) or 30 s (for QD-labeled JEV),
the grids were air dried and imaged on a Hitachi-7000FA transmission electron microscope.

Fluorescence imaging. Fluorescence images were captured by a spinning-disk confocal microscope
(Andor Revolution XD). Hoechst 33342, DyLight 488/DiO, R18, and DyLight 649/DiD/CellMask deep red
plasma membrane stain were imaged using 405-, 488-, 561-, and 640-nm lasers (DPSS Lasers Inc.) and
447/60-, 525/50-, 605/20-, and 685/40-nm emission filters (Chroma), respectively. QD 605 and QD 705
were imaged using the 488-nm laser and 605/20- and 685/40-nm emission filters.

Image analysis. Colocalization events were statistically evaluated by thresholded Manders’ coeffi-
cient and intensity correlation analysis (ICA) using ImageJ (35, 52). Regions of interest (ROIs) were used
to perform the analysis. Manders’ coefficients vary from 0 (nonoverlapping images) to 1 (100% colocal-
ized images) and are termed tMQD and tMDyLight here according to the image names. tMQD is the ratio
of the summed intensities of the QD signal in each of the pixels colocalized with DyLight signals to the
total intensities of QD signals in all pixels in thresholded images, and tMDyLight is defined conversely. ICA
is based on the assumption that the summed difference of pixel intensities from the mean in a single
channel is zero, namely, �n pixels (IQD, i � IQD, mean) � 0 and �n pixels (IDyLight, i � IDyLight, mean) � 0. PDM is
the product (IQD, i � IQD, mean)(IDyLight, i � IDyLight, mean). Intensity correlation plots show the intensity as a
function of PDM. ICQ is the ratio of the summed positive PDM from two channels to the total PDM
subtracted by 0.5. It varies from �0.5 (mutual exclusion) to �0.5 (complete colocalization) and indicates
a strong covariance in the range from 0.1 to 0.5 (53). Line profiles of signals were acquired with
Image-Pro Plus.

Trajectories of viruses were reconstructed by linking points in each frame using the nearest-neighbor
association and the motion history of individual particles with Image-Pro Plus (54, 55). MSD representing
the average squared distance of all steps within a trajectory for Δt (Δt � �, 2�, 3�, and so on, � �
acquisition time interval between frames) was calculated using MATLAB (56). Modes of motion were
analyzed by fitting MSD and Δt to functions MSD � 4DΔt (normal or Brownian diffusion), MSD � 4DΔt �
(VΔt)2 (active or directed diffusion), and MSD � 4DΔt� (anomalous diffusion) (57).

Statistical analysis. Data are represented as means � standard deviations (SD). Student’s t tests
were performed for all statistical analyses with the original un-normalized data. Statistical significance
was determined by two-tailed P values.
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