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Abstract: Large variations in cancer survival have been recorded between populations, e.g., between
countries or between regions in a country. To understand the determinants of cancer survival
differentials between populations, researchers have often applied regression analysis. We here
propose the use of a non-parametric decomposition method to quantify the exact contribution of
specific components to the absolute difference in cancer survival between two populations. Survival
differences are here decomposed into the contributions of differences in stage at diagnosis, population
age structure, and stage-and-age-specific survival. We demonstrate the method with the example
of differences in one-year and five-year breast cancer survival between Denmark’s five regions.
Differences in stage at diagnosis explained 45% and 27%, respectively, of the one- and five-year
survival differences between Zealand and Central Denmark for patients diagnosed between 2008
and 2010. We find that the introduced decomposition method provides a powerful complementary
analysis and has several advantages compared with regression models: No structural or distributional
assumptions are required; aggregated data can be used; and the use of absolute differences allows
quantification of the survival that could be gained by improving, for example, stage at diagnosis
relative to a reference population, thus feeding directly into health policy evaluation.
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1. Introduction

Large variations in cancer survival have been reported between populations worldwide, including
between European and high-income countries [1,2]. For example, cancer survival is generally lower in
Denmark than in a comparable country like Sweden [1,3,4]. Cancer survival differences also occur
at sub-national levels, such as lower survival for males than for females in the same country [5–7],
or differences between regions [8]. These variations in cancer survival suggest that the gap could be
lessened if low-survival populations could approximate survival from the high-survival populations
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by, among other factors, improving national healthcare systems [9] or reducing socioeconomic
disparities [10].

Potential explanations of the differences between populations include: more adverse stage at
diagnosis [11], greater burden of certain risk factors (e.g., smoking) [12], or biological differences [13].
Studies showed that stage at diagnosis can be a key explanation for cancer differences between
countries [11,14,15].

Cancer survival and mortality differences between populations can be studied with descriptive
statistics and comparison of survival functions [1,14,15]. These studies show the difference in survival
between populations but provide limited information on why these differences occur. For instance,
a more adverse stage distribution can be observed in a low-survival population relative to a high-survival
population, but this provides no quantification. Regression analyses, such as the Cox proportional
hazard model or other forms of generalized linear models, have been used to study the relation between
cancer survival or mortality and a set of independent variables (e.g., stage at diagnosis) [11,16,17].
However, regression model assumptions do not always hold (e.g., proportional hazards). Additionally,
these models often estimate relative differences only (e.g., hazard ratio, relative risk, or odds ratio),
while absolute numbers are sometimes preferable. Absolute differences can be useful for quantifying
the differences explained by a specific variable, or the potential gains in survival that could be achieved
by modifying that variable.

Non-parametric decomposition methods are valued tools in demography, yet less common in
public health [18], and can quantify the exact contribution of specific components, such as ages and
causes of death, to a (usually) absolute difference between populations in a given measure [19–22].
Many decomposition methods require no assumptions (structural or distributional) about the data.

We introduce the Kitagawa decomposition method [22], extend its application to cancer research,
and present a novel extension of the method to account for the confounding effect of background
population (incl. background survival). We decompose the difference between cancer survival
probabilities in two populations by their underlying differences in (1) age composition at diagnosis,
(2) stage composition at diagnosis, and (3) age–stage-specific survival. Each of these contributions can
relate to different issues in health care. The method is illustrated by decomposing differences in female
breast cancer survival between Danish regions. Denmark has five administrative regions: The Capital,
Zealand, Southern Denmark, Central Denmark, and Northern Denmark. In 2007, Denmark established
a new political and administrative scheme in which the healthcare system is run at three levels: the
state, the regions, and the municipalities. The national level regulates and supervises health and
elderly care. The regions are responsible for hospitals, general practitioners (GPs), and psychiatric
care units. The municipalities mainly oversee primary healthcare services, such as health promotion
or extramural rehabilitation [23]. Given the important role of GPs, hospitals and their interactions
in prompt diagnosis, and the important role of hospitals in treatment, all falling under the regions’
responsibility, differences in cancer survival between Danish regions are an instructive test case for
the method.

2. Methods

The Kitagawa method quantifies the amount of absolute difference in a crude rate that is due
to differences in compositions versus differences in component-specific rates between populations,
using multiple standardizations. Extensions and similar techniques have been developed [24–27].
The Kitagawa decomposition can also be applied to probabilities. Indeed, the Kitagawa decomposition
can be applied whenever one variable can be expressed as the product of two others, one of which is,
generally, a composition. For example, we can express a crude survival probability (S) as the product
of some x-composition cx (e.g., age composition) of a population and the x-specific survival sx:

S =
∑

x
sx cx (1)
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To quantify the absolute difference in a crude survival probability between two populations (Y
and Z) due to differences in the composition of variable x (cx) and differences in x-specific survival
probabilities (sx), the Kitagawa formula reads as:

SY
− SZ = ∆ S =

∑
x

∆ sx cx

}
survival effect

+
∑
x

∆ cx sx

}
X− effect

(2)

where the bar over the indicator (probability s or composition c) represents the x-specific averages across
populations Y and Z (e.g., sx =

(
sx

Y + sx
Z
)
/2) and ∆ is the difference between the two populations

(e.g., ∆ sx = sx
Y
− sx

Z). If variable x is age, then Equation (2) quantifies:

1. The survival effect: The difference in the crude probability S between two populations that is
due to the difference in their age-specific probabilities ∆ sx, i.e., the sum of age-specific survival
probabilities differences after multiplying sx for each population by the average age-composition
cx of these two populations (direct standardization).

2. The age effect (X-effect): The difference in the crude probability S between two populations that is
due to the difference in their age-specific composition ∆ cx, i.e., the sum of the age composition
differences after multiplying cx for each population by the average age-specific probabilities sx of
these two populations (indirect standardization).

More than one composition effect can be of interest to understand differences in a rate or probability
between two populations. When using any two compositions (x and i), the crude survival can be
expressed as:

S =
∑

x

∑
i

sxi ci(x)cx =
∑

i

∑
x

six cx(i)ci, (3)

where ci(x) is the i distribution for each x and cx(i) is the x composition for each i. For example, if x is
age and i is stage, then ci(x) is the stage-composition at age x. Kitagawa (1955) [22] provided a way to
decompose crude rate differences into two or more composition effects (X and I) and one survival effect:

∆ S =
∑
x

∑
i

∆ sxi cxi

}
survival effect

+
∑
x

∑
i

∆ cx(i) ci sxi

}
X− effect

+
∑
x

∑
i

∆ ci(x) cx sxi

}
I− effect

+ 1
2
∑
x

∑
i

(
cZ

i(x)
cY

x − cY
i(x)

cZ
x + cZ

x(i)
cY

i − cY
x(i)

cZ
i

)
sxi

}
X : I Interaction.

(4)

We used the Kitagawa method to decompose differences in crude survival probabilities (S) between
two populations, by an age-at-diagnosis composition effect (X-effect), stage-at-diagnosis composition
effect (I-effect), age–stage-specific survival effect (survival effect), and an interaction term between the
age and stage compositions, such that:

SY
− SZ = Survival effect + Age effect + Stage effect + Age : Stage Interaction. (5)

Confidence intervals (CI) for each contribution and for the total difference were calculated using
bootstrapping methods. The original sample was randomly resampled with replacement 1000 times,
with the sample size kept constant. The decomposition method was then reapplied to each sample and
95% confidence intervals were calculated based on 2.5% and 97.5% percentiles, as similarly suggested
by Wang et al. (2000) [18].
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2.1. Sub-Decompositions to Assess the Effect of the Background Population

The background population can inform about the cancer patient’s chance of survival. For example,
a low background survival indicates high risk of death irrespective of cancer and can inform on higher
competing risks from other causes. The background age composition is also informative, as an older
background population is more likely to have older cancer patients. Therefore, we introduce an
extension of the Kitagawa decomposition to quantify the contribution of (1) the background survival
and (2) the background age composition to the difference in crude cancer survival between two
populations. These contributions can approximate the quantity of the survival effect and age effect
that is characteristic of the background population in addition to the differences in survival and
age-composition of the cancer patients.

2.1.1. Sub-Decomposition of the Survival Effect

Relative survival (r), i.e., the survival of cancer patients after adjustment for other causes of death,
is often a favored measure over crude survival in cancer research. Relative survival is the ratio of the
survival observed among cancer patients to the survival observed in a background population (b) with
similar demographic characteristics (year, sex, age) (rxi = sxi/bx), thus controlling for the effect of
overall survival.

The survival effect (sE) can be divided into a relative survival effect (rsE) and a background
survival effect (bsE), such that sE = rsE + bsE. Given the formula of rxi, the age–stage-specific
survival can be expressed as the product of the relative survival and background survival (sxi = rxi bx).
Because sxi can be expressed as a product, the Kitagawa decomposition can be applied to decompose
∆ sxi, such that ∆ sxi = ∆ rxi bx + ∆ bx rxi. By replacing ∆ sxi in Equation (4) by the previous formulas,
we obtain:

rsE =
∑

x

∑
i

∆ rxi bx cxi (6)

bsE =
∑

x

∑
i

∆ bx rxi cxi (7)

2.1.2. Sub-Decomposition of the Age Effect

As with survival, the age-at-diagnosis composition is influenced by the age structure of the
background population and by the age structure of the cancer patients. Decomposing differences
in a composition is however more complex (see the detailed decomposition in Appendix A). Using
compositional data analysis (CoDA) techniques [28,29], we can find the age composition cx(i) as if
the background age composition and the relative age composition were equal between populations
Y and Z. The procedure presented in Appendix A is not an exact decomposition but approximates
the difference in age composition closely: xE ≈ bxE + rxE, where bxE and rxE are the effect of the
background age composition and the effect of the relative age composition, respectively.

Confidence intervals for the background effects (age and survival) using the above described
method cannot be estimated, as these effects are based on aggregated data only (see Data section
below). These contributions should, thus, be seen as an indication of where the differences between
populations emerge: From the background structure and survival, or from characteristics of the cancer
patients. However, confidence intervals can be estimated for the relative effects (age and survival)

2.2. Decomposition of standardized survival

Standardized survival can also be decomposed. Standardized probabilities were obtained by
separating survival from the confounding effects of the age compositions and background survival.
The average background survival and age composition of the two regions compared was used as
“reference population” for the standardization (see Appendix B for details).
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3. Data

3.1. Database

We used data from the Danish Cancer Registry (DCR), in which each tumor is recorded in detail,
including histological examination and patient survival. As the Danish five-region classification started
in 2007, we used data from 2008 through 2015, thus reflecting the contemporary situation in Denmark.
Additionally, the DCR has been using a modernized system since reporting became electronic in
January 2008, ensuring more consistent reporting. Over the selected period, the DCR uses the TNM
classification to stage cancer and ICD-10 classification of causes of deaths, limiting discontinuities in
time series and easing comparisons [30]. Hence, we selected females diagnosed with breast cancer
between 2008 and 2010 and calculated the one-year and five-year survival probability. The one-year
survival of patient diagnosed between 2011 and 2014 was also studied. Breast cancer was selected
because this site had more complete stage-at-diagnosis data than other cancer sites, while being a
common cancer.

Within the DCR, 89% of the tumors were morphologically verified, which represents a good
validity of the registry [30]. However, information on staging is sometimes missing. The level of
completeness depends on the cancer site [31]. For breast cancer diagnosed in Denmark between 2008
and 2010, 5% of the tumors had missing information on tumor size (T), 9% on lymph nodes (N) and
10% on distant metastasis (M).

To obtain information on the background mortality by age, sex and region, we used data from
Statistics Denmark [32,33], only available in aggregated form.

3.2. Exclusions

The study was performed on malignant neoplasms stated to be primary only; tumors stated as
benign, in-situ, of uncertain behavior or secondary were excluded. Additionally, cancer registered
from the death certificate or during autopsy only was excluded as the date of diagnosis is the same as
the time of death, thus providing no information on survival. Patients living in Greenland or with
unknown (or changed) sex or vital status were also excluded, as were cases where the date of censoring
occurred before the date of the diagnosis (e.g., when the patient is reported as being departed from
Denmark). If individuals were diagnosed with more than one breast tumor (duplicates), a tumor
record was kept for the analysis if the patient had no diagnosis of breast cancer five years prior to the
diagnosis of interest (between 2008 and 2010 or between 2011 and 2014). In total, 34,723 tumors were
kept for the analysis (Table 1).

Table 1. Number of diagnoses of primary malignant neoplasms from breast cancer for women
diagnosed between 2008 and 2010 and between 2011 and 2014 in Denmark.

Period Eligible
Excluded

Included
Duplicates Death Certificate Only Other

2008–2010 16,019 90 (0.6%) 83 (0.4%) 34 (0.2%) 15,812 (98.7%)
2011–2014 19,176 85 (0.4%) 103 (0.4%) 77 (0.4%) 18,911 (98.6%)

3.3. Staging and Missing Data

We used the TNM data and converted them to prognostic groups using the guide from the
American Joint Committee on Cancer (AJCC) 7th edition. In 11% of cases, we were unable to attribute
a stage due to at least one missing piece of information on tumor size (T), lymph nodes (N), and/or
distant metastasis (M) for women diagnosed with cancer between 2008 and 2010. To avoid bias
and information loss, we used multiple imputation to handle missing data. We applied a multiple
imputation method using chained equations with the mice R package [34,35] to impute a value to the
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T, N or M missing data, using 15 imputed datasets and 10 iterations. The procedure is detailed in
Appendix C.

The decomposition method presented in Section 2 was calculated for each imputed dataset,
including the CI procedure. The CIs shown in the following sections were based on 1000
resamples of each of the 15 imputed datasets, thus accounting for the uncertainty of the multiple
imputation procedure.

4. Results

Central Denmark had the highest survival among the regions for both one-year and five-year
survival (95.90% and 82.75% respectively, Table 2) and, thus, served as benchmark for the other regions.

Table 2. One-year and five-year crude survival probabilities (as percentages) for the five Danish
regions, for women diagnosed with breast cancer between 2008 and 2010, ordered by increasing
five-year survival.

Region One-Year Survival (%) Five-Year Survival (%)

Zealand 94.28 78.61
Northern Denmark 94.24 78.86

Capital region 95.37 80.45
Southern Denmark 95.85 82.34
Central Denmark 95.90 82.75

4.1. Decomposition of Crude Survival Probabilities (Zealand Versus Central Denmark)

The absolute difference in breast cancer survival between Zealand and Central Denmark was
1.62 percent points for one-year survival and 4.14 for five-year survival, for the period 2008–2010.
If Zealand had had the same survival as Central Denmark, the number of breast cancer deaths one year
after diagnosis would have been 28.3% lower (corresponding to 40 deaths for the period); five years
after diagnosis this number would have been 19.4% (corresponding to 103 deaths for the period).

The survival effect accounted for 31.4% and 43.9% of the difference for the one-year and five-year
survival, respectively (Table 3). The survival effect was, however, not significant for the one-year
survival. Around 34% of the survival effect can be explained by the background survival components.
Central Denmark had better survival from all causes of death combined than Zealand, meaning that
cancer patients also benefited from a reduced risk from other causes of death. Female life expectancy
for the period 2008–2010 was 81.8 years in Central Denmark and 80.5 in Zealand.

Table 3. Decomposition of the difference in breast cancer one-year and five-year crude survival.
between Zealand and Central Denmark, 2008–2010.

Components Contributions CI (95%) % Sub-Components Contributions %

One-year survival
Survival 0.51 (−0.44, 1.63) 31.4 Relative survival 0.33 65.3

Background survival 0.18 34.7
Age 0.19 (−0.26, 0.55) 12.0 Relative age 0.25 128.9

Background age −0.06 −28.9
Stage 0.73 (0.14, 1.19) 44.9 - - -

Age–stage interaction 0.19 (−0.08, 0.52) 11.7 - - -

Total 1.62 (0.54, 2.73) 100.0

Five-year survival
Survival 1.82 (0.09, 3.62) 43.9 Relative survival 1.20 65.8

Background survival 0.62 34.2
Age 1.13 (0.31, 1.92) 27.4 Relative age 1.28 112.6

Background age −0.14 −12.6
Stage 1.10 (0.25, 1.94) 26.5 - - -

Age–stage interaction 0.09 (−0.32, 0.50) 2.2 - - -

Total 4.14 (1.93, 6.29) 100.0
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The age effect widened the difference in survival between Zealand and Central Denmark, with a
significant contribution for the five-year survival. This difference in the age-at-diagnosis composition
of the cancer patients was mainly due the relative age component. The background age component
was negative, meaning that Central Denmark had an older background age composition than Zealand.
Negative contributions are interpreted as an advantage for Zealand in Table 3.

Zealand also had a more adverse stage-at-diagnosis distribution than Central Denmark, with 44.9%
(one-year) and 26.5% (five-year) of the difference in breast cancer survival between the two regions
being attributable to the stage effect (both significant, decompositions for other regions in Appendix D).

4.2. Decomposition of Standardized Survival Probabilities

For survival standardized by background survival and age, the differences in the one-year and
five-year survival between the Zealand and Central Denmark was 1.24 and 2.39 percent points,
respectively, for the period 2008–2010. Table 4 shows the decomposition of the standardized survival
by stage-specific survival and stage composition, using the Kitagawa method with one composition
effect (Equation (2)). Compared with the contributions of relative survival and stage from the
decomposition presented in Table 3, the stage and relative survival contributions remained equal
at a two-decimal rounding when decomposing the crude and standardized survival probabilities.
However, after standardizing by age, we cannot separate out the interaction effects, which is contained
within the stage effect. Standardizing does not affect the absolute contributions of the components,
when using the average between populations as reference (Appendix B). After removing the age
and background effects, the stage effect is the dominant contributor to the difference in the one-year
survival between the two regions, explaining 73.5% of the difference.

Table 4. Decomposition of the difference in breast cancer one-year and five-year survival standardized
(by age and background survival) between Zealand than in Central Denmark, 2008–2010.

Standardized Survival Crude Survival (Table 3)

Components Contributions CI (95%) % Components Contributions

One-year survival
Survival 0.33 (0.12, 0.58) 26.5 Relative Survival 0.33

Stage 0.92 (0.43, 1.36) 73.5 Stage + Interaction 0.92

Total 1.24 (0.97, 1.43) 100.0 Sum 1.24

Five-year survival
Survival 1.20 (0.84–1.45) 50.1 Relative Survival 1.20

Stage 1.19 (0.32–2.05) 49.9 Stage + Interaction 1.19

Total 2.39 (2.02–2.62) 100.0 Sum 2.39

Figure 1 shows the standardized survival decomposition between Central Denmark and the
four other regions. After standardization, Southern Denmark has a better survival than Central
Denmark, which is mainly attributed to the survival effect. Central Denmark had a better stage-specific
survival than the other three regions. The survival effect contributed to 79.8% and 86.0% of the
difference in breast cancer one-year and five-year survival, respectively, between Northern Denmark
and Central Denmark.

The stage-effect contributed to the disadvantage of Zealand, but played in favor of the Capital
region for the five-year survival. There was no significant stage effect explaining the difference between
Central Denmark and the Southern and the Northern regions.

4.3. Diminishing Differences over Time

The five-year survival cannot be calculated for more recent years, but the one-year survival can
be calculated for patients diagnosed with breast cancer between 2011 and 2014. Differences between
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Central Denmark and the other regions have decreased between the periods 2008–2010 and 2011–2014
(Figure 2), showing evidence of progress towards equality. The survival effect was significant for three
regions in 2008–2010, but only for Northern Denmark in 2011–2014, for which it decreased four-fold
over the study period.
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Central Denmark had an advantage over Southern Denmark in the most recent period, but it is
small (0.44 percent points), and the contributions are not significant.

The stage effect was still significant for Zealand in the most recent period, but smaller, and explains
84.6% of the difference in breast cancer survival with Central Denmark in 2011–2014.

5. Comparison with the Cox Proportional Hazard Model

The Kitagawa decomposition differs from the (commonly-used) Cox proportional hazard (CPH)
model, and other types of regression models, in important ways (Table 5).

Table 5. Summary of the Cox proportional hazard and Kitagawa decomposition models characteristics.

Cox Proportional Hazard Kitagawa Decomposition

What is measured? Determinants of survival Determinants of survival differences
Model outputs Coefficients Contributions
Difference measured Relative Absolute
Key assumption Proportional hazards None
Data Individuals Individuals and aggregates

First, the CPH model assesses which variables influence survival. For example, an increase in
the age and stage at diagnosis increases the hazard (Table 6) and decreases survival. In contrast,
the decomposition method quantifies contributions of specific variables to the difference in survival
between two populations.

Table 6. Results from a Cox proportional hazard model, comparing hazards from Central Denmark
and Zealand, 2008–2010.

Variables Coefficient Exp (Coefficient) CI (95%)

Age at diagnosis 0.11 1.12 1.10, 1.14
Stage at diagnosis 2.24 9.38 6.40, 13.75
Region Zealand 1.10 2.99 1.35, 6.65

Age: stage −0.02 0.98 0.98, 0.99
Age: region −0.01 0.99 0.98, 1.00

Stage: region −0.18 0.83 0.74, 0.94

Second, the CPH, and other forms of regression model, estimate coefficients. The coefficients
act multiplicatively on the variables’ value and are used to predict survival for an individual with
specific characteristics. The decomposition produces variable-specific contributions to the difference,
summing up to the total survival difference. The contributions are generally an aggregated value for
each variable, without distinction for the value of the variable (e.g., stages 1 to 4).

Third, the CPH estimates relative differences between values of a variable. For example, the ratio
of the hazard functions of Zealand/Central Denmark is higher than 1 (Table 6), meaning that people
diagnosed with breast cancer in Zealand had a higher hazard than people with similar characteristics
in Central Denmark. This approach does not inform, however, on why this difference between region
occured. In contrast, the decomposition approach uses absolute differences between two populations.
The use of absolute rather than relative differences allows one to quantify the survival that could be
gained by improving, for example, stage at diagnosis to the level of a reference region or population: If
Zealand had the same stage at diagnosis distribution as Central Denmark in 2008-2010, the five-year
crude survival probability (Table 3) would have been 79.80% rather than 78.61%. It also allows one
to quantify directly the number of deaths that could be avoided if one of the components were to
change. For example, giving Zealand the stage-at-diagnosis distribution of Central Denmark reduces
the number of deaths due to breast cancer one year after the diagnosis by 16.0% for patients diagnosed
between 2008 and 2010 (23 deaths) and by 5.6% five years after the diagnosis (30 deaths). Most articles
tend to report relative measures only, but existing recommendations suggest reporting both relative
and absolute measures [36].
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Fourth, the CPH model makes structural assumptions, primarily the hazards are proportional.
With the decomposition model, no distributional or structural assumptions are required: The
compositions and component-specific rates or probabilities observed in two populations are directly
compared and their effects on survival are quantified.

Finally, the CPH model requires individual data, while the decomposition method can also be
used on aggregated data. However, if aggregated data are used, new ways to calculate confidence
intervals should be found other than that suggested in the paper.

The CPH and decomposition models serve different purposes and the use of one rather than the
other should be determined by the aim of the study. If the aim is to understand the determinants of
cancer survival, the CPH model, or other regression models, should be used. However, if the aim is
to understand differences in survival between populations or quantify potential gains in survival by
modifying one variable, the introduced decomposition method can be preferable. Both methods could
also be used to complement each other.

6. Discussion

We presented a non-parametric decomposition method that uncovers the causes of differences in
cancer survival probabilities between populations. In the test case of the Danish regions, we found
that later stage at diagnosis explained a large share of the difference in breast cancer survival between
Zealand and Central Denmark, which tentatively suggests that Zealand could improve cancer survival
by diagnosing at an earlier stage, in addition to recent and ongoing improvements.

By the end of 2007, all Danish regions were required to start a breast cancer screening program,
the rollout being completed in 2009. However, some differences between regions remained. Zealand
recorded more fluctuations in the breast cancer detection rates over time (in contrast to the other
regions) with a particularly low detection rate of 0.53% compared with the national average of 0.61%
in the fourth screening round (2014–2015) [37]. This could explain, in part, the later stages at diagnosis
in Zealand and might be caused by a shortage of experienced radiologist in the region [37].

Lower socioeconomic status has been associated with later cancer stage at diagnosis [38]. Zealand
has the highest proportion of residents with low education level among the Danish regions [39], which
could also explain its more adverse stage-at-diagnosis distribution. However, Ibfelt et al. (2018) [17]
found that even after controlling for differences in socioeconomic status (education and income),
the odds ratio of being diagnosed at a later stage remained higher in Zealand than in the Capital
region for malignant melanoma. This led the authors to suspect differences in the referral process to
specialized care between regions. Other possible explanations include fewer specialized doctors in the
outer regions, such as Zealand and Northern Denmark, and other unmeasured social, cultural and
behavioral factors [17]. Patient awareness of breast cancer symptoms is high in Denmark, especially in
highly educated respondents [40], which suggests that patient delay may be a factor in regions where
education is generally lower.

Given the importance of family doctors in the Danish healthcare system, without whose referral
one cannot consult a specialist, regional differences in organization, attitudes and number of GPs are
likely to lead to some differences in stage distribution. Looking into regional differences in England,
Maclean et al. (2015) [41] found that for female breast cancer, being in a practice with short waiting
times until referral or detection was associated with a lower proportion of patients diagnosed in stage
3 or 4 rather than stage 1 or 2. Membership of a practice where people thought it less easy to book an
appointment was associated with a higher percentage diagnosed later. It would be helpful to know
how this translates to the case of Zealand GPs. Presumably, such an effect will depend on the quality,
attitudes and organization of family doctors, which may lead to regional differences.

As for stage-specific survival, there are known cases where, while treatment was in principle
available, the application of active treatment was different between regions in one country, such as lung
cancer in England [42]. However, the Danish Breast Cancer Group (DBCG) established mandatory
treatment guidelines, especially regarding the surgical treatment and the (neo)adjuvant treatment [43]
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(DBCG guidelines, www.DBCG.dk). In principle, patients should get the same treatment across all
Denmark’s hospitals. Furthermore, DBCG regularly publish a quality indicator report to identify any
variation in the treatment of early breast cancer, showing only small differences [43] (DBCG quality
indicator report, www.DBCG.dk). Differences in treatment are, thus, unlikely to cause the differences
observed in stage-specific survival between Danish regions (survival effect).

It has also been found that rural dwellers have poorer cancer survival [44]. It is unclear why
this would apply only to Northern Denmark, although the vicinity of the capital may make Zealand
effectively a little less “rural” than Northern Denmark.

In 2007, many changes occurred regarding breast cancer diagnosis and treatment in Denmark,
including the screening program, updates of the national guidelines, and the new regional scheme.
These changes might be the cause for the decreasing differences across regions over time, but we
cannot assess if or which of these changes are responsible for the convergence, or if it can be the result
of previous programs.

More information could be added in the decomposition to further explain the regional differences.
If additional data were available, possible extensions could include the compositional difference
of socioeconomic status, smoking habits, or medical treatments. The contributions of unspecified
components are grouped in the survival-effect, or in the composition effects if an unspecified composition
correlates with the age or stage compositions. For example, in Table 3, if the stage at diagnosis was not
included in the analysis, the survival effect would be approximated by the sum of the survival and
stage effects (e.g., 1.24 for the one-year survival) and the age effect would be the sum of the age and
interaction effects (e.g., 0.38 for the one-year survival). This is similar to unmeasured confounders in
regression analysis.

7. Conclusions

This paper illustrates the utility of adopting and extending the Kitagawa decomposition to
cancer research. The method allows us to understand differences in survival between populations
by quantifying the exact contributions of specific variables to this difference. Such quantification can
help policy makers and health care professionals improve overall cancer survival, tuning their actions
to the dominant contributions. The method presents some advantages compared with other models
commonly used in survival analysis, such as the Cox proportional hazard model, when it comes to
understanding differences between populations. We argue that decomposition methods are valuable
tools and provide a powerful complementary analysis for cancer and public health research.
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Appendix A

Decomposing the Age Effect

The age composition of cancer patients is likely to be influenced by the age composition of the
patient’s source population. For example, Central Denmark has a younger population than Northern
Denmark. It is useful in certain cases to assess whether the difference in the age composition at
diagnosis of cancer patients has its origin in the composition of the background population, or whether
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something disease specific is at play. This question can be answered by decomposing differences
between two compositions. This, however, presents additional problems: The differences between two
compositions always sum to 0. Thus, by decomposing this difference, one component will always be
positive and the other component negative, when using the standard Kitagawa decomposition.

There is a rich literature on how to treat compositional data [28,29], labeled compositional data
analysis (CoDA). In CoDA, a perturbation (noted 	 or ⊕) amounts to multiplying (or dividing) one
composition by another and then “closing” the result, i.e., scaling the newly obtained compositions so
that their sum is the same as for the original compositions, usually 1 or 100. With this procedure, it is
possible to perturb one composition by another to obtain a third composition:

ax(i) = cx(i) 	 dx =
cx(i)/dx∑
x cx(i)/dx

,

cx(i) = ax(i) ⊕ dx =
ax(i) dx∑
x ax(i)dx

,
(A1)

where ax(i) is the relative age composition and dx is the background age composition. By using
the perturbation procedure, it is possible to standardize an age composition by its background age
composition and relative age composition:

cB
x(i)

(Y) = ax(i)(Y) ⊕ [dx(Y) dx(Z)]
1/2,

cR
x(i)

(Y) = dx(Y) ⊕
[
ax(i)(Y) ax(i)(Z)

]1/2
.

(A2)

By replacing cx(i) in Equation (4) by cB
x(i)

and cR
x(i)

, we obtain Equations (A3) and (A4), which
approximate the effect of the background age composition and the relative age composition to the
difference in survival between two populations:

bxE =
∑

x

∑
i

∆ cR
x(i) ci sxi, (A3)

rxE =
∑

x

∑
i

∆ cB
x(i) ci sxi. (A4)

The notations bxE and rxE refer to the effect of the background age composition and the effect of
the relative age composition, respectively. As mentioned in the main text, this procedure does not
produce an exact decomposition, but an approximation xE ≈ bxE + rxE: We tend to lose a limited
amount of information by passing from an Aitchison space (compositional data) to Euclidean space.
Given that the decomposition is exact within the Aitchison space, we think this procedure is justified.

Appendix B

Standardization and Decomposition

When standardizing the survival probability by age and background survival, the standardization
should be done at the most disaggregated level:

SY =
∑

x

∑
i

rY
xi bY

x cY
x(i)c

Y
i . (A5)

The standardization of population Y by background survival and age composition is written as:

SSTD(Y) =
∑

x

∑
i

rY
xi bSTD

x cSTD
x(i) cY

i , (A6)

where bSTD
x is the standard background survival and cSTD

x(i)
is the standard age composition, within each

stage i.
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Appendix C

Multiple Imputations

We imputed a value directly for the T, N and M variables rather than on the grouped stages (1 to
4), as in some cases, information was available for one or two of these variables, providing important
information on staging. For instance, if only the information on lymph nodes is available for a patient,
with a value N2 (with N2 being defined as: “Metastases in ipsilateral level I, II axillary lymph nodes
that are clinically fixed or matted; or in clinically-detected ipsilateral internal mammary nodes in the
absence of clinically evident axillary lymph node metastases” [45], p. 360.), then the stage can only be
3 or 4. The imputed value on M will determine if the stage is either 3 or 4.

We used an ordinal logistic regression to impute values to the T, N and M variables, using the
vital status one year after diagnosis, age at diagnosis, region of residence and the available T, N and/or
M variables as independent variables, with an interaction term between age and vital status. We used
15 imputed datasets and 10 iterations.

After multiple imputations, the parameters of interests are generally calculated on each imputed
dataset and the average of the estimates is used [34]. However, given the equivalence necessary for
the decomposition, as shown in Equations (1) and (3) in the main text, using the average age and/or
stage composition and the average age–stage survival across the 15 datasets does not guarantee that
these equivalences are respected. Thus, we used the imputed dataset that minimized the ci root mean
square error with the mean.

Appendix D

Results for All Regions

Table A1. One-year crude survival decomposition between Central Denmark and three other Danish
regions, females diagnosed with breast cancer between 2008 and 2010.

Components Contributions CI % Sub-Components Contributions %

Northern Denmark
Survival 1.28 (0.12, 2.51) 77.0 Relative survival 1.17 91.9

Background survival 0.11 8.1
Age 0.08 (−0.43, 0.54) 5.0 Relative age −0.05 −57.8

Background age 0.14 157.8
Stage 0.05 (−0.66, 0.65) 2.9 - - -

Age–stage interaction 0.25 (−0.08, 0.67) 15.1 - - -

Total 1.66 (0.32, 2.81) 100.0

Southern Denmark
Survival −0.16 (−1.10, 0.68) −363.6 Relative survival −0.20 126.0

Background survival 0.04 −26.0
Age 0.27 (−0.03, 0.65) 596.5 Relative age 0.18 67.5

Background age 0.09 32.5
Stage −0.08 (−0.45, 0.44) −150.0 - - -

Age–stage interaction 0.01 (−0.28, 0.25) 17.1 - - -

Total 0.04 (−0.90, 1.02) 100.0

Capital
Survival 0.02 (−0.85, 0.82) 4.5 Relative survival −0.12 −482.9

Background survival 0.14 582.9
Age 0.38 (0.10, 0.73) 73.1 Relative age 0.25 65.3

Background age 0.13 34.7
Stage −0.08 (−0.56, 0.36) −17.9 - - -

Age–stage interaction 0.21 (−0.06, 0.43) 40.3 - - -

Total 0.53 (−0.33, 1.36) 100.0
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Table A2. Five-year crude survival decomposition between Central Denmark and three other Danish
regions, females diagnosed with breast cancer between 2008 and 2010.

Components. Contributions CI % Sub-Components Contributions %

Northern Denmark
Survival 2.62 (0.87, 4.72) 67.4 Relative survival 2.29 87.2

Background survival 0.34 12.8
Age 0.90 (−0.22, 1.69) 23.1 Relative age 0.37 41.1

Background age 0.53 58.9
Stage 0.32 (−0.77, 1.23) 8.2 - - -

Age–stage interaction 0.05 (−0.31, 0.66) 1.3 - - -

Total 3.89 (1.62, 6.36) 100.0

Southern Denmark
Survival −0.10 (−1.56, 1.52) −24.8 Relative survival −0.25 247.2

Background survival 0.15 −147.2
Age 0.69 (−0.04, 1.31) 166.9 Relative age 0.34 49.9

Background age 0.35 50.1
Stage −0.40 (−1.08, 0.30) −96.9 - - -

Age–stage interaction 0.22 (−0.08, 0.60) 54.9 - - -

Total 0.41 (−1.29, 2.31) 100.0

Capital
Survival 1.44 (−0.02, 2.91) 62.5 Relative survival 0.99 64.1

Background survival 0.52 35.9
Age 1.64 (0.95, 2.28) 71.3 Relative age 1.15 70.0

Background age 0.49 30.0

Stage −1.09 (−1.87,
−0.41) −47.2 - - -

Age–stage interaction 0.31 (0.04, 0.65) 13.4 - - -

Total 2.30 (0.60, 3.97) 100.0
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