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Have lessons from past failures brought us closer to the success of immunotherapy in
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ABSTRACT
Pancreatic cancer is extremely resistant to chemo- and radiation-therapies due to its inherent genetic
instability, the local immunosuppressive microenvironment and the remarkable desmoplastic stromal
changes which characterize this cancer. Therefore, there is an urgent need for improvement on standard
current therapeutic options. Immunotherapies aimed at harnessing endogenous antitumor immunity
have shown promise in multiple tumor types. In this review, we give an overview of new immune-related
therapeutic strategies currently being tested in clinical trials in pancreatic cancer. We propose that
immunotherapeutic strategies in combination with current therapies may offer new hopes in this most
deadly disease.
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Introduction

Pancreatic cancer is characterized by an extremely poor sur-
vival rate, with up to 80% patients dying within the first year of
diagnosis. In contrast to the positive outlook reported in other
cancers in recent years, survival prospects have remained bleak
and in Europe the trend is stubbornly negative in both sexes.1

Indeed, the 5-y mortality rate for pancreatic cancer is over
95%.2 Surgical resection is the only potentially curative treat-
ment. However, overall survival (OS) rate even after surgery
remains poor, as over 75% of patients with localized disease,
amenable to complete surgical resection, die of local or meta-
static recurrence within 5 y3,4 Unfortunately, because pancre-
atic cancer is usually diagnosed at an advanced stage due to
lack of specific symptomatology early in the disease, surgery is
suitable for only a minority of patients. At the time of diagno-
sis, only 15–20% of patients present with operable disease
whereas about 40% are found to have locally advanced, unre-
sectable disease and approximately 45% have metastatic
disease.5

For patients unable to resort to surgery, these tumors repre-
sent particularly difficult therapeutic challenges, as they tend to
be resistant to current chemo- and radiation-therapy strategies.
This feature is due to the inherent genetic instability of pancre-
atic cancer cells, the immunosuppressive microenvironment at
the tumor site and a remarkable desmoplastic reaction charac-
terizing this cancer and renders it impenetrable to most chemo-
therapies. Ultimately, it is the development and spread of
metastases, which leads to patients’ death. Hence, controlling
metastatic spread or increasing susceptibility of metastases to
treatment may become an increasingly attractive avenue of
research to improve survival.

Treatment options—chemotherapy

Gemcitabine monotherapy has been the standard treatment for
pancreatic cancer since the late nineties. In a small pivotal clini-
cal trial of 126 patients, treatment with gemcitabine, a nucleo-
side analog, was compared to bolus administration of 5-
fluorouracil. Gemcitabine mediated a significant, albeit modest,
effect (5.6 vs. 4.4 mo; p D 0.0025) on OS as well as improve-
ments on quality of life, performance status and pain control.6

The primary efficacy measure was clinical benefit response,
which was a composite of measurements of pain (analgesic
consumption and pain intensity), Karnofsky performance sta-
tus and weight. Clinical benefit required a sustained
( �4 weeks) improvement in at least one parameter without
worsening in any others.

Over the past two decades, gemcitabine has been the back-
bone for the addition of many compounds. Combination dou-
blets of gemcitabine with other chemotherapeutic agents
(capecitabine, irinotecan, oxaliplatin and cisplatin) have shown
limited clinical effects over gemcitabine monotherapy.7 A
recent meta-analysis of 26 studies (with a total of over 8800
patients), reported a significantly lower objective response rate
(ORR) (Relative Risk (RR) 0.72; 95% CI 0.63–0.83; p < 0 .001),
and lower 1-y OS (RR 0.90; 95% CI 0.82–0.99; p D 0.04) of
monotherapy compared only to doublet treatment with fluoro-
pyrimidine, but at the cost of increased toxicity.8 The addition
of angiogenic inhibitors (bevacizumab, axitinib and aflibercept)
has also failed to demonstrate any significant OS benefit.9-11

The combination with erlotinib (Tarceva), a tyrosine kinase
epidermal growth factor receptor inhibitor, has shown a very
small clinical benefit in OS (6.4 vs. 6 mo; p D 0.028) and pro-
gression-free survival (PFS) (3.8 vs. 3.5 mo; p D 0.006) but at
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the expense of significant skin and gastrointestinal (GI) toxic-
ities and considerable cost.12 For these reasons, gemcitabine
still is for most patients, especially those with poor performance
status, the preferred and only treatment option.

In 2010, a randomized Phase III study, Prodige 4-ACCORD
11, reported on 336 untreated metastatic pancreatic ductal ade-
nocarcinoma (PDAC) patients with good performance status
(ECOG score of 0 or 1, normal bilirubin, good bone marrow
and renal function) treated with FOLFIRINOX compared to
gemcitabine alone.13 Patients receiving the combination treat-
ment had significantly longer OS (11.1 vs. 6.8 mo; Hazard ratio
(HR)D0.57; 95% CI 0.45–0.73; p < 0 .001). Moreover, ORR
(31.6% vs. 9.4%; p < 0 .001) and PFS were also significantly
improved (6.4 vs. 3.3 mo; HR 0.47; 95% CI 0.37–0.59; p < 0
.001). Unfortunately, these improvements were countered by a
raised incidence of various grade 3–4 toxicities, including
febrile neutropenia (5.4% vs. 0.6%; p D 0.009), thrombocytope-
nia (9.1 vs. 2.4; p D 0.008), peripheral neuropathy (9% vs. 0%;
p D 0.001), vomiting (14.5% vs. 4.7%; p D 0.002), diarrhea
(12.7 vs. 1.2; p D 0.0001), thromboembolic events (6.6% vs.
4.1%).

The most recently FDA-approved treatment option for
patients with advanced stage pancreatic cancer is Abraxane,
albumin-bound paclitaxel (nab-paclitaxel) in combination with
gemcitabine. A Phase III study (MPACT) reported in 2013 on
the effect of gemcitabine plus nab-paclitaxel versus gemcitabine
alone, in 861 untreated metastatic PDAC patients.3 OS was sig-
nificantly improved (8.5 vs. 6.7 mo; HRD0.72; 95% CI 0.62–
0.83; p < 0 .001) as well as one-year survival rate (35% vs.
22.2%), PFS (5.5 vs. 3.7; HRD0.69; 95% CI 0.58–0.82; p < 0
.001) and ORR (23% vs. 7%; p < 0 .001). These significant
improvements did not increase treatment-related deaths, which
were similar in both groups (4% for each) but grade 3–4 neu-
tropenia (38% vs. 20%), fatigue (17% vs. 7%), neuropathy (17%
vs. <1 %) were all higher in the combination group. It is note-
worthy to mention that in subgroup analyses of patients with
poorer performance status (Karnofsky performance score of 70
and 80) and more bulky disease (liver metastases,>3 metastatic
sites), the benefit afforded by this combination was greater.

These clinical developments of the last few years have pro-
vided added options for treatment of metastatic pancreatic can-
cer. However, any survival improvements have come at the
expense of toxicity, which are somewhat limiting the general
applicability of these therapies due to their effect on patients’
performance score and added treatment costs due to toxicities
to the health services. For these reasons, there is the urgent
need for further therapeutic strategies to improve on patients’
survival as well as quality of life. Additionally, the benefits of
combining chemotherapy and, or radiotherapy with immune
modulators to enhance response in patients has not yet been
fully understood. Further investigation may provide much
needed insight on effective therapeutic combinations and treat-
ment schedules.

Treatment options—immunotherapy

Since the end of the 19th century, many attempts have been
made to harness immunity in the battle against cancer. Follow-
ing on from the early work of European physicians observing a

correlation between severe inflammatory responses and cancer
regression, William Coley was the first to systematically utilize
this association in cancer therapy, by treating his patients with
Coley Toxins, a preparation of killed Streptococcus pneumoniae
and Serratia marcescens.14 More recently, clinical responses
have been well documented in some malignancies with Bacillus
Calmette–Guerin (BCG), a strain of Mycobacterium bovis, cur-
rently approved for use in non-invasive transitional cell carci-
noma of the bladder.15 While medical oncologists have been
skeptical of immunotherapy for some time due to the many
negative results in solid malignancies, hematologists have suc-
cessfully harnessed the power of the immune system to induce
complete, long-term remissions in patients with leukemia.16

Beyond the therapeutic failures, part of the immunotherapy
skepticism in the oncology community was explained by the
confusing diversity of strategies tested. Indeed, cancer immuno-
therapy strategies have included active (e.g., vaccines) and pas-
sive (e.g., monoclonal antibodies) immunotherapies which
could be either specific (e.g., adoptive T cell) or non-specific
(e.g., cytokines) for the cancer treated, the allogeneic transplan-
tation of immunity (e.g., bone marrow, haplo-identical NKs)
being a mix of all these strategies. To date, the use of immuno-
therapy in pancreatic cancer has been rather disappointing.
However, recent advances in our understanding of molecular
immunology and the interplay between the immune system
and cancer have led to some exciting and promising develop-
ments. Here, we will review several different immunotherapy
strategies used. Due to space limitations, passive immunothera-
pies are beyond the scope of this article.

Immune responses in pancreatic cancer

The clinical and pre-clinical data suggesting a major role for
immunity in pancreatic cancer are now compelling. Pancreatic
cancer patients are able to generate both B and T cells recogniz-
ing antigens (Ag) expressed on autologous pancreatic tumor
cells.17-20 These include Wilms’ tumor gene 1 (WT1) (75% of
patients),21 mucin 1 (MUC1) (over 85% of patients),22 human
telomerase reverse transcriptase (hTERT) (88% of patients),23

mutated K-RAS (73% of patients),24 and carcinoembryonic
antigen (CEA) (over 90% of patients).25 Furthermore, sera
from patients contain antibodies to tumor associated Ags,
MUC-1 and mesothelin, in particular.26,27 Interestingly, pre-
invasive pancreatic lesions are characterized by infiltration of
immune suppressor cells and absence of immune effector cells,
suggesting that tumor immunity may be defective already from
the inception of pancreatic cancer development.28 The notion
that defective immunological responses are responsible for can-
cer development is supported by evidence from animal models,
which confirms the existence of immune surveillance mecha-
nisms mediating responses which suppress cancer. For exam-
ple, mice lacking interferon (IFN) 29 and perforin,30 vital
components for cytotoxic activity, are prone to develop cancer.
Moreover, the adaptive immune system can recognize and
eliminate malignant cells; in experimental models, it can limit
growth of spontaneous and transplanted tumors.31 Protective
Ag-specific T cells can also be detected in human cancers.32

However, their effects can be inhibited by the tumor microenvi-
ronment. In pancreatic cancer, tolerance to tumor Ag may
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occur due to Ag persistence, downregulation of major
histocompatibility antigens (MHC) which prevents effective Ag
presentation or increased infiltration of cells with immunosup-
pressive properties such as Ag-specific regulatory T (Treg) cells,
tumor-associated macrophages (TAMs), myeloid-derived sup-
pressor cells (MDSCs) and tumor-associated fibroblasts.33,34

The accumulation of MDSCs and Tregs, as well as the altera-
tions to checkpoint pathways which control immune responses
development, have been shown to be closely related to the
extent of disease, to correlate with disease stage and to predict
survival.35-38 Non-specific ‘innate’ tolerance can also be main-
tained by innate immune cells through the production of anti-
inflammatory and immunosuppressive mediators and downre-
gulation of Ag-presenting cell activity.39

Inhibitors or agonists of checkpoint control

To target solid malignancies effectively, tumor-specific T cells
must avoid negative regulatory signals that inhibit their activa-
tion or induce tolerance in the form of anergy or exhaustion.
Cytotoxic T lymphocyte associated protein-4 (CTLA-4) and
programmed cell death protein-1 (PD1) are major negative co-
stimulatory molecules expressed on activated T cells.40 Anti-
bodies targeting these suppressive co-stimulatory receptors
block inhibitory signals and prolong the life of activated T cells
as well as induce T cell proliferation. The discovery of immune
checkpoint blockade inhibitors is an exciting advance in the
field of immunology that has pushed the clinical landscape to
make significant progress in cancer immunotherapy.

Following on the clinical success of treatment with an anti-
CTLA-4 inhibitor, ipilimumab, in melanoma,41 this strategy
was tested in Phase II clinical trials in advanced pancreatic can-
cer using ipilimumab (NCT01473940), pidilizumab (anti-PD1
mAb) (NCT01313416) and CP-870,893 (a selective agonist
mAb of the CD40 receptor) (NCT00711191). Whereas results
with ipilimumab have suggested no direct radiological tumor
responses,42 treatment with CP-870,893 in combination with
gemcitabine led to activation of the immune system and tumor
response in a small cohort of patients with unresectable pancre-
atic cancer.38 Four patients out of 22 chemo-naive pancreatic
cancer patients achieved a partial response, while 6 patients
showed a PET response with more than 25% decrease in fluoro-
deoxyglucose uptake within the primary pancreatic tumor.
However, responses observed in metastatic lesions were hetero-
geneous.43 Several trials are now recruiting to investigate the
combination of two checkpoint blockade inhibitors (CTLA-4
and PD1/PDL1 blockade) or combination with small molecule
inhibitors to overcome the immunosuppressive tumor micro-
environment. An ongoing study (NCT02301130) currently
investigates the combination of mogamulizumab (an anti-
CCR4 mAb) with either MEDI4736 (anti-B7H1 mAb) or trem-
elimumab (anti-CTLA-4 mAb) to overcome the immunosup-
pression in pancreatic cancer. This is a constantly evolving
clinical research area aiming to find feasible combinations to
restore and increase the activation of adaptive and innate
immunity.

To date, it is still not understood why certain solid malig-
nancies demonstrate a better clinical response to checkpoint
blockade inhibitors than others. This appears to be particularly

true for malignancies of the GI tract where anti-PD-1 mAb has
activity in the esophageal and gastric cancers, but no activity in
the colon (except those carrying microsatellite instabilities) and
pancreatic cancers. More combination treatments need to be
clinically investigated in this area to provide patients with suit-
able alternative options.

T cell therapies

Recently, cancer immunotherapy has focused on the activation
of adaptive immunity. MUC-1-specific autologous T cells, iso-
lated from patient peripheral blood mononuclear cells
(PBMCs), were expanded by incubation with a MUC-1-pre-
senting cell line prior to administration to pancreatic cancer
patients. The mean survival time for unresectable patients in
this study was 5 mo.44 In a similar study, PBMC-derived
mature DCs from a pancreatic cancer patient were pulsed with
MUC-1 peptide. The pulsed DCs were administered in combi-
nation with MUC-1-specific T cells to patients with unresect-
able or recurrent pancreatic cancer. A complete response was
observed in one patient with lung metastases and the mean sur-
vival time of the whole group was 9.8 mo, suggesting that the
addition of pulsed DCs may have beneficial effects.45

Chimeric antigen receptors

An alternative to Ag-specific expansion is the lentiviral trans-
duction of patient T cells with a chimeric antigen receptor
(CAR) specific for a tumor Ag. CARs are transmembrane pro-
teins comprising an antibody-derived single-chain variable
fragment (scFv) specific for a tumor Ag fused to a hinge region,
a spacer, a membrane spanning element and signaling
domain.46 Often, the intracellular signaling domain contains
the signaling motifs from multiple costimulatory molecules
(41BB, OX40, CD28). This allows for both T cell receptor and
costimulatory signaling cascades to be initiated, leading to opti-
mal T cell activation. The resulting T cells recognize the tumor
Ag in its native form and do not rely on its presentation by
MHC class I, which is often downregulated in cancer. Several
CARs have been created with specificity for mesothelin, CEA,
MUC-1 and Her-2/neu and Phase I/II trials (NCT01583686,
NCT02465983, NCT02349724) are ongoing.47-49 Although this
process results in a large population of Ag-specific T cells,
adoptive immunotherapy is currently an expensive and time-
consuming process in comparison with tumor Ag-based vac-
cine, systemic immune stimulation or monoclonal antibody
therapies.

Vaccination therapies

Although Ag-specific immune responses can be detected in
cancer patients undergoing tumor cell vaccination therapies,
this approach has not delivered great successes in pancreatic
cancer with the notable exception of post-surgical vaccination
therapy which has shown a beneficial impact in pancreatic can-
cer patients with absent or minimal residual disease.50 Many
studies using whole-cell, DNA as well as peptide vaccines have
been performed or are ongoing, but to date, there is no vaccine
therapy showing benefit in metastatic pancreatic cancer. Most
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recently, a large Phase III trial (TELOVAC) comparing gemci-
tabine and capecitabine with or without telomerase peptide
vaccine GV1001 in patients with locally advanced or metastatic
pancreatic cancer failed to report any clinical benefit.51

Although the TeloVac trial did not demonstrate any significant
difference in OS and PFS between treatment arms, it demon-
strated that the vaccine could prevent patient deterioration.
Interestingly, further analysis of potential immunological bio-
markers did demonstrate that baseline eotaxin levels predicted
median OS in the concurrent gemcitabine and Capecitabine
with GV1001 group. Whereas high eotaxin levels at baseline
correlated with a longer OS in this study, sequential chemo-
immunotherapy did not show any correlation between eotaxin
levels and OS. A better understanding of the right immunologi-
cal response profile would be advantageous for future clinical
trial so recruitment of potential responders can be better
guided.

For this reason, we will not expand further on vaccination
therapies, aside from mentioning the case of a 77-y-old patient
who was treated with survivin-based peptide vaccination and
had a partial response in liver metastases at 6 mo and complete
response at 8 mo.52 However, the patient developed recurrent
disease after being weaned off the vaccine therapy.

Utilizing bacteria for cancer therapy

The idea of harnessing immunity by inducing repeatedly infec-
tious stimuli was born over 100 y ago. This concept was
recently revisited with the suggestion that repeat exposures to
microbes, which may induce non-specific acute inflammation
and febrile episodes activate immune memory of antigenic
changes important for cancer immunosurveillance.53 For exam-
ple, infections and acute inflammations generate abnormal Ags
that activated DC carry to the draining lymph nodes, where
they stimulate adaptive immunity and immune memory. This
immune memory can be reactivated by tumor Ags and depend-
ing on the strength of the memory and of the reactivation, can-
cer cells may be either eliminated or kept in equilibrium. Two
forms of bacterial formulations have been used in the clinic
and need to be mentioned here.

Listeria monocytogenes

To date, this bacterium has been used either as a vehicle to
deliver a specific epitope (mesothelin) via expression in live-
attenuated Listeria monocytogenes.54 or as a radioactive-labeled
formulation.55 While the latter has only shown efficacy in pre-
clinical models, the live-attenuated L. monocytogenes-express-
ing mesothelin (CRS-207) in combination with low-dose cyclo-
phosphamide and GVAX pancreas (granulocyte-macrophage
colony-stimulating factor-secreting allogeneic pancreatic tumor
cells) was compared to cyclophosphamide plus GVAX only, in
90 patients with metastatic pancreatic cancer. In the per-proto-
col analysis of patients who received at least three doses (two
doses of cyclophsphamide/GVAX plus one of CRS-207 or three
of cyclophsphamide/GVAX), OS was 9.7 vs. 4.6 mo (p D 0.02).
Enhanced mesothelin-specific CD8C T cell responses were
associated with longer OS in both groups.54 This treatment was
given ‘breakthrough therapy’ designation by the FDA in 2014.

Two clinical trials are planned, one investigating the addition
of anti-PD-1 antibodies to the combination (NCT02243371),
the other the addition of GVAX plus anti-CTLA-4 antibody in
patients receiving FOLFIRINOX (NCT01896869).

In addition to the immune-related therapeutic strategies
outlines in this review, we would like to mention the random-
ized, controlled STELLAR trial (Safety and Therapeutic Efficacy
of Live-attenuated Listeria/GVAX with anti-PD-1 Regimen)
which has enrolled approximately 88 patients with metastatic
pancreatic cancer who have been treated previously with one
line of chemotherapy. CRS-207/GVAX Pancreas vaccine and
nivolumab treatment is compared to CRS-207/GVAX Pancreas
vaccine alone in this Phase II trial for impact on OS. Secondary
endpoints include evaluation of clinical and immune response
and safety (NCT02243371).

Lastly, even though not immune-related the clinical devel-
opment of evofosfamide both as a monotherapy and in combi-
nation with chemotherapy treatments needs mention.
Evofosfamide is currently under evaluation in a Phase III trial
(MAESTRO) in combination with gemcitabine versus gemcita-
bine and placebo in patients with locally advanced unresectable
or metastatic pancreatic cancer. This Phase III trial is being
conducted under Special Protocol Assessment (SPA) agree-
ments with the FDA. Based on current projections, the number
of protocol-specified events may be reached in the second half
of 2015, with the results of the primary efficacy analyses avail-
able shortly thereafter. The FDA and the European Commis-
sion have granted evofosfamide Orphan Drug Designation for
the treatment of pancreatic cancer.

Mycobacterium obuense

As above mentioned, mycobacteria have demonstrated antitu-
mor activity in both pre-clinical and clinical settings and intra-
vesical Mycobacterium bovis in the form of BCG is standard of
care for non-muscle-invasive Bladder Cancers. Mycobacterium
obuense another member of the Mycobacterium genus, is a
non-pathogenic saprophytic mycobacteria. IMM-101 is derived
from heat-killedMycobacterium obuense (NCTC 13365), which
can induce both innate and adaptive immune responses to
boost antitumor immunity. Unlike L. monocytogenes, IMM-
101 is not used as a vehicle to deliver either radioactive or
tumor-specific Ags. Rather, IMM-101 contains a wide variety
of pathogen-associated molecular patterns (PAMPs), including
proteins, lipoproteins and carbohydrate Ags which may ensure
activation of a wide pool of memory CD8C cells, which while
re-circulating may then amplify the immune response and tar-
get metastases and tumor Ags.

In preclinical models, treatment with IMM-101 appeared to
increase the secretion of IFNg and cytotoxic mediators such as
perforin and granzyme B at the tumor site, the draining lymph
nodes and in the spleen in tumor-bearing mice.56 Most impor-
tantly, these modulatory effects are induced when the prepara-
tion is administered subcutaneous away from the tumor site. In
a recent randomized, open-label, proof-of-concept, Phase II
trial in advanced pancreatic cancer (IMAGE 1), the combina-
tion of IMM-101 with gemcitabine was tested
(NCT01303172).56 Patients with advanced pancreatic cancer
and a WHO score of 0–2 were assigned randomly in a 2:1 ratio
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to receive IMM-101 plus gemcitabine or gemcitabine alone. A
total of 110 patients were randomized, 75 to receive IMM-101
plus gemcitabine and 35 gemcitabine alone. In the pre-defined
sub-group of patients with metastatic disease (n D 92), median
OS was increased significantly by 59% to 7 mo in the IMM-101
plus gemcitabine group (n D 64) compared to 4.4 mo in the
gemcitabine alone group (n D 28) (HR 0.54; 95% CI 0.33–0.87;
p D 0.01). A highly significant 91% increase in median PFS
from 2.3 mo in the gemcitabine group to 4.4 mo in the IMM-
101 plus gemcitabine group was observed (HR 0.46; 95% CI
0.28–0.75; p D 0.001). Patients with locally advanced disease at
the time of enrolment were eligible for the study and 18 such
patients were included, 11 randomized to IMM-101 plus gem-
citabine and 7 to gemcitabine alone. This sub-group was too
small to draw firm conclusions but there was no evidence for a
beneficial effect of IMM-101, which is consistent with prelimi-
nary findings from preclinical studies that indicated a more
profound effect of IMM-101 on metastases than on the primary
tumor.56

The current challenge of immunotherapy in pancreatic
cancer: finding synergistic combination therapies

Treatment of advanced pancreatic cancer has concentrated on
single agent therapies or combination of compounds within the
same class (e.g., cytotoxics). Perhaps, a polyvalent approach
would be more appropriate for such a heterogeneous disease.57

Chemotherapies exert various effects on the immune system
that could be exploited to enhance the efficacy of immuno-
therapies. It had long been assumed that immune-stimulatory
compounds could not be used in combination with immuno-
suppressive chemotherapies, but recent evidence has challenged
this dogma. Chemotherapies could be used to condition the
immune system and the tumor milieu to create an environment
where immunotherapies have a better chance of success.

Three ways are proposed by which chemotherapy could pro-
mote immune responses and act in synergy with immunothera-
pies58: (a) deplete immune suppressive cells; (b) increase tumor
immunogenicity by releasing tumor Ags due to cytotoxic activ-
ity; (c) direct activation of T cells. Any one of these effects could
enhance the tumor-specific immune response elicited by
immunotherapeutic agents, and some chemotherapies may
even work through multiple mechanisms. A recent publication
by Garc�ıa-Mart�ınez and colleagues,59 demonstrated that in a
group of 121 neo-adjuvantly treated breast cancer patients,
characterization of the immune cell subpopulation profiles by
immunohistochemistry-based computerized analysis, identified
groups of patients characterized by high response (in the pre-
treatment setting) and poor prognosis (in the post-treatment
setting). Similarly, immunologic factors were highly significant
predictors of therapy response in the GeparSixto trial in breast
cancer patients treated with carboplatin.60

Cyclophosphamide has been described to affect subsets of
CD4C T cells.61 In 2005, it was revealed that this drug efficiently
depletes CD4CCD25CTreg cells at low doses 62 while leaving
CD4CCD25¡ and CD8C T cells unaffected. Gemcitabine has
been proposed to deplete MDSCs. Both drugs have been
reported to induce only a transient depletion of the respective
cell populations.63 Interestingly, since MHC class II positive

MDSCs can promote Treg activation, gemcitabine could poten-
tially reduce multiple suppressor cell types. Vincent et al. 63

examined gemcitabine, cyclophosphamide, 5-fluorouracil and
paclitaxel among others in pre-clinical models of cancer.
5-fluorouracil induced apoptosis of GRCCD11bC MDSC and
was more potent than gemcitabine. 5-fluorouracil and gemcita-
bine have also been reported to increase immunological visibil-
ity of tumors by increasing expression of tumor Ags.64

Recently, low-dose paclitaxel has been shown to have stimula-
tory effects on the immune system.65 In murine models, pacli-
taxel is a ligand for TLR4 on DCs, mediating a direct effect on
the immune system.66 In addition, paclitaxel has also been
shown to enhance activation of human DCs independent of
TLR4 receptor engagement.67 These findings supporting syn-
ergy between effects mediated by chemotherapy and the
immune system, raise the question as to whether the success of
FOLFIRINOX is potentially related to the combination of che-
motherapy with additional, although not intentionally given
for this purpose, immune modulation via G-CSF, which is
administered to prevent the neutropenia caused by FOLFIRI-
NOX.13 Similarly, Abraxane might promote some of its efficacy
through the immune modulatory effects of paclitaxel. These
observations may lead the way for further investigating the
right combination of immunotherapies and chemotherapy.
The good results presented at ASCO 2015 of anti-PD-1 and
anti-PD-L1 combinations with chemotherapy in non-small cell
lung cancer (NSCLC) support this idea: such combinations had
an ORR above 60%, that is higher than the sum of the ORR
obtained with either therapy separately (ORR of around 30%
for chemotherapy alone, and 20% for anti-PD-1/PD-
L1 mAb).68,69

In situ immunization: back to the future

One striking observation that can be made when looking at the
clinical development of immunotherapies is the fact that
although they rely on disruptive mechanisms of action, people
keep administering them like conventional therapies (e.g., anti-
CTLA-4 or anti-PD-1 administered intra-venously (IV) every
3 weeks). Therefore, it is not surprising that systemic activation
of the immune system (e.g., sub-cutaneous IL-2 or ipilimu-
mabCnivolumab) generate a very high level of drug related
grade 3–4 off-target toxicities. Intra-tumoral injections of
immunostimulatory products could be a good way to use a
tumor as its own vaccine and to locally prime an antitumor
immune response which could subsequently act on distant,
non-treated tumor sites.70 This in situ immunization (also
called in situ vaccination) strategy is likely what William Coley
was doing at the end of 19th century, and long-term tumor
responses were reported in multiple, injectable, cancer
types.71,72 Besides, bladder cancer use, intra-tumoral BCG has
also demonstrated significant antitumor activity in melanoma
and squamous cell carcinoma of the head and neck.73-75 A
small clinical report of intra-peritoneal BCG also reported
activity in pancreatic cancers.76 Interestingly, the study of the
effects of mycobacteria in murine tumor models led to the
identification of Toll-like receptor 9 (TLR-9) agonists (CpG-
rich DNA motifs).77,78 Recently, the combination of intra-
tumoral CpG combined with low dose irradiation (2 £ 2 Gy)
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has demonstrated antitumor activity in patients with B cell and
T cell lymphoma, including activity at distant, non-treated,
tumor sites.79,80 Also, clinical reports have shown that radio-
therapy could overcome anti-CTLA-4 resistance in patients
with metastatic melanoma, inducing tumor responses in both
irradiated and non-irradiated lesions, through the so-called
‘abscopal effect.’81,82 More recently, the combination of local
radiotherapy with systemic (s.c.) GM-CSF has been shown to
generate abscopal activity in NSCLC, thymic and breast can-
cers.83 Radiotherapy could indeed have a more important role
to play in the immunotherapy of metastatic pancreatic cancer.
Currently, its role (low dose per fraction, 6 weeks treatment) is
for local consolidation following chemotherapy for borderline
resectable or locally advanced tumors, with the sole intention
of causing cell death by oxidative effects and DNA double
strand breaks. Ionizing radiations have the ability to convert
the irradiated tumor into an ‘immunogenic hub’—acting in
effect like an autologous tumor ‘vaccine.’84 At higher doses per
fraction, the radiobiology changes due to alternative modes of
action.84,85 After radiation exposure, tumor cell death includes
apoptosis and necrosis as well as autophagy and mitotic catas-
trophe. Importantly, radiation has been shown to induce an
immunogenic cell death, characterized by three molecular sig-
nals that promote uptake of dying cells by DCs, cross-presenta-
tion of the tumor-derived Ags to T cells and activation of
antitumor T cells, exposure of calreticulin on the tumor cell
surface, release of high-mobility group protein B1 (HMGB1),
and release of ATP.86 Furthermore among genes that are upre-
gulated post-radiation are those controlling expression of
growth factors, cytokines, chemokines, and cell surface recep-
tors that modulate the interaction of the tumor with the
immune system.87,88 Thus, radiation may have important sys-
temic effects beyond its local actions.

In addition to excellent local control of disease, high-dose
per fraction radiotherapy—stereotactic body radiotherapy
(SBRT)—also appears to impact disease outside the irradiated
volume. This is likely to be an example of the abscopal effect,
resulting from the stimulation of T cell immunity by tumor
Ags released by SBRT, leading to the eradication of occult
regional micro-metastases. Significant induction of low-density
lipoprotein (LDL)-enriched ceramide, secretory sphingomyeli-
nase (S-SMase), tumor necrosis factor-related apoptosis-induc-
ing ligand (TRAIL), and TNF-a in serum from patients treated
with SBRT, suggests these bystander effects may have a role in
overall tumor response. In view of these encouraging results,
the combination of SBRT and immunotherapy in humans is

currently being investigated in several studies and should
include pancreatic cancer. However, the identification of the
right irradiation dose and regimen for optimal immune activa-
tion remains unclear and pre-clinical models have brought con-
tradictory results so far.89

Only 20–30% of patients generate objective responses in
many cancer types with anti-PD-1/PD-L1 therapy and no
activity has been reported so far in pancreatic cancers.
Therefore, the current challenge in cancer immunotherapy
is to overcome primary resistance to immune checkpoint
blockade therapy. One way could be to increase the intra-
tumoral concentration of these immunostimulatory mono-
clonal antibodies. This could be a good way to increase T
cell activation in situ while preventing systemic exposure
and off-target toxicity. Interestingly, a recent report at
ASCO 2015 has shown strong activity of in situ ipilimumab
with IL-2 with abscopal effect seen in 75% of patients with
metastatic melanoma.90 It becomes clear now that the in
vivo activity of immune checkpoint targeted monoclonal
antibodies rely on the presence of FcgR positive cells within
the tumor micro-environment (which are mostly myeloid
cells, notably macrophages) (see 91-92 for review). A good
way to switch myeloid cells from a tolerogenic phenotype
to an activated Ag-presenting cell phenotype (MHC class I
& II high, upregulation of CD80/86) is to stimulate them
with PAMPs. Therefore, it would make sense to combine
intra-tumoral injections of PAMPs with immune checkpoint
targeted antibodies. Indeed, several pre-clinical results have
demonstrated the ability of either TLR agonists or oncolytic
virus (providers of PAMPs) to overcome immune check-
point blockade resistance.93,94 This strategy is currently
tested in several ongoing clinical trials (Table 1) and should
be specifically developed in patients with pancreatic cancers
where the stroma modification seems critical for efficient
immunotherapy.

Closing remarks

Therapeutic modalities to treat pancreatic cancer are ever
expanding and include surgery, radiotherapy, chemotherapy
and now immunotherapy. To obtain clinically effective and
meaningful antitumor responses, the successful execution of
several interventions will be required. Preclinical studies sug-
gest that immunotherapy combinations targeting distinct steps
of antitumor immunity might be synergistic, resulting in stron-
ger and more sustained responses that accomplish durable

Table 1.

In situ source of PAMPs Immunostimulatory partner Cancer types Trial

T-vec (Herpes simplex virus type 1 oncolytic virus, Amgen) Anti-CTLA-4 (ipilimumab, BMS) Melanoma NCT01740297
Anti-PD-1 (pembrolizumab, Merck) Melanoma NCT02263508
radiation STS NCT02453191

DNX-2401 (Oncolytic adenovirus, DNAtrix) IFNg Glioblastoma NCT02197169
HF10 (HSV1 oncolytic virus, Takara) Anti-CTLA-4 (ipilimumab, BMS) Melanoma NCT02272855
CAVATAK (Oncolytic Coxsackievirus A21, Viralytics) Anti-CTLA-4 (ipilimumab, BMS) Melanoma NCT02307149
BCG Mycobacterium bovis Anti-CTLA-4 (ipilimumab, BMS) Melanoma NCT01838200
Poly-ICLC (TLR7–8 agonist, Oncovir) Flt3-Ligand (CDX-301, Celldex) B cell Lymphoma NCT01976585
SD-101 (TLR9 agonist , Dynavax) Anti-CTLA-4 (ipilimumab, BMS) B cell Lymphoma NCT02254772

radiation B cell Lymphoma NCT02266147
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tumor destruction. Targeting all parts of immune activation,
depletion of immunosuppressor cells, enhancing Ag release
and presentation and activation of adaptive immunity is crucial
to efficient cancer immunotherapy. Bacterial formulations like
IMM-101, which do not follow a ‘classic’ approach, offer the
benefits of a multitude of immune modulation pathways. This
diversity of responses may carry the key for tumor control and
overcoming resistance to treatments. Indeed, this approach
demonstrates the importance of combining immunotherapy
with chemotherapy in the metastatic pancreatic cancer setting,
where smaller metastatic lesions lacking the dense desmoplastic
stroma of the primary tumor may be more amenable to treat-
ment. Controlling metastatic disease will be the key to achieve
better survival outcomes for patients with pancreatic cancer.
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