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Abstract: Photo-catalysis is a research field with broad applications in terms of potential technological
applications related to energy production and managing, environmental protection, and chemical
synthesis fields. A global goal, common to all of these fields, is to generate photo-catalytic materials
able to use a renewable energy source such as the sun. As most active photocatalysts such as titanium
oxides are essentially UV absorbers, they need to be upgraded in order to achieve the fruitful use of
the whole solar spectrum, from UV to infrared wavelengths. A lot of different strategies have been
pursued to reach this goal. Here, we selected representative examples of the most successful ones.
We mainly highlighted doping and composite systems as those with higher potential in this quest.
For each of these two approaches, we highlight the different possibilities explored in the literature.
For doping of the main photocatalysts, we consider the use of metal and non-metals oriented to
modify the band gap energy as well as to create specific localized electronic states. We also described
selected cases of using up-conversion doping cations. For composite systems, we described the use of
binary and ternary systems. In addition to a main photo-catalyst, these systems contain low band gap,
up-conversion or plasmonic semiconductors, plasmonic and non-plasmonic metals and polymers.
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1. Introduction

Heterogeneous photocatalysis uses semiconductors to generate charge carrier species from the
absorption of light. These charge carriers can migrate to the surface of the photo-catalysts and
transform chemical molecules in the context of chemical reactions concerning elimination of pollutants,
generation of fuels or added value chemicals, microorganism inactivation, and others. All these
chemical (and biological) processes compete with the recombination of charge, and the balance between
these two types of processes controls the fate of charge carrier species and primarily determine
photo-activity [1–3].

The most successful semiconductor used corresponds to titania. Titania can present at least
three stable polymorphs: anatase, rutile and brookite. The first is considered the most active and has
broad utility due to its good performance in all reaction tested, its wide availability, reduced cost and
relatively limited effects in human health. Other interesting oxides correspond to zinc, tungsten, cerium,
bismuth or most complex ones like perovskites, tungstates, bismutates, etc. Additional non-oxide
semiconductors broadly utilized correspond to carbon nitride, graphene or polyoxometalates [1,4–11].
All these systems share a main problem; they all can utilize a single range of sunlight wavelengths.
Specifically, most of them can use UV or visible light and a few can profit from near infrared, however
none of them can effectively (for example, visible light active bismutates cannot perform as titania
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under UV and vice versa) use two of them, nor the complete range of wavelengths going from UV to
infrared ranges.

The achievement of this goal, i.e., the fruitful use of solar light in photocatalysis, is a main subject
of the research are and it is here analyzed. Of course, the literature work is immense, and we will select
particularly relevant or recent studies. Moreover, in relation with the full use of the electromagnetic
spectrum of sunlight a critical point is dismissed sometimes. Recent photocatalytic materials attempt
to concentrate in achieving visible or near infrared active materials as the corresponding light
ranges correspond roughly to 40–45 and 50–55% of the solar light intensity at sea level. However,
when tested simultaneously, it is typically shown that being UV active is critical if measured by the true
quantum efficiency. A clear comparison has been presented showing that this is the case, for example,
for hydrogen photoproduction. In this case, the quantum efficiency values under a 1.5AM solar-type
illumination can have a significant contribution from the UV part in several highly-active TiO2-based
composite photocatalysts [12], in spite of the fact that the UV part of the sunlight intensity is only
around ca. 4%. This would indicate that using the full range of wavelengths efficiently requires
the development of visible or near infrared efficient materials but without dismissing UV activity.
This short discussion points out that titania can be the base of most active materials. In fact, a survey of
literature summarized in review articles indicates that this is the general case in photocatalysis [1–3].

Titania alone, and particularly the anatase phase, can have UV and visible activity if we obtain a
nanostructured material. Nanostructured anatase typically shows a band gap energy of ca. 3.0–3.2 eV,
while rutile showed up a slightly lower band gap energy. A decrease of the band gap energy would
allow a profit for sunlight [1]. Size effects in titania-based materials band gap energy are complex,
with a Bohr radius (defining the point below which strong quantum confinements effects are present)
at ca. 4 nm [1,13]. The absorption of visible light for semiconductor single phase in anatase, rutile
and any other (UV-absorbing) semiconductor is typically connected with the adequate engineering
of a defect structure. The latter has been exploited and, probably, the most successful approach
corresponds to black titania. This is essentially a defective, core-shell titania, mostly (although not
exclusively) anatase-type structure, with several types of defects (hydrogen inclusion, anion vacancies,
reduced Ti species, atom displacements from pure phase positions, etc.) concentrated at near surface
sites. This allows us to significantly decrease the band gap energy up to ca. 1.5–2.5 eV and thus
enables a significant decrease of band gap energy [14]. This procedure has been extended to other
oxides such as ZnO or ZrO2 [15,16]. Still, a relatively inefficient use of the visible region, the limited
stability of the defects and thus the usefulness of such type of “black” system are open questions,
particularly in continuous flow operation or in oxygen-rich atmospheres during long-term stream
periods. As consequence, black semiconductors cannot be used with the generality (all types of
reactions above mentioned) as other potential technologies [17]. Such potential technologies relay
in two main physico-chemical effects. The first is the surface and/or bulk doping of the high active
photocatalysts phases and, to a large degree, of the anatase structure. The second is the generation of
composite structures having anatase as one of the components. The first cases attempt to modify in
several ways the electronic structure of the anatase (or any other single phase semiconductor) as well as
create new surface active centers. The second objective can be shared by composite systems in which,
additionally, the contact between phases as well as the optical properties of the additional phases can
play key roles for photocatalysis. Here, we will review these two main approaches, attempting to
discuss a selection of (the immense number of) relevant results published, here selected with the aim
of stablishing appropriate activity-structure links which can help to rationalize the research field and
would allow the future progress of the sunlight-operated photocatalysis field. Of course, in some cases,
doping and composite systems are used together and here they will be classified considering the most
relevant influence on photocatalytic properties.
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2. Doped Photocatalysts

Doping is probably one of the most successful methods used to improve photoactivity of reference
oxides such as titanium or zinc oxide. An early work tested the catalytic performance of nanostructured
(ca. 5 nm) anatase at 0.1–0.5 at. % doping levels for 24 cations. Systems containing Fe3+, Mo5+, Ru3+,
Os3+, Re5+, V4+, and Rh3+ showed increasing activity in hydrogen production with respect to the titania
reference systems. However, they exhibited a complex dependence on doping ion concentration, state in
the lattice and/or surface/bulk, d-electron configuration, light intensity and others physico-chemical
variables [18]. Similarly, the doping of the nanostructured TiO2 anatase phase (5–13 nm interval) was
achieved with nine cations, but in this case in a broad range of doping concentrations from ca. 1 to
25 mol% on cationic basis [19]. In general, a main objective is the modification of the band gap energy
of the parent photocatalysts by altering conduction and/or valence band edge energies. This will lead
to the desired decrease of band gap energy allowing simultaneous UV and visible light absorption
for wavelengths typically in the range from 300 to ca. 550 nm, improving the profit of the solar light.
Alternatively, the presence of dopant-associated gap states can produce transitions to or from the
corresponding band of the solid, leading to visible light absorption.

Cations tested are typical donors of charge (V5+, Mnn+), acceptors (Cr3+, Ni2+), and cations
with both properties (Fe2+/3+) or with intrinsic photocatalytic activity (Nb5+, Ce4+, Mo6+ or W6+).
Doping using V4+, Mo6+, and W6+ as cations was found to enhance photo-activity in toluene
photo-degradation. For vanadium and tungsten, doping cations replace Ti ions at the anatase structure
rendering substitutionally disordered mixed oxides. Maximum doping concentrations trigger optimum
activity through a minimum disturbance of the long-range structure of anatase and defined local
ordering favoring hetero M-O-Ti (vs. M-O-M) bonds. In the case of W, there were Ti vacancies as
charge neutrality defects [20,21]. Figure 1 reflects the activity enhancement observed for materials
having these structural characteristics. In other cases we can see, for example, that: Cr (dominant
Cr3+ oxidation state with presence of Cr6+ typically growing with the Cr content) is only marginally
included in the anatase lattice, Ca2+, V4+ (changing oxide state at surface to V5+), Nd3+ present a
solubility limit of ca. 4–5 mol% and Mo (Mo5+ and Mo6+), Nb5+ and W6+ display up to 20–25 mol%
solubility limit(s) [19–22]. As a general rule, optimum photoactivity under sunlight illumination
can be connected with the limited structural disturbance of the anatase structure but with an effect
in band gap energy. The structural stability of anatase limits the (potential) loss of efficiency using
UV photons while the diminishing band gap energy allows the use of visible light for excitation of
the semiconductor. Thus, combination of correct structural and electronic parameters within purely
substitutionally disordered mixed oxides appears as an efficient way to profit from solar light.

Contrarily to the above-mentioned cases, Cu2+ [23], Zn2+ [24] or Zr4+ [25] doping of the anatase
appear to mainly generate gap localized (electronic) states. In these cases, Cu doping was tested in
toluene photo-degradation, with activity presenting a maximum at low loading (below 0.5 mol%)
and strong deterioration for higher loadings, in presence of Cu-Cu interaction(s) [23]. In the case of
Zn, the photo-degradation of phenol was essayed, with a sample having a 5 mol% of Zn displaying
maximum activity. Above this concentration, presence of the cations in the samples leads to Zn
accumulation at the surface, deteriorating the surface area and increasing the quantity of recombination
centers [24]. Zr substitution of Ti cations favors the presence of localized states, likely near the valence
band, increasing both UV and visible light absorption capability, decreasing recombination and favoring
photoactivity [25].

Work carried to dope the ZnO oxide (wurtzite phase in most cases) is also of interest in
photocatalysis. The physico-chemical situation is completely parallel to the titania case. Successful
incorporation and concomitant increase of photoactivity have been observed, for example, using Al, Fe,
Cu, Nd, and Ce [26–29]. Doping of other photocatalytic semiconductors is less studied although there
are many examples such as the doping of bismuth oxide [30], thin oxide [31], cadmium sulfide [32] or
of more complex formulations such as LaFeO3 [33].
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metal-doped TiO2 systems.

Interestingly, some works are also devoted to use near-infrared wavelengths in addition to the
UV and/or visible ones. Tm, Gd, Er and Ho (and combinations with other lanthanides such as Er/Yb)
are cations specifically designed to increase activity under visible and near-IR illumination due to an
up-conversion process that render UV or high-energy visible photons (all above ca. 380 nm) utilized by
the anatase network. Specific cations (Like Pr and Nd) can also provide visible to UV up-conversion.
All these cations are usually utilized in relatively low concentrations (typically between 0.5 mol% and
3 mol%) and pure anatase and anatase plus rutile composite powders are commonly doped with these
lanthanides [34,35]. Other semiconductors extensively explored in the field of up-conversion though
doping are, for example, BiVO4 [36] or Bi2WO4 [37] or CaF2 [38].

The Er case is the prototypical cation used for titania-based materials in the field of up-conversion.
Erbium-doped TiO2 materials showed good photoactivity for the liquid-phase degradation of phenol
and methylene blue and the gas phase of toluene. The characterization results indicated that the
presence of Er3+ induces a progressive anatase cell expansion due to its incorporation in the TiO2 lattice.
The best photocatalytic performance was attained for the samples with 2 at. % of Er3+ irrespective of
the chemical degradation reaction essayed. Er presence increases simultaneously UV and NIR activity,
as schematically shown in Figure 2 (panels a and b). The first is based on the positive effect of Er
doping ions acting as electron scavenger and decreasing charge recombination. The up-conversion
luminescence process of Er3+ also allowed us to profit in terms of the NIR range of the lamp and
transferring energy in the UV range to the TiO2. This indicates that Er3+ plays a significant role in
the overall photocatalytic mechanism [39]. Er is commonly essayed in presence of Yb. The benefit is
graphically explained in Figure 2c. Er and Yb co-doping titania (2 at. % Er and 0, 10, 15, or 20 at. % Yb),
obtained by a modified hydrothermal process, was essayed on photocatalytic degradation of phenol and
Rose Bengal dyes under simulated solar radiation and using LED illumination of specific frequencies
in the ultraviolet, green, red, and infrared regions. The 2% Er 10%Yb co-doped TiO2 catalyst exhibited
the best phenol and Rose Bengal photo-degradation under UV illumination. However, using green,
red, and infrared illumination no significant activity was observed [40]. The Er, Yb, and Er-Yb titania
powders were tested under visible light excitation showing that catalysts can work with illumination
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wavelengths up to ca. 475 nm and that Yb at 1 at. % rendered the best activity [41]. Thus, no obvious
improvement over Er-doped materials appears in the case of Er-Yb co-doped titania photocatalysts.
Also a Er-Sm co-doped anatase-rutile composite (mixed anatase-rutile with dominant presence of the
first) catalyst have been analyzed in the literature [42]. The catalyst having a 3/0.6 mol% of Sm/Er
maximizes activity for degradation of the acid blue 113 dye working at pH 2. Sm presence triggers the
decrease of anatase band gap to reach a value of 2.8 eV, opening the fruitful use of visible photons.
At the same time, Er is responsible for an up-conversion process which generates UV from IR photons,
providing energy to the anatase powder.
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Additional research towards the full use of the solar spectrum explored the co-doping of titania
materials having Er and other non-luminescent cations. Er was used together with W to dope anatase
nanostructured materials. In this case, nanostructured (ca. 10 nm) anatase powders were synthesized
in presence of Er (2 mol%) and W (ca. 15 mol%) [43]. The structural investigation demonstrates
the substitutional replacement of Ti by both cations with presence of characteristic Er-O-W contacts
in the co-doped system. The system showed outstanding performance against Gram-positive and
Gram-negative bacteria. A joint use of EPR and photoluminescence rendered information about charge
carrier species generated after illumination. Activity showed an acute dependence of the excitation
wavelength due to a different physical origin. Below ca. 550 nm (so, in the UV or initial visible region)
a strong decrease of recombination and generation of surface local entities promoting the formation of
hydroxyl radicals were directly ascribed to the substitutional replacement of Ti ions of the anatase
structure. For most of the visible (above 550 nm) as well as for infrared wavelengths up to ca. 1000 nm,
additional surface sites linked with W-Er surface species were responsible for generation of hot electron
species. The two types of photo-related mechanisms inactivate the microorganisms and render a
material able to work efficiently in the whole UV-visible-near IR spectral range [43]. Another case study
corresponds to Er-Ce co-doping of titania. In this case, the Er:Ce atomic ratio (Er 0.5 mol% and Ce 0.1,
0.2 and 0.3 mol%) was varied. The materials were employed for methylene orange photo-degradation
and photocatalytic disinfection (S. aureus and E. coli) tests. In all photocatalytic tests, the sample
Er/Ce = 0.5/0.2, calcined at 800 ◦C, exhibited the highest photocatalytic performances. The existence of
Er ions is thought to successfully turn the near-infrared radiation into visible region, which is easier
to be absorbed by the co-doped TiO2 material. Meanwhile, the addition of Ce ions can effectively
extend spectral response range and inhibit the recombination of electrons and holes, enhancing the
photocatalytic disinfection activity of co-doped TiO2 [44].

The utilization of visible and, critical considering the goal of this contribution, sunlight photons
has been also deeply investigated using non-metal (also called anion) doping. An interesting approach
attempted to control the formation of the Ti-N bond in the catalyst using N-containing-type ligands
(2-methoxyethylamine, tetramethylethylenediamine and 1,2-phenylenediamine) in the initial Ti
precursor subjected to hydrolysis in a microemulsion medium and posterior calcination [45,46].
The method renders anatase materials with (size in the 8–14 nm), tested in the photo-degradation of
methylcyclohexane. Light absorption into the visible region was achieved in all cases, but activity
was maximized using the tetramethyl-ethylenediamine ligand. Activity under solar illumination
was associated with N incorporation to anatase lattice and presence of charge neutrality vacancies.
A multi-edge X-ray absorption study of the catalysts provided insights into the charge neutrality process,
demonstrating the existence of cationic vacancies as well as strongly disturbed middle range order with
absence of typical Ti (III) states. Optimum activity was found to be associated with an optimum N/Ti
ratio of ca. 0.1. Higher N content leads to interacting defects affecting negatively activity by an increase
of the charge recombination [47]. A combination of microemulsion and hydrothermal synthesis
procedures utilized different (organic/inorganic molecule) sources in the aqueous phase to dope
titanium oxide with nitrogen. Materials were tested for Rhodamine B (RhB) dye and 2,4-dichlorophenol
elimination. Maximum activity was obtained with a trimethylamine precursor used as nitrogen
source. Band gap modification and charge recombination decrease were detected as a result of nitrogen
incorporation. Both render positive activity effects for a (synthesis) N/Ti ratio of 2 [48]. More simple
preparation procedures consist of thermal treatment of titania oxo-hydroxide precursor(s) in ammonia,
hydrazine, nitrous oxide and/or other nitrogen-containing gases or liquids [49]. Similarly, other oxides
such as ZnO, perovskites and many others have been examined in the context of nitrogen doping [50].
In general, and as summarized in references [1,49], nitrogen doping is a rather complex phenomenon
from a structural and electronic point of view. Several chemical species (N at anion position, NO,
NHx, CN at interstitial and surface positions, and others) are present in the solid irrespective of the
preparation procedure leading to a variety of situations. However, it appears that, essentially, such
N-containing species create different localized defects states [1,45–50]. Of course, this depends on
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the loading, as it grows localized states located near the valence and conduction bands of parent
structure can coalesce with such bands, changing from localized to delocalized structure. However, it
appears that in non-covalent oxides such as titanium or zinc oxides a high level of nitrogen, above ca.
2–3 at. %, is required for such coalescence and thus mostly localized states are obtained in reported
publications [1,49,50]. Figure 2 depicts a summary of the (main) chemical species and corresponding
(localized) electronic effects affecting activity. Simultaneous use of UV and visible photons is ascribed
to a combination of effects related to the new states near the conduction band (absorption of visible
light photons) and, at specific N/Ti ratios, a decrease of charge recombination, obtained irrespective
of the illumination wavelength. Other species may also contribute to enhance the photo-activity but
the corresponding structure-activity links are yet to be firmly established. The combination of N and
cations such as W was essayed, and the study of the corresponding preparation procedure and chemical
species present in the solid thoroughly detailed [51]. Nanostructured (4–10 nm) anatase powders
were obtained having a N content up to 1.5 at. % and W up to ca. 22 at. and tested in the partial
oxidation of toluene and styrene. Analysis of the effect of calcination temperature in the 400–600 ◦C
range provided evidence of the activity maximization at the lower calcination treatment, irrespective
of the illumination wavelength [52]. A N/W 0.1/10 at. % content of the anatase phase optimized activity.
This was ascribed to a combined effect of the decrease of the band gap energy and the concomitant
increase of radical hydroxyl-type species (in turn derived from a decrease of charge recombination).

The cases of halides [53–56] is relatively simple. Fluoride incorporation at the bulk of anatase
generates Ti3+ species on the gap for charge compensation (Figure 2). On the other hand, F presence at
the surface has a strong effect in the primary particle shape of anatase, favoring the exposure of the
(001) plane [57–59]. S doping has also been explored and, contrarily, is a structurally complex system.
To a first approximation, Sulphur doping parallels the complexity of N-containing one in terms of the
chemical species potentially present as well as electronic effects. S doping usually considers anionic
(S2−; S2

2−) species [60] and cationic (S4+; S6+) substitutional/interstitial-type [61] species, in addition to,
at least, sulfate surface species. S stabilizes the anatase polymorph (retarding rutile appearance upon
calcination), increases light absorption and, in both anionic and cationic positions, reduces charge
carrier recombination. Figure 3 summarizes the electronic situation for the mentioned cases. Sulphur
combination with Fe has been shown to be particularly effective for UV and visible light utilization in
photo-catalysis [62].

C is another complex case, experimental approaches indicate the presence of surface carbonate
and carbonaceous species, as well as lattice-bound carbon species [63,64]. Lattice positions can be
anionic and cationic substitutional positions as well as interstitial ones. Their electronic effects are
detailed in Figure 3. Apparently, most efficient photocatalysis is achieved in presence of localized states
near the valence band. This similarity with nitrogen doping is not only a characteristic of TiO2 based
catalysts but it is apparently the case for ZnO [65]. Co-doping of C and Fe has been also essayed to
obtain single phase nanostructured (primary particle size of 12–16 nm) anatase powders [66]. C atoms
were detected at substitutional and interstitial positions of the anatase while Fe occupied Ti cation
lattice positions. Materials were tested for malachite green photo-degradation. Authors observed
maximum activity using a catalyst having a doping content of ca. 8/2 C/Fe wt.%. In these co-doped
samples, carbon is responsible for appearance of localized states near the conduction band while
Fe has multiple roles, particularly affecting capture electrons and decrease recombination of charge
carriers. The cooperation of the two alien atoms opens a pathway for visible light utilization and to
optimize the charge carrier fraction utilized to oxidize the target molecule. The co-doping of zinc oxide
is also frequently investigated, and the C and Fe pair is a case under investigation. An Fe content
close to 2.1 wt.% leads to maximum activity for 2,4,6-trichlorophenol elimination under visible light
illumination. For this formulation, carbon and Fe ions trigger the appearance of localized levels near
valence and conduction bands, respectively, facilitating visible light absorption and improving activity
with respect to single-doped and bare oxide reference materials [67].
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Figure 3. Schematic representation of the electronic effects generated by non-metal doping in
anatase-based systems.

3. Composite Photocatalysts

Composite photocatalysts can have a significant number of different families. A first one considers
the coupling of two (or several) semiconductors. Using titania as the base component we can distinguish
between systems oriented to couple titania with visible or infrared oriented components. A second
family can couple titania with metals and is particularly oriented to use the surface plasmon resonance
to enhance simultaneously UV and visible (sometimes near IR) capabilities of the photocatalyst. A third
family utilizes polymers as the base component of a composite system. In all cases, the interface among
components plays a critical role in favoring activity [68].

Considering the use of UV and visible light, main examples of the first family of TiO2-based
samples present a positive photocatalytic response (higher activity than the bare titania reference).
Such an effect has been achieved by a well-controlled interaction of titania with minor oxide entities
such as SiO2 [69,70], CuOx [71,72], NiO [73], ZnO [71,74], Bi2O3 [75–77], CeOx [77–79], or WO3 [80].
FeOx-containing semiconductors are also actively investigated however the behavior of such systems
combine frequently photocatalysis with photo-Fenton [81]. More complex formulations consider the
combination of titania with, for example, heteropolyacids [82,83], vanadates such as BiVO4 [84,85]
or complex oxides such as CuNiOx [86] and FeAlO3 [87]. Similar catalysts have been studied for
ZnO-based materials. More specific are those having two Zn-based semiconductors such as ZnWO4 [88]
or ZnFe2O4 [89] combinations with ZnO. In these cases, to a first rough approximation, the UV activity
is controlled by titania (or ZnO) and can be improved if charge separation takes place between the two
components after light absorption. This requires specific arrangements of the conduction and valence
bands of the components, being among the most successful those of type-II (which separates physically
electron and holes created in both components) or Z-type schemes (which facilitates the selective
annihilation taking place between electrons of one component and holes of the other). The exact contact
between titania and the above-mentioned second components is strongly size-dependent, and current
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information is relatively limited [1,17]. Visible activity is, on the other hand, usually achieved by the
light excitation of the second component although the different (local) structure of titania and the
interface between components can play an active catalytic role.

As an illustrative example of the situation we highlight a study using three of the aforementioned
oxides (CuO, CeO2 and Bi2O3) present on the surface of an active (and dominant component on
percentage) anatase TiO2 component [77]. Under UV, activity was optimized at somewhat low
concentrations (x mol% below 2.5 mol%; Figure 4A). Under sunlight-type irradiation, the maximization
of activity required catalysts with higher concentrations of the surface oxides (2.5 mol% for CuO and
5 mol% for CeO2; Figure 4B). Although an enhancement of the absorption of visible light photons was
confirmed using optical spectroscopies, the Bi2O3-TiO2 system did not improve (for all contents) the
activity of the pure TiO2 reference. Figure 4C–H depicted a schematic photo-handling scheme taking
place for CuO-, Bi2O3- and CeO2-TiO2 composite samples under illumination. Under UV illumination
conditions (Figure 4A–E), the active role of the interface for the efficient capture of electron leads
to an increase of the concentration of holes and hydroxyl radicals in the surface of the anatase and
finally triggers the activity enhancement. Under sunlight-type illumination, a more complex situation
appears to occur (Figure 4F–H). The structural and electronic characterization of the samples provided
evidence that the CeO2-TiO2 interface has a positive role in charge handling. Contrarily, such electronic
interaction between components negatively affected the chemical behavior of the Bi2O3-TiO2 samples.
For CuO-TiO2, negative effects on activity could come from the annihilation of charge and concomitant
decrease of available holes at the surface of the major TiO2 component. As illustrated in Figure 4,
these numerous charge-related phenomena taking place under the simultaneous excitation by UV and
visible wavelengths inform that activity relies on the physico-chemical properties of the components,
and, critically, on the interaction between them.Molecules 2020, 25, x FOR PEER REVIEW 10 of 28 

 

 
Figure 4. Reaction rate for of the samples (CuO-, Bi2O3- and CeO2-TiO2) and TiO2 reference prepared 
by microemulsion method under UV (A) and Sunlight-type (B) illumination conditions. Schematic 
representation of the interface role in the composite samples under UV (C–E) and Visible (F–H) 
irradiation. Reprinted with permission from [73]: Muñoz-Batista, M.J. et al.; ACS Appl. Mater. 
Interfaces. 2016, 8, 13934–13945. Copyright © 2020 American Chemical Society. 

A singular contribution makes a careful comparison between doped and composite W-
containing TiO2 anatase catalysts [90]. This would attempt to compare the difference of surface 
tungsten species obtained in a pure doped system with those deposited onto the titania oxide. Figure 
5 summarizes information rendered by electron diffraction for doped (W-TiO2) and composite 
samples (WO3/TiO2). The physico-chemical analysis of the catalysts probes the differences in the W-
containing entities in these two types of samples. The dark field microscopy images included in 
Figure 5 identified the specific geometrical/structural location of W in doped and composite samples, 
showing the structural differences of having isolated atoms located at titania surface positions (doped 
samples) from those where always W-O-W (clustering) is obtained (composite samples). The activity 
of the doped/composite samples having equal W/Ti ratio is also presented in Figure 5. Strong 
differences are observed between the two types of samples, a fact that emerges from the different 
handling of light and surface properties [90]. 

2.0x10-10

4.0x10-10

6.0x10-10

8.0x10-10

1.0x10-9

1.2x10-9

 

 

 x mol %

R
ea

ct
io

n 
ra

te
 / 

m
ol

 m
-2
 s

-1  Ti
 CuTi
 BiTi
 CeTi

 
0.01 0.10.05

0.025  
0.005

1.0x10-10

2.0x10-10

3.0x10-10

4.0x10-10

 

 

 x mol %

R
ea

ct
io

n 
ra

te
 / 

m
ol

 m
-2
 s

-1

 Ti
 CuTi
 BiTi
 CeTi

 
0.01 0.10.05

0.025  
0.005

A

C

B

TiO2

CeO2

-Ce3+V

+ -

C7H8CO2
C7H6O

Bi2O3

+ -

V

-Biδ+V V

C7H8CO2
C7H6O

F

TiO2

CeO2

-Ce3+V C7H8

CO2
C7H6O- +

CuO

Cu1+- V

TiO2

+ -

C7H8CO2
C7H6O

E
Bi2O3

V

-Biδ+V V
+-

TiO2

TiO2

TiO2

TiO2

D
CuO

Cu1+- V

TiO2

-

- +

TiO2

-

+

A

B

C

E

D

F

G

H

Figure 4. Reaction rate for of the samples (CuO-, Bi2O3- and CeO2-TiO2) and TiO2 reference prepared
by microemulsion method under UV (A) and Sunlight-type (B) illumination conditions. Schematic
representation of the interface role in the composite samples under UV (C–E) and Visible (F–H)
irradiation. Reprinted with permission from [73]: Muñoz-Batista, M.J.; et al. ACS Appl. Mater. Interfaces.
2016, 8, 13934–13945. Copyright© 2020 American Chemical Society.
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A singular contribution makes a careful comparison between doped and composite W-containing
TiO2 anatase catalysts [90]. This would attempt to compare the difference of surface tungsten species
obtained in a pure doped system with those deposited onto the titania oxide. Figure 5 summarizes
information rendered by electron diffraction for doped (W-TiO2) and composite samples (WO3/TiO2).
The physico-chemical analysis of the catalysts probes the differences in the W-containing entities
in these two types of samples. The dark field microscopy images included in Figure 5 identified
the specific geometrical/structural location of W in doped and composite samples, showing the
structural differences of having isolated atoms located at titania surface positions (doped samples)
from those where always W-O-W (clustering) is obtained (composite samples). The activity of the
doped/composite samples having equal W/Ti ratio is also presented in Figure 5. Strong differences are
observed between the two types of samples, a fact that emerges from the different handling of light
and surface properties [90].
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Figure 5. (A) EDS-STEM images for W-Ti materials. 10W90Ti and 20W80Ti label doped samples with
W/Ti atomic ratio of 0.11, 0.23, respectively. 0.1WO3/TiO2 and 0.25WO3/TiO2 are composite catalysts
with 0.11, 0.24 WO3/TiO2 molar ratio, respectively. A dark field STEM image is included at the right-hand
top part of each map. (B) toluene and styrene photo-catalytic elimination reaction rate as a function of
the W/Ti atomic ratio of the samples. Reprinted with permission from [86]: Caudillo-Flores, U.; et al.
Appl. Catal. B: Environ. 2019, 245, 49–61. Copyright© 2020 Elsevier.
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Combination of titania with carbon containing semiconductors such as carbon nitride [91–95] and
graphene [96–99] or graphyne-type materials [100–102] can also be highlighted in the context of the
UV-visible combination. Many oxides, for example, CeO2 were also tested in combination with carbon
layers [103] or carbon nitride [104]. Considering pure anatase, the interaction with carbon nitride has
been analyzed but conflicting results are present in the literature. As reviewed in ref. [4], both type II
(with electrons transferred to titania and holes to carbon nitride) and Z-scheme (with electrons from
titania and holes from carbon nitrate suffering annihilation) junction appears to operate under UV
illumination. No obvious physico-chemical grounds have been presented in order to justify such
difference. Under visible illumination it appears that charge separation takes place with electrons
going from carbon nitride to titania. Operation under sunlight improves the parent systems and
this has been particularly ascribed to the electronic contact between the materials, as well as other
positive effects of carbon nitride incorporation into the composite and related to morphological and
adsorption properties [91–95]. In the case of graphene-titania, similar positive effects have been
described to consider the higher activity displayed with respect to the parent reference systems [96–98].
An interesting study analyzed the specific interaction of shape-controlled anatase particles exposing
specific surfaces to graphene [105]. As shown in Figure 6, the control of the shape of the anatase
nanoparticles triggers the contact of the anatase with the carbon nitride support using specific surfaces
planes, (101), (001) and (100). Activity is strongly promoted by the presence of graphene. Activity is
shown to follow the order (100) > (101) > (001), which is not the activity order for pure anatase samples.
An improved charge transfer for the case of the (100) surface due to the generation of close Ti-C
carbon contacts is claimed to be the main reason for the high activity of the composite system. Again,
this proves that the contact between phases is strongly dependent on local order details, which are not
easily predicted using current knowledge. The detailed information at nanometric level may permit us
to understand the effect of the interface on charge handling and would thus allow us to rationalize the
charge behavior of the composites of titania and carbon-containing materials.
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Additional composite systems relay in the combination of the UV-oriented TiO2 and infrared
absorbing semiconductors. Sulfides such as MoS2 or In2S3 have been used in this context [106,107].
Regarding oxides, we can highlight the cases of Ag2O [108], and WOx [109,110]. These systems
and particularly the latter are real, full-spectrum catalysts, with utilization of the UV-visible-nearIR
electromagnetic range. In addition, WOx-TiO2 has been tested in ternary configurations with graphene
oxide in order to enhance activity upon all illumination conditions [111]. Defective W(VI) oxides
are known to present a strong absorption capability along visible and infrared regions, and are also
photocatalytically active. In Figure 7 it is shown that the W-Ti composite excited under near infrared
(750 nm) light combines thermal and light-related effects. Thermal effects are not as strong as in the
pure WOx reference but they clearly contribute to photocatalytic activity. This appears as a mixture
of thermal and light effects due to the non-radiative and radiative de-excitation taking place under
visible and IR illumination conditions. The effect is not a simple sum and a clear synergy comes out
from the analysis of Figure 7 [110]. Such a behavior was also present in Ru-RuOx core-shell structures
supported in anatase TiO2 [112]. The heat-light synergy is a complex phenomenon which is observed
the presence of plasmonic type components but also adequate handling of light-heat transformation
through the phonons of the solids as well as surface chemical species. Additionally, non-plasmonic
materials could also provide the basis of thermo-photo catalysts using infrared light as heat and/or
light primary sources. Ceria-based materials constitute a paradigmatic example, with thermo-photo
activity mostly related to defect chemistry, although the details are essentially unknown [113–116].
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Figure 7. (A) Time-dependent H2 generation from NH3BH3 aqueous solution over different samples
upon IR-light irradiation (λ> 750 nm) (the inset shows the corresponding catalytic reaction temperatures);
(B) schematic of the catalytic mechanism for H2 generation from NH3BH3 molecules over the plasmonic
W18O49 NWs (the inset shows a TEM image of the W18O49 NWs); (C) catalytic H2 generation
from NH3BH3 aqueous solution at different temperatures for 1 h over different samples without
light irradiation; (D) time-dependent H2 generation from NH3BH3 aqueous solution at 15 ◦C over
different samples upon IR-light irradiation: (a) TiO2 NFs; (b) W18O49 NWs; (c) W18O49/TiO2 branched
heterostructure; (d) without a catalyst. Reprinted with permission from [102]: Zhang, Z.; et al. Adv.
Mater. 2018, 30, 1705221. Copyright© 2020 Wiley.
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Other composite systems relay in the used of solid up-converters. An illustrative example concerns
the NaYF4:Yb3+, Tm3+@TiO2 core-shell structured photocatalyst. The characterization results showed
that the core–shell structured composite consisted on (hexagonal phase) NaYF4:Yb3+, Tm3+ microrods
and anatase TiO2 nanosheets with exposed high-reactive {001} facets (Figure 8). The new photocatalyst
gives higher photocatalytic activity than the (components) physical mixture and pure TiO2 for phenol
and RhB elimination under NIR and (to a lesser extent) simulated sunlight irradiation. The authors
proposed a mechanism to explain the enhancement in the photoactivity reached with the NaYF4:Yb3+,
Tm3+@TiO2 photocatalyst, as summarized in the schematic illustration presented in Figure 8. In this
figure, the up-converter supplies UV and visible (blue) photons to the titania counterpart [117]. Other
relatively similar works are rhombic hierarchical YF3/TiO2 [118], β-NaYF4:Yb3+,Tm3+/Er3+-TiO2 [119],
or NaYF4:Yb+3,Nd+3 @ TiO2 [120] composite systems.
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Schematic illustration of energy transfer mechanism from Yb3+-Tm3+ doped hexagonal phase NaYF4

microrods to {0 0 1} facets dominated UV–vis–NIR driven TiO2 nanosheets under the 980 nm light
irradiation (B). Reprinted with permission from [109]: Wang, W.; et al. Appl. Catal. B 2014, 144, 379–385.
Copyright© 2020 Elsevier.

On the other hand, the up-conversion core catalysts have not only been combined with TiO2 but
also with other materials to obtain hybrid or composite ternary systems. Up-conversion/C-TiO2 ternary



Molecules 2020, 25, 4008 14 of 27

composite systems have been studied in detail. In a first work [121], a (Yb3+,Er3+)-NaYF4/C-TiO2

composite system photoactivity was evaluated for NOx destruction reaction under UV, visible and
near-infrared light illumination conditions. The results showed that when the C-TiO2 photocatalyst was
combined with the (Yb3+,Er3+)-NaYF4 up-conversion phosphor, the visible absorption of C-TiO2 was
significantly improved up to 900 nm, presenting a nice correlation with the photoluminescence spectrum
of (Yb,Er)-NaYF4 excited with 980 nm. For this reason, the (Yb3+,Er3+)-NaYF4/C-TiO2 composite
presented excellent deNOx ability not only under the irradiation of visible and UV lights but also
NIR light, being much superior to those of pure C-TiO2, P25 and even the (Yb3+,Er3+)-NaYF4/N-TiO2

composite. In the second work [122], the authors mixed the blue color (Yb3+,Tm3+)-NaYF4 (named
B-UP), green color (Yb3+,Er3+)-NaYF4 (named GUP) and red color (Yb3+,Er3+)-Y2O3/YOF (named
R-UP) up-conversion phosphors with C-TiO2 using a weight ratio of 1:1 The photocatalytic activities of
the composites were evaluated in the degradation of RhB and the elimination of NO gas under NIR
light irradiation. According to photocatalytic results, the photonic efficiency under infrared light was
much higher than the corresponding observables obtained under UV and visible light. The green light
emitting up-conversion phosphor-C-TiO2 composite presented superior photocatalytic performance
over blue and red ones.

Another family of materials concerns the anatase-based composite systems with a second
plasmonic-type component. Most typically plasmonic components consist of metals; we previously
mentioned those based in semiconductors, such as tungsten-based ones. A plasmonic-based catalytic
system based in metals is mostly used to profit from UV and visible light, although here we will show
examples that can also profit from near infrared wavelengths. Under UV illumination, titania and most
typical semiconductors can improve charge separation through the electron storage capacity of the
metal and the subsequent beneficial effects connected with the higher lifetime of hole-related species
located at the semiconductor. Under visible illumination, the metal is the component able to absorb light
and electrons can be transferred to the semiconductor phase [1,6]. Of course, metals are also frequently
utilized in multi-component catalysts (and not only with a main UV- absorber photocatalyst) in order
to efficiently harvest the full solar light spectrum. The most utilized (plasmonic or not) metals as
photo-catalytic co-catalysts are Au, Ag, Pt, Pd, or Cu as well as their binary combinations [1,5,123,124].

Considering metals gold is a classical plasmonic-type choice. Asymmetric Janus nanostructures
containing a gold nanocage (NC) and a carbon–titanium oxide hybrid nanocrystal (AuNC/(C–TiO2))
exhibited 3.2 times higher photoactivity than that obtained with the C–TiO2 in the photocatalytic aerobic
oxidation of isopropanol under visible light. Electromagnetic field simulations and EPR results indicate
that plasmon–photon coupling is largely amplified at the interface between the AuNC and C–TiO2

components, leading to the enhanced generation of energetic hot electrons utilized in the photocatalytic
reaction [125]. Nanoparticles of gold over titania also showed exceptional activity in bio-alcohol
reforming under UV and solar light conditions, optimizing activity for sizes near 5–6 nm [126].
An interesting ternary system using this metal is the NaYF4(Yb3+/Er3+)-TiO2-Au [127,128]. In one
work, a series of Au decorated NYF@TiO2 core@porous-shell microspheres (0.5, 1, 2, 3 wt.% Au) were
presented. The photocatalytic efficiency of these new nanohybrid catalysts toward methyl orange
(MO) degradation was examined, and the significant enhancement was observed with respect to the
benchmark photocatalyst P25, as well as NYF and NYF@TiO2 samples. The highest MO degradation
was obtained with the material with 1 wt.% of Au under NIR and solar irradiation. The enhanced activity
was attributed to synergistic effects from nanocomponents arranged into the nanostructured architecture
in such a way that favors the efficient charge/energy transfer among nanocomponents and largely
reduced charge recombination [127]. Recently, the (NaYF4:Yb3+/Er3+)-Au/TiO2 nanotube-type material
was synthesized and its photocatalytic activity compared with the TiO2 NTs (nanotubes) and Au/TiO2

for the RhB degradation under NIR illumination. The results indicated that the up-converter-Au/TiO2

NTs sample exhibited outstanding photocatalytic activity in the degradation of RhB but no obvious
degradation was observed in the presence of TiO2 NTs and Au/TiO2 NTs. These results indicate that
NIR light can be exclusively utilized by (NaYF4:Yb3+/Er3+)-Au/TiO2 NTs [128].
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Silver is another plasmonic metal with frequent utilization in the field of photocatalysis. A series
of Ag-TiO2 photocatalysts were evaluated for phenol degradation under visible irradiation. Samples
always contained a combination of Ag metallic and Ag+ chemical states. Optimum activity was
reached using a silver loading of 6.5 mol% (measured as AgNO3 used during the preparation
stage). Such optimum was correlated with the maximization of the amount of silver in Ag0 form.
More specifically, the authors suggested that the activity improvement connects with the presence
of silver metal (due to enhancing the electron–hole separation and surface plasmon resonance as
well as the presence of surface carbon working as a light sensitizer) [129]. Zerovalent metallic silver
nanoparticles with hemispherical shape were observed in a series of g-C3N4/AgX (X = 2, 5, 10 and
12 wt.% of Ag) materials. The best photoactivity was obtained with the sample with 10% of Ag,
improving the performance of the bare carbon nitride by ca. 2-fold for degradation of dyes. In a
subsequent work, the g-C3N4/Ag10% material was the base for a ternary catalyst with MoS2 quantum
dots. An enhanced photocatalytic activity was observed for the hybrid photocatalyst. This was
ascribed to the charge handling Z-scheme taking place in the system, with Ag nanoparticles acting as
the charge separation center [130]. A ternary system containing silver has been extensively studied.
A different ternary system is a NaYF4:Yb3+, Tm3+@TiO2/Ag core@comby shell nanostructure. The R6G
dye degradation results demonstrated that the composite exhibits excellent photocatalytic activity
as the up-converter core can efficiently converts NIR light into UV light [131]. NIR and UV-visible
light induced photocatalytic activity was observed for a NaYF4:Yb3+,Tm3+@TiO2/Ag composite.
The nanocomposite showed photocatalytic activity for Rhodamine B degradation under full solar
irradiation. Corresponding activity measurement appeared to increase UV and visible light activity
with respect to photocatalyst(s) based on Ag-titania. The enhancement was interpreted with the help
of photoluminescence and ascribed to the NIR light influence in the overall photocatalytic reaction
taking place in the NaGdF4:Yb3+: Er3+/Ag/TiO2 composite [132].

Closely related to the above described silver-containing materials are Ag/AgX/semiconductor
ternary materials. The silver coupling with a silver halide has been subjected to many investigations.
As an example, an efficient and stable visible-light-driven Ag/AgX/graphene oxide, GO, (X = Br, Cl)
plasmonic photocatalyst was assembled. The XPS results confirmed the existence of metallic Ag0 in
the Ag/AgX/GO hybrid nanocomposites with a surface molar ratio Ag0 to Ag+ of 1:16. Enhanced
photocatalytic performance for the photodegradation of MO dye under visible-light illumination
was shown by these materials with respect to Ag/AgX references. This could be attributed to the
high adsorptive capacity of Ag/AgX/GO, the smaller size of Ag/AgX “nanoparticle” in the hybrid
nanocomposites, the reinforced charge transfer, and the suppressed recombination of electron/hole
pairs caused by the Ag0 presence in Ag/AgX/GO [133]. The Ag/AgX couple was also supported on
other semiconductors. Presence of 10–20 nm Ag0 within Ag@AgCl quantum dots (QDs) were observed
to be evenly dispersed on the surface of Bi2WO6. The Ag@AgCl (20 wt.%)/Bi2WO6 sample exhibited the
best photocatalytic activity, degrading 97.6% of rhodamine B (RhB) after irradiation for 2 h, which was
1.33 times and 1.32 times higher than that of Ag@AgCl and Bi2WO6 photocatalysts, respectively.
This was attributed to the excellent photocatalytic activity due to the synergetic effect of Bi2WO6,
AgCl, and Ag nanoparticles [134]. Ag/AgBr/TiO2 composite catalysts were tested for elimination
of liquid phase aqueous phenol and gas-phase acetaldehyde. The composite showed an efficient
photo-generated charge transfer between AgBr and TiO2 under both UV–visible or visible illumination
conditions. This in turn facilitated charge separation and the enhancement of the activity [135]. Finally,
Ag/AgX/SrTiO3 (X = Cl, Br) plasmonic photocatalysts were prepared by microemulsion and metallic Ag
generated after a subsequent irradiation step. The degradation of MO and RhB dyes was essayed under
visible light illumination, with the system containing AgBr showing higher activity. The enhanced
activity was ascribed to the active role played by the AgBr component working together with the
surface plasmon resonance of the Ag nanoparticles [136].

In addition, Pt has attracted attention in terms of using metal as a second component in composite
catalysts. Platinum does not present (at least for nanosized range nanoparticles) a pure plasmonic
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optical behavior like the above-mentioned metals, but it is broadly used in the context of utilizing UV
and visible light. Metallic Pt nanoparticles (3–5 nm) deposited on the surface of a commercial TiO2

(Fluka) showed good activity for 2-propanol photo-degradation. Presence of the metal increased the
activity ca. 1.6 times with respect to bare oxide. The Pt role was twofold, firstly it provides adsorption
sites for 2-propanol and secondly, it acts as electron sink to facilitate separation of charge carrier
species [137]. In other work, Pt nanoparticles supported over a N-doped TiO2 were investigated,
particularly the effects of the Pt loading content and pH of the (methanol/water) reaction medium on
the performances of the photocatalysts for hydrogen evolution. The results showed that the addition
of Pt onto the TiO2−xNx surface (optimum loading of 0.2 wt.%) can increase the photocatalytic reaction
and enhance hydrogen evolution. The photocatalytic reaction appears to be favored in the neutral
pH range [138]. A rather nice contribution analyzed the catalytic effect of several variables such as
the amount of Pt precursor, TiO2 properties, deposition method (reverse microemulsion and wet
incipient impregnation) and reducing agent on size, distribution, and chemical state of deposited
Pt nanoparticles. XPS results confirmed that samples prepared by microemulsion showed much
higher binding energy values for platinum than the other preparation method. Degradation of phenol
under UV-visible illumination was shown to depend on Pt particle size. Optimum particle size and
maximization of activity was achieved using the microemulsion method [139]. Interestingly, Pt can
be deposited over anatase TiO2 selectively over specific surface planes (like (101)), favoring specific
reactions like hydrogen production [140]. Pd promotion of TiO2 activity was also investigated [141].
The work analyzed the control of the metal particle size and showed that an average particle size of
2.4 nm improves activity significantly with respect to bare TiO2, particularly under visible light [141].

Bimetallic particles have also been utilized in composite materials in order to add visible and near
infrared capabilities to the typical UV of the main semiconductors such as titania. Gold is present
in a significant number of contributions. Bimetallic Ag/Au modified-titanium oxide photocatalysts
improved the phenol photo-decomposition performance of monometallic references, obtaining the
highest reaction rates with the samples Ag/Au-TiO2_4 and Ag/Au-TiO2_5 which contain different
Au/Ag ratios (1.5/0.5 and 1.5/4.5 respectively) supported over the so-called “TiO2_4” (mixture of rutile
and anatase) and “TiO2_5” (rutile) oxide solids, respectively [142]. Bimetallic (Au/Pt) nanoparticles
were also prepared on titania using a microemulsion procedure. Optimum phenol degradation was
achieved with the sample calcined at 450 ◦C with an Au/Pt ratio of 0.5/0.1 mol%. Size-controlled
Au/Pt nanoparticles together with a significant amount of electronegative gold species (Auδ−) resulted
in higher photoactivity. Also, the samples prepared using the above supports overperform others
Au/Pt-TiO2 composites with the same Au/Pt ratio over different TiO2 supports (P-25, ST-01, TiO-5,
TiO2 nano-tubes) [143]. In a somewhat parallel contribution, Au/Pd nanoparticles supported on TiO2

were investigated paying attention to the calcination temperature. Increasing it from 350 to 700 ◦C
deteriorates activity. A modest decrease under UV and quite significant decrease under visible light
for phenol photo-degradation can be seen in Figure 9. Catalysts calcined at 350 and 400 ◦C showed
the highest photocatalytic activity for phenol degradation under visible and UV light, respectively.
An in-situ EPR study examined the formation of radical species under illumination. This tool found
that the O2− radical species is mainly responsible of the pollutant degradation under all illumination
conditions tested. The study was completed with the help of HAADF-STEM (High-angle annular
dark-field scanning transmission electron microscopy) and TEM microscopies. Results pointed out
that the Pd to Au ratio in the surface layer of Au/Pd nanoparticles decreased from 5:1 to 1:4 with
calcination temperature going from 350 to 700 ◦C, respectively. The overall analysis indicates that
increasing calcination temperature caused segregation of metals and gold-enrichment in the outermost
region of Au/Pd bimetallic nanoparticles. Optimum photoactivity is connected with the adequate
degree of mixing of both metals and the dominant presence of Pd at surface layers (Figure 9) [144].
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Recently, novel Ag-Cu bimetallic alloy NPs decorated β-NaYF4: Yb3+, Tm3+ (NYFT) @TiO2

micro-rods were prepared by a surfactant-assistant sol–gel method and H2 reduction process. Under
near-infrared (NIR) light irradiation, Ag-Cu alloy supported NYFT exhibited significantly enhanced
photocatalytic activity in comparison with other samples (NYFT, NYFT@Ag and NYFT@Cu), and water
disinfection involving 100% inactivation of bacteria was achieved within 8 h. The increase in the
photoactivity was assigned to the synergistic effect taking place between the up-conversion material
and alloy NPs. In the NYFT@Ag-Cu composite, NYFT could convert NIR into UV and visible light.
TiO2 absorbed UV emissions and produced electrons and holes. Electrons in the CB of TiO2 could first
transfer to Ag then to Cu, which would effectively inhibit recombination of charge carriers and increase
their lifetimes [145]. Bimetallic co-catalysts presenting Pt as a major component find application in
numerous photocatalytic processes. As an example, Pt-Pd [146] and Pt-Ru [147] co-catalysts supported
on nonmetric (ca. 10 nm) anatase were tested in the photoproduction of hydrogen from methanol:
water mixtures. For Pt-Pd, optimum activity can be ascribed with the formation of binary alloys
having disorder fcc type structure. For Pt-Ru, Pt in a metallic state was located in the proximity of Ru
oxide species. Irrespective of the structural situation, the binary systems improve charge separation
and overperform the corresponding monometallic system under both UV and sunlight operating
conditions. We can also mention a Fe/La/Zn@GO trimetallic nanocomposite, active in the elimination
of the phenylhydrazine organic pollutant under sunlight illumination [148].

To end this section, we will briefly mention photo-catalytic oxide systems introduced in polymer
matrixes. Titania is the main semiconductor used in this case. The incorporation of nanostructured
titanium oxide has been utilized in several polymers such as ethylene vinyl alcohol (EVOH) [149],
polypropylene (PP) [150], polycaprolactone (PCL) [151] or polyvinylidene difluoride (PVDF) [152]
to generate self-cleaning and self-degrading materials. The analysis of the biocidal properties
showed that a good contact between titania can make the whole surface of the composite material
biocidal and this provides the grounds for making active surfaces with wide application and at
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the same time allowing a controlled degradation of the polymer in order to avoid environmental
problems [153]. Another important field of application relates to water treatment using membrane
materials. Ultrafiltration membranes using such composite materials are the most commonly reported.
Using titania [154,155] or ZnO [156] UV active materials were presented while doping with Nd or
graphene oxide (GO) of titania were utilized to trigger the membrane functional properties upon
visible light illumination [157]. Finally, other functional composite materials can be exemplified by the
ZnO/SiO2 composite introduced into an ETHOCEL resin as UV light blocker [158].

4. Conclusions and Outlook into the Future

In this contribution, we survey the work carried out in the photocatalysis field and oriented it
to the use of sunlight as the energy source of the photo-chemical process. In this immense field of
research, we focus on titania-based materials as the most promising candidate to achieve this goal.
Nevertheless, titania is a UV absorber which can be the base of a universal highly efficient system but
requires significant engineering to achieve a fruitful use of the full spectrum of the solar light. As the
main tools to achieve this goal, we reviewed doped and composite materials as well as the combination
between these two approaches.

Doping of the main semiconductors such as titania has been extensively studied. Cation and/or
anion doping related to the insertion of metal and non-metal ions in substitutional/interstitial surface
and/or bulk positions was used to modify the band gap energy of titania and to create efficient
localized electronic states to achieve visible light absorption and activity. A specific case corresponds to
up-conversion cations, which allows the utilization of near infrared wavelengths. Similarly, composite
materials were utilized to achieve fruitful use of visible and near infrared regions of the solar
spectrum. Composite systems using semiconductors with low band gap, or displaying plasmonic
or up-conversion capabilities, are highlighted as rather powerful systems. Metal-titania systems
were also analyzed in terms of their potential for visible and/or infrared light (in addition to the UV).
Ternary systems combining metals, low band gap or up-converters semiconductors and (doped or
not) titania are mentioned as potentially the most useful full spectrum photo-catalysts. They require
complex preparation procedures and fine tune of the contact between components but would allow
future progress of the field. Finally, we briefly reviewed the use of polymers as matrixes to embedded
photo-catalytic oxides and generate functional materials with improved capabilities.

Although the full profit of the solar light is an extraordinary challenge, the progress in the field
has reached an extraordinary level, mostly relaying in the utilization of the above-mentioned complex
materials. The combination of all relevant technologies considering the management of the electronic
properties of titania (mainly although not exclusively band gap energy) jointly with the combination
of this base material (as well as other base materials such as zinc oxide) within composite systems
having (the above-described) specific components to profit from visible and infrared photons seems a
clear route to achieve a good photocatalyst that is able to utilize efficiently photons in the complete
electromagnetic range of sunlight. Nevertheless, optimization of activity requires the fine tuning
of the light-matter interaction and chemical properties of such complex, final materials. This task
can be achieved by a careful design and engineering of the structural/electronic properties of each
component, the corresponding interfaces among components as well as of the (most) active surfaces to
be exposed to the reactive atmosphere. New synthesis methodologies and the advancement in the
physico-chemical characterization of the photocatalytic materials would guide out work in achieving
this goal.
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