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Abstract

The virus that causes COVID-19 likely evolved in a mammalian host, possibly

Old-World bats, before adapting to humans, raising the question of whether

reverse zoonotic transmission to bats is possible. Wildlife management agen-

cies in North America are concerned that the activities they authorize could

lead to transmission of SARS-CoV-2 to bats from humans. A rapid risk assess-

ment conducted in April 2020 suggested that there was a small but significant

possibility that SARS-CoV-2 could be transmitted from humans to bats during

summer fieldwork, absent precautions. Subsequent challenge studies in a labo-

ratory setting have shed new information on these risks, as has more detailed

information on human epidemiology and transmission. This inquiry focuses

on the risk to bats from winter fieldwork, specifically surveys of winter roosts

and handling of bats to test for white-nose syndrome or other research needs.

We use an aerosol transmission model, with parameter estimates both from

the literature and from formal expert judgment, to estimate the risk to three

species of North American bats, as a function of several factors. We find that

risks of transmission are lower than in the previous assessment and are nota-

bly affected by chamber volume and local prevalence of COVID-19. Use of

facemasks with high filtration efficiency or a negative COVID-19 test before

field surveys can reduce zoonotic risk by 65 to 88%.
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1 | INTRODUCTION

The novel coronavirus SARS-CoV-2 is a generalized
pathogen capable of infecting many mammalian species
(Gryseels et al., 2020). In humans, SARS-CoV-2 infec-
tion often results in coronavirus disease 2019 (“COVID-

19”), one of the most widely distributed and deadly dis-
eases in recorded history (Gryseels et al., 2020). Suscep-
tibility to SARS-CoV-2 depends on the successful
binding of the viral spike protein to host angiotensin-
converting enzyme 2 (ACE2) receptors. Humans are sus-
ceptible and proficient transmitters of SARS-CoV-2 (Hui
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et al., 2020), primarily via the respiration of suspended
droplets or fine aerosols; transmission from contact with
a contaminated surface has limited support (Meyerowitz
et al., 2020).

Evidence suggests that SARS-CoV-2 evolved in a
mammalian host, possibly Old-World bats in the family
Rhinolophidae (Zhou et al., 2020). No SARS-related
betacoronaviruses have yet been identified in New-World
bats, but a different type of betacoronavirus has been
identified in a New-World bat from Mexico (Anthony
et al., 2013). Because of its origin in Old-World bats
(Zhou et al., 2020) and the potential susceptibility of
New-World bats to the virus, researchers and wildlife
managers in North America are concerned about the
risks posed by SARS-CoV-2 to North American bat
populations (Olival et al., 2020).

In April 2020, Runge et al. (2020) conducted an
assessment of the risk of SARS-CoV-2 infection in bats
via contact with humans conducting research, survey,
monitoring, wildlife control, and rehabilitation work in
summer fieldwork settings. They found that the risk to
bats was low if personal protective equipment (PPE)
was properly used, but there was significant uncertainty
about whether infection could result in spread within
bat populations. Information and data have emerged
since that risk assessment. This new information
includes the results of fruit bat (Rousettus aegyptiacus)
and big brown bat (Eptesicus fuscus) challenge studies
(Hall et al., 2020; Schlottau et al., 2020), updates, and
better forecasts of human epidemiological data
(e.g., human shedding and transmissibility, the impor-
tance of aerosols), estimates of the efficacy of different
kinds of PPE, information on infection and transmission
in other species, and estimates of survival of SARS-
CoV-2 in different environmental conditions. These new
studies can be used to update and expand the assess-
ment of the risks posed by SARS-CoV-2 to North
American bats.

Natural resource agencies conduct bat population sur-
veys and permit research activities during the winter in
North America, when bats congregate in caves, mines,
and other hibernacula to hibernate or roost. Congrega-
tions can be highly variable in size, from only a handful
to many thousands of bats (Kunz, 1982). Winter work
involves mainly research, survey, and monitoring (RSM)
carried out by State, Tribal, Provincial, and Federal
agency personnel and partners, and University faculty,
their students, and technicians. This work primarily
involves counting individuals in colonies of hibernating
bats, including biennial counts of Federally listed species,
such as the Indiana bat (Myotis sodalis) and Grey bat
(Myotis grisescens), necessary to assess the status of the
species under the U.S. Endangered Species Act (ESA;

16 U.S.C. §1,531 et seq.). Other research activities may
involve the handling of bats for investigation for the pres-
ence of Pseudogymnoascus destructans, white-nose syn-
drome (WNS) infection, or to administer and measure
the effects of experimental treatments for WNS
(e.g., Hoyt et al., 2019). Because winter fieldwork occurs
in poorly ventilated cave environments where North
American bats are congregating, it is important to evalu-
ate the potential risk of human transmission of SARS-
CoV-2 to bats resulting from RSM activities. We recog-
nize that the risk of human infection, and thus the risk of
transmission to bats during the RSM work, varies geo-
graphically and depends on local community incidence
of SARS-CoV-2.

Managers are faced with multiple competing objec-
tives regarding winter fieldwork. First, if humans intro-
duce SARS-CoV-2 to a naïve population of bats, it is
possible the novel infection could lead to morbidity and
mortality, which may imperil long-term bat conservation.
Further, if a reservoir of SARS-CoV-2 becomes
established in North American bats, it could represent a
source for new exposure and infection in humans; worse,
if such a reservoir provides an opportunity for evolution
or recombination of the virus, the new viral strains may
evade existing immune responses or reduce the efficacy
of vaccines or treatments (Huang et al., 2016; Olival
et al., 2020; Wang, Wang, & Zhuang, 2020). Second, con-
servation measures for other threats to bats, including
WNS, benefit from ongoing research, and the status of
ESA-listed bat species requires a periodic assessment of
population sizes, which occur during winter when many
bat species of interest congregate.

Agencies that authorize winter fieldwork on bats have
several possible mitigation strategies, including:
(a) suspension of work within one or more hibernacula
or roost sites; (b) efforts to reduce the risk that field crew
is infected with SARS-CoV-2; and (c) enhanced PPE
(e.g., properly fitted face coverings with high aerosol fil-
tration efficiency) to reduce the potential exposure of bats
to the virus. For the suspension of cave work, agencies
can issue guidance that no one is to enter a cave for any
RSM work for a specified period of time. A milder imple-
mentation would involve case-by-case analysis of the risk
at specific sites, with fieldwork not occurring at sites
where the risk was too high. To reduce the risk of field
crew shedding virus, individuals could be allowed to
enter caves to conduct work only after one, or a combina-
tion, of the following mitigation measures are completed:
(a) a vaccine is taken, (b) a test for SARS-CoV-2 is taken
up to 3 days before entering a cave, and that test is nega-
tive, or (c) individuals are quarantined for 14 days before
entering a cave and show no symptoms. For enhanced
PPE, individuals conducting work could be required to
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wear and maintain functional PPE, including appropriate
N95 respirators or other face masks (e.g., cloth masks or
polyester surgical masks), eye protection, latex or nitrile
gloves, or dedicated clothing (for example, coveralls,
Tyvek) to minimize exposure of bats from COVID-
19-infected individuals.

Estimating the risk to native New World bats is com-
plicated by uncertainties and multiple pathways of expo-
sure, although ongoing research may be used to inform a
risk analysis. Experimental infection and transmission
trials have been conducted for big brown bats (Hall
et al., 2020) and Old-World fruit bats (Schlottau
et al., 2020). While big brown bats did not show evidence
of infection or shedding of SARS-CoV2 (Hall et al., 2020),
fruit bats were readily infected and capable of viral-
shedding for a few days postinoculation (Schlottau
et al., 2020). Trials of cell tissue cultures of little brown
bats (Myotis lucifugus) are underway at the USGS
National Wildlife Health Center, which will provide evi-
dence for the ability of SARS-CoV-2 to infect and repli-
cate in this species.

In this paper, we describe an assessment of the risk of
transmission of SARS-CoV-2 from human to North
American bats during winter fieldwork. We chose three
bat species from different genera, with different behav-
iors and physiology, to represent the bats typically stud-
ied in winter. We use a mass balance air circulation
model to estimate the probability of aerosol transmission,
incorporating empirical estimates of parameters where
possible. Where empirical information did not exist, a
formal process of expert judgment was used to integrate
the best available scientific information, account for
uncertainty, and reduce bias in the estimation of key
parameters for predictive modeling (Morgan, 2014; Suth-
erland & Burgman, 2015). As part of this work, we con-
vened an expert panel to estimate a subset of parameters,
using a modified Delphi approach with the IDEA
(“Investigate, Discuss, Estimate, Aggregate”) protocol
(Hanea et al., 2017) and the four-point elicitation method
(Speirs-Bridge et al., 2010).

2 | METHODS

2.1 | Infection risk model

We considered two SARS-CoV-2 transmission pathways
for North American bats resulting from RSM activities
during the winter period, through (a) aerosolized SARS-
CoV-2 exposure during RSM activities in shared enclosed
space without handling; (b) aerosolized SARS-CoV-2
exposure during handling; and (c) exposure from SARS-
CoV-2 deposition on surfaces with subsequent ingestion.

The expected number of bats infected with SARS-CoV-2,
I, as a result of a particular survey is given by:

E I½ �=E IA + IH½ �= B−Hð ÞσA 1+ γSð Þ+HσH 1+ γSð Þ ð1Þ

where, B is the total number of bats in the space being sur-
veyed (i.e., A + H); A is the number of bats exposed to
aerosols, but not handled, during the survey; H is the num-
ber of bats handled during the survey; σA is the combined
probability of exposure and infection for an individual bat
potentially exposed to aerosols produced by humans (con-
ditional on the specifics of a survey, including the volume
of the bat hibernacula or roost, the ventilation rate in the
space, the size of the field crew, the probability crew mem-
bers are shedding virus, and other factors); σH is the com-
bined probability of exposure and infection for an
individual bat handled by a crew member, under the con-
ditions of a survey; and γS is a multiplier that captures the
additional risk of infection for an individual bat through
surface contact with viable virus particles.

The combined exposure and infection probabilities,
σx, are derived parameters that are functions of the char-
acteristics of the enclosed space being surveyed, the crew
composition, the prevalence of SARS-CoV-2 in the local
community, and various mitigation measures taken to
reduce risk. The calculation of the exposure and infection
probabilities for the two transmission pathways is
explained below.

2.1.1 | Infection rate in field crew

The human epidemiological parameter of interest is the
probability, p+, that an individual crew member is actively
shedding SARS-CoV-2 at the time of the survey. We calcu-
late this probability based on two factors: (a) the local prev-
alence of COVID-19 in the community in which the crew
members live; and (b) adjustments for any mitigation mea-
sures the crew takes before the fieldwork, notably volun-
tary testing, and quarantine before conducting fieldwork.

The probability a crew member is positive can be esti-
mated from county-level information: the prevalence in
their surrounding community (ψ), the result of a diagnos-
tic test, and the sensitivity and specificity of the test. Sen-
sitivity (Sn) is the probability that an individual with
SARS-CoV-2 has a positive test, while specificity (Sp) is
the probability that an individual who is not infected has
a negative test, and are characteristics of a diagnostic test
procedure; different testing methods may have different
sensitivity and specificity values. We assume that crew
members quarantine before taking a test for SARS-CoV-2
(to encompass the latency between exposure and measur-
able replication), take such a test, receive a negative test
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result, and quarantine until the survey begins. We are
interested in the probability that an individual is infected,
given that they receive a negative test for SARS-CoV-2.
The probability that an individual is infected conditional
on a negative test is found using Bayes' Theorem:

p+ =
1−Snð Þ×ψ

1−Snð Þ×ψ + Sp× 1−ψð Þ : ð2Þ

If a crew member does not take a test, the probability of
infection can be estimated as the county-level prevalence,
ψ , or by some other method that accounts for the crew
member's risk behavior (e.g., https://www.microcovid.org/).

The number of infectious staff, N+, is a function of
the size of the crew, N, and the probability that an indi-
vidual is shedding SARS-CoV-2 at the time of the survey,
p+, given by a binomial distribution

N + � binomial N ,p+ð Þ: ð3Þ

2.1.2 | Pathway 1: Aerosolized SARS-
CoV-2 exposure in shared enclosed space

The first transmission pathway involves exhaled aerosols
from an infected person circulating in the air of an enclosed
space and being inhaled by bats. We calculate the transmis-
sion risk by considering the amount of aerosol exhaled, the
resulting concentration of aerosols in the enclosed space,
the respiratory rate of bats, the amount of virus inhaled by
bats, and the resulting probability of infection (Figure S1).

We measure exposure in quanta, an indirect, empiri-
cally estimated metric based on human epidemiological
studies. A quantum is defined as the dose of airborne
aerosols required to cause infection in 63% of exposed
and susceptible human hosts (Buonanno, Morawska, &
Stabile, 2020; Buonanno, Stabile, & Morawska, 2020).
The emission rate (in quanta per hour), E, of aerosolized
SARS-CoV-2 by infectious field staff is the product of
three components: the hourly per capita quanta emission
rate, QI, a multiplier for the use of PPE, VPPE, and the
number of infectious field staff, N+:

E=QI ×VPPE ×N + : ð4Þ

We assume that the average concentration of aerosolized
virus at any location in the cave can be reasonably esti-
mated using a well-mixed material balance model (Miller
et al., 2020), as described in Equation (5). The concentra-
tion of infectious aerosols at a given point in time, C(t), is
measured in quanta per cubic meter. Additions to the
concentration of aerosols come from emissions by infec-
tious staff, E (quanta per hour), which we assume
becomes well-mixed as aerosols throughout the volume,

V, of the cave. Aerosols are also removed owing to first-
order losses, λ (i.e., ventilation, deposition, decay of aero-
sol). Thus, the change in the concentration of infectious
aerosols over time can be expressed as

dC
dt

=
E
V
−λC tð Þ: ð5Þ

Solving the differential Equation (5) for C(t) given the ini-
tial condition that C(0) = 0 (there is no aerosolized
SARS-CoV-2 in the cave at the beginning of the survey)
gives an equation that describes the buildup of aerosol in
the cave during the survey (which has a duration DE)

CðtÞ= E
λV

ð1-e-λtÞ, fort <DE, ð6Þ

which has a horizontal asymptote at E
λV.

After staff leave the enclosed space at the end of the
survey (at time DE), the concentration of aerosolized
virus declines exponentially with loss rate λ according to

C tð Þ=C DEð Þe−λ t−DEð Þ, for t>DE: ð7Þ

The total loss rate of aerosols is the sum of three-loss
rates (all in units hr−1), owing to ventilation (λv), the
decay of viral particles (λDR), and deposition of aero-
sols (λDS),

λ= λv + λDR + λDS: ð8Þ

The ventilation rate, λv, causes loss of aerosols through
airflow through the cave and can be understood as the
number of air changes per hour. The deposition rate, λDS,
causes loss as aerosol particles settle to the floor or
adhere to other surfaces, thus, no longer circulating.
Finally, the decay rate, λDR, causes loss as viral particles
break down and become non-infectious.

Empirical studies of the viral decay rate for SARS-
CoV-2 have shown that it is a linear function of environ-
mental conditions (Dabisch et al., 2020),

λDR = 0:16030+ 0:04018
T−20:615
10:585

�

+0:02176
RH−45:235

28:665
+ 0:14369

S−0:95
0:95

+ 0:02636
T−20:615
10:585

S−0:95
0:95

�
× 60, ð9Þ

where T is the temperature (studied in the range
10–30�C), RH is the relative humidity (20–70%), and S is
the integrated UVB irradiance (0–1.9 W/m2).
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The combined effect of buildup through emission and
loss through ventilation, deposition, and decay produces
a trajectory of aerosol concentration through time that
has two phases: a build-up toward an asymptotic concen-
tration while the crew is in the enclosed space, and an
exponential decline after crew leave the space (Figure 1).

We estimate bat exposure, QA, as the cumulative
amount of aerosolized SARS-CoV-2 virus (measured in
quanta) inhaled per bat while field staff are active in the
cave and after field staff depart the cave. The instanta-
neous exposure (measured in quanta per hour) is the
product of the concentration, C(t), and the species-spe-
cific respiration rate of bats, Rsp. The total exposure (mea-
sured in quanta per bat) is the integration of this product
over time, thus,

QA =
ð∞
0
RspC tð Þdt ð10Þ

=Rsp

ðDE

0

E
λV

1−e−λt
� �

dt+
ð∞
DE

C DEð Þe−λ t−DEð Þdt
� �

=Rsp
E
λV

DE−
1
λ

1−e−λDE
� �� �

+
E

λ2V
1−e−λDE
� �� �

=Rsp
E
λV

DE:

The probability that a bat is infected, conditional on
exposure to aerosolized SARS-CoV-2, is a function of two
components: the probability that the species is even sus-
ceptible to SARS-CoV-2, σsp, and the probability of infec-
tion as a function of the dose received. If a species of
North American bat is susceptible to SARS-CoV-2, the
relationship between the probability of bat infection and
the magnitude of exposure (i.e., dose of SARS-CoV-2
measured in quanta) can be described with a dose–
response function. We have defined one quantum as the
dose that produces infection in 63% of exposed humans,
according to the Wells-Riley infection model (Miller
et al., 2020; Riley, Murphy, & Riley, 1978). We can use
the Wells-Riley infection model to develop a dose–
response curve for exposed bats by adding an additional
term, r, for the sensitivity of bats to the virus, relative to
the sensitivity of humans. We assume that all individuals
within the same species have the same level of host sensi-
tivity to SARS-CoV-2. Thus, the probability of infection
as a function of the magnitude of exposure is,

σA = 1−e−r ×QA
� �

× σsp: ð11Þ

We also considered a separate route of transmission in
Pathway 1 as the probability of infection that may occur
when bats are exposed to SARS-CoV-2 that has been
deposited on cave surfaces (including fur) by an infected
individual. Deposition may occur through exhaled drop-
lets or physical contact, and subsequent exposure of bats,
through an oral route, that have contact with that surface.
Currently, there is no conclusive evidence for direct con-
tact or fomite transmission of SARS-CoV-2 in humans
(Meyerowitz et al., 2020). Epidemiological evidence
strongly suggests that respiratory transmission (i.e., aero-
solized virion exposure) is the dominant pathway in
human hosts (Lu et al., 2020). Lack of evidence has led
some researchers to conclude that exposure to live viruses
on surfaces is unlikely to cause secondary infections
(Meyerowitz et al., 2020). Nevertheless, natural bat cor-
onaviruses may be primarily transmitted among bats by a
fecal-oral route (Dominguez et al. 2007). Thus, if fecal-oral
transmission is also an important pathway for SARS-
CoV-2 in bats, surface contact and ingestion through
preening could be a plausible mechanism of transmission.
We reasoned that these processes (aerosol transmission
and surface contact) are intertwined because the source of
the virus is the same (exhaled from humans), but we did
not understand the surface contact process well enough to
develop a mechanistic model. Instead, we indirectly
modeled transmission through surface contact as a multi-
plier to the probability of infection from aerosolized viral
exposure. To do so, we estimated the fraction of total

FIGURE 1 Model of SARS-CoV-2 aerosol transmission in an

enclosed space over time. The first phase shows the buildup of

aerosols during a survey toward an equilibrium level that balances

the emission rate against the loss rate. The second phase shows the

loss of remaining aerosols through ventilation, decay, and

deposition. The graph depicts a scenario in which a single crew

member is shedding virus for a 1-hr survey without wearing a mask

in a 500 m3 chamber at 10 C and 90% relative humidity, with a

ventilation rate of 1.0 hr−1
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infections that occur through surface contact rather than
aerosol inhalation, fS, then calculated the additional frac-
tion of bats infected through surface contact as

γS =
f S

1− f S

� �
, for 0≤f S <1: ð12Þ

Taken together, the number of infected bats, IA,
from Pathway 1 is a function of the number of bats that
are exposed to aerosolized SARS-CoV-2, A, the proba-
bility of infection, σA, and the multiplier for infection
through surface contact, γS, given by a binomial
distribution,

IA� binomial A,σA 1+ γSð Þð Þ: ð13Þ

2.1.3 | Pathway 2: SARS-CoV-2 exposure
during handling

The second transmission pathway involves exhaled drop-
lets or aerosols from an infected person being transmitted
to a bat during handling. We calculate the transmission
risk by considering the amount of aerosol exhaled, the
resulting concentration of aerosols in the effective space
between the handler and the bat, the respiratory rate of
bats, the amount of virus inhaled by bats, and the
resulting probability of infection (Figure S1).

The calculations in this pathway largely follow the cal-
culations for Pathway 1, with a few changes. We assume
that each bat is only handled by one member of the crew
(n = 1), so the emission rate of SARS-CoV-2 aerosol dur-
ing the period of handling, EH, has to account for the
probability of whether the handler is shedding virus,

EH =QI ×VPPE ×Bernoulli
N +

N

� �
: ð14Þ

Again, we assume a well-mixed material balance model
for aerosol concentration, but we assume the effective
volume of the space is the small volume that the handler
and the bat share, VH, during the period of handling, DH.
Further, we assume that the loss rate is equal to the loss
rate of the overall space, λ, and that the aerosol exposure
can only occur during the period of handling and not
thereafter (the aerosolized exposure from Pathway 1 for a
handled bat is accounted for below). Thus, the quanta
inhaled by the bat during handling is given by,

QH =
ðDH

0
RspC tð Þdt ð15Þ

=Rsp

ðDH

0

EH

λVH
1−e−λt
� �

dt

=Rsp
EH

λVH
DH−

1
λ

1−e−λDH
� �� �

:

Finally, the probability of infection takes into account
both the aerosol exposure during handling, and the aero-
sol exposure during the full survey (via aerosolized expo-
sure from Pathway 1),

σH = 1−e−r QH +QAð Þ
� 	

× σsp: ð16Þ

The number of infected bats, IH, from Pathway 2, is a
function of the number of bats that are exposed to aero-
solized and deposited SARS-CoV-2 during handling, H,
the probability of infection, σH, and the multiplier for
infection through surface contact, γS, given by a binomial
distribution

IH � binomial H,σH 1+ γSð Þð Þ: ð17Þ

2.2 | Parameters estimated from
empirical evidence

Thirteen of the 23 parameters in the infection risk model
were estimated from published empirical evidence, which
was used to develop probability distributions to represent
parametric uncertainty (Table 1). The viral emission rate
for infected humans (QI) was estimated from models of
respiration (Buonanno, Stabile, & Morawska, 2020,
Buonanno, Morawska, & Stabile, 2020) and inference
from a documented super spreading event (Miller et al.,
2020). The effectiveness of face coverings in reducing
emission, including N95 masks, surgical masks, cloth
masks, and face shields, was estimated from studies that
quantified the filtration efficiencies (Davies et al., 2013;
Lindsley et al., 2014; Long et al., 2020). The typical sensi-
tivity and sensitivity of RT-PCR tests for SARS-CoV-2
were estimated from several meta-analyses of current
tests (Arevalo-Rodriguez et al., 2020; Watson et al., 2020).
The ventilation loss rate (λv) was inferred from several
studies of caves (De Freitas et al., 1982; Kowalczk &
Froelich, 2010). The loss rate from viral decay (λDR) was
from laboratory studies that accounted for temperature,
relative humidity, and solar irradiation (Dabisch
et al., 2020). The loss rate from deposition (λDS) was esti-
mated from an empirical study of deposition rates of
aerosolized particles (1-5 μm) that are of comparable
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diameter to respired aerosolized viral particles
(Buonanno, Stabile, & Morawska, 2020; Meyerowitz
et al., 2020; Thatcher et al., 2002). Respiration rates for
M. lucifugus and E. fuscus were taken from the literature
and were measured at temperatures consistent with
hibernacula in winter months (Henshaw, 1968;
Hock, 1951; Riedesel & Williams, 1976; Szewczak &
Jackson, 1992; Thomas et al., 1990), whereas the respira-
tion rate for Tadarida brasiliensis was based on mass-
specific oxygen uptake rates for E. fuscus measured at
10 and 20�C and adjusted for differences in body mass
(Szewczak & Jackson, 1992). We also derived an elevated
respiration rate for M. lucifugus with WNS by increasing
the healthy bat rate in proportion to increases in evapora-
tive water loss (�53–55% increase) measured by McGuire
et al. (2017). Thus, our elevated rate for WNS-affected
M. lucifugus considered the increasing waking bouts asso-
ciated with active infection (Table 1).

2.3 | Parameters estimated through
expert judgment

Ten of the parameters in the infection risk model were
estimated through a formal process of expert judgment
(Table 1, Figures S2–S11), using the IDEA protocol
(Hanea et al., 2017) with the four-point elicitation
method (Speirs-Bridge et al., 2010). Twelve experts in
virology and bat physiology were recruited (Table S1).
Between December 01 and 10, 2020, the experts provided
responses to two rounds of questions and participated in
three intervening group discussions. The discussions
were effective at reducing sources of bias and uncertainty
(e.g., linguistic uncertainty) and providing a venue for
knowledge-sharing and conceptual framing. Following
the first round of elicitation, we revised several questions
and resolved considerable sources of linguistic uncer-
tainty. From round 1 to 2, all 12 experts opted to revise
their initial estimates for at least one question; however,
considerable epistemic uncertainties remained. We fit
probability distributions to the elicited quantiles from
each expert independently, by finding the parameters of
a logit- or log-normal distribution that minimized the
sum of squared differences between the stated and fitted
quantiles. For most parameters, a simple linear pool
(Clemen & Winkler, 1999) of the individual probability
density functions (PDFs) was found (with equal weight
across experts), and a probability distribution was fitted
to the average PDF by minimizing the Kullback–Leibler
distance between a logit- or log-normal distribution and
the average PDF (Kullback & Leibler, 1951). However,
due to considerable expert uncertainty in the dose–
response sensitivity parameter, r, we grouped experts into

two groups and fit a mixture distribution that weighted
each group according to its size. Thus, in both
approaches the aggregate distribution for these parame-
ters encompassed both within- and between-expert epi-
stemic uncertainty about the parameters.

2.4 | Control variables and infection risk
scenarios

The remaining nine variables in the infection risk
model were treated as control variables that describe
the conditions of individual surveys and were assigned
default values typical of winter bat surveys in North
America (Table 1). To evaluate infection risk, we devel-
oped a set of scenarios intended to represent common
conditions under which RSM activities might occur dur-
ing the winter period. We evaluated the risk of infection
to bats as a function of the sampled cave volume (m3),
the prevalence of COVID-19 in the localized human
community, the number of bats in winter roosts/hiber-
nacula, and the number of bats handled by field staff.
We also evaluated the effect of PPE (surgical mask face
coverings) and a negative pre-survey COVID-19 test as
potential mitigation strategies. All risk estimates are
summarized as the probability of at least one bat being
infected during a survey. Unless specified otherwise, we
assumed a staff size of five individuals; a 1-hr sampling
duration; an average bat handling time of 5 min; 1,000
total bats in the hibernacula/winter roost; 25 handled
bats in the hibernacula/winter roost; a sampled cave
volume of 500 m3; cave/roost temperature of 10�C;
cave/roost relative humidity of 90%; minimal ventila-
tion in the hibernacula/winter roost (range of λ:
0.5–1.5 hr−1); and a local COVID-19 prevalence of 0.05.

To include the parametric uncertainty in both the
elicited and empirical estimates in our infection risk
model, we built a stochastic Monte Carlo simulation
model in program R. For each parameter, we drew
repeated and independent samples from the probability
distribution defined for each parameter, as described in
Table 1. We then performed the model calculations and
quantified the results as the probability that at least one
bat was infected during the survey. The Monte Carlo sim-
ulation included 5,000,000 replicates.

2.5 | Sensitivity analysis

To understand the effect of parametric uncertainty on the
risk analysis, we conducted a systematic single-factor sen-
sitivity analysis, examining the maximum difference in
the output metric (probability of at least one bat being
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infected) across the 95% prediction interval (PI) for each
parameter. For this analysis, we used the default values
for the control variables.

3 | RESULTS

3.1 | Species susceptibility

The experts considered a variety of information sources
to estimate species susceptibility including, human-bat
ACE2 homology (Damas et al., 2020), the availability of
lab-based challenge studies (Hall et al., 2020), and species
ecology. Across individual experts, best estimates for the
probability of species susceptibility ranged from 0.01 to
0.25 for Tadarida brasiliensis, 0.01–0.20 for M. lucifugus,
and 0.005–0.10 for E. fuscus. In aggregate, the expert
panel estimated Tadarida brasiliensis to be most likely to
be susceptible to SARS-CoV-2 (median probability 0.06;
95% PI: 0.001–0.81, Figure S4), followed by M. lucifugus
(0.05; 95% PI: 0.001–0.70, Figure S2) and E. fuscus (0.02;
95% PI: 0.001–0.45, Figure S3).

3.2 | Species susceptibility and
Co-Infection

To evaluate the risk of co-infection to bats already
affected with WNS, experts considered the effect that
co-infection with both WNS and an alpha-coronavirus

had on downregulating the immune response of M.
lucifugus (Davy et al., 2018). In aggregate, the expert
panel estimated that individual bats with active WNS
infection may be slightly more susceptible to SARS-
CoV-2 (0.07; 95% PI: 0.001–0.86, Figure S5) than healthy
individuals (0.05; 95% PI: 0.001–0.70, Figure S2).

3.3 | Dose–Response relationship for
SARS-CoV-2 in bats

In aggregate, the expert panel estimated that, if suscepti-
ble to SARS-CoV-2, North American bats would require a
larger dose of virus to induce infection than humans
(Figures 2and S6). Across the 12 experts, the average best
estimate of the dose necessary to infect 50% of bats
(i.e., ID50) was 3.32 times larger for bats than humans;
however, there was also considerable uncertainty
amongst experts with best estimates ranging from 0.09 to
9.80 times. Because of the wide range of expert estimates
for the bat: human ID50 ratio, the dose–response param-
eter derived from those data had considerable uncer-
tainty. The group 1 (i.e., experts with median ID50 ratio
estimates ≤1, n = 4 experts) aggregate estimate for rela-
tive dose was 3.28 (95% PI: 0.05–130.87), whereas the
group 2 aggregate estimate was 0.29 (95% PI: 0.05–1.83,
n = 8). Taken together, we combined both groups into a
group-weighted mixture distribution with a median of
0.45 (95% PI: 0.05–49.54). Experts expressed difficulty in
estimating the bat: human ID50 ratio because of potential

FIGURE 2 Probability of infection with SARS-CoV-2 as a function of dose received by a bat, conditional on susceptibility. Dose is

measured in quanta, where one quantum is the viral dose needed to cause infection with probability 0.632 in humans. Gray lines indicate

individual expert estimates. (a) The median estimate (bold blue line) from the expert-weighted mixture distribution and associated 80%

confidence interval (dotted blue line) are shown. (b) The aggregate distributions from the two expert groups are shown. Group 1 (purple

lines) represents the median and 80% PI of experts who estimated a smaller viral dose was necessary to infect bats relative to humans. Group

2 (light blue lines) represents the median and 80% PI of experts who estimated a larger viral dose was necessary to infect bats relative to

humans
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FIGURE 3 Risk of aerosolized transmission of SARS-CoV-2 from humans to bats as a function of cave or roost volume. The dependent

axis represents the probability that at least one bat would be infected as a result of a survey, and is expressed in percent, thus, 0.1 represents

a probability of 0.001. In each panel, the unmitigated scenario (bold line) is compared with use of pre-survey testing (thin line) or surgical

masks (dashed line) by field staff. (a) Myotis lucifugus. (b) Eptesicus fuscus. (c) Tadarida brasiliensis

FIGURE 4 The risk of transmission of SARS-CoV-2 from humans to free-tailed bats (Tadarida brasiliensis) as a function of local

prevalence of COVID-19 in humans, in a 500 m3 roost with 1,000 bats, 25 of which are handled during the survey. In each panel, the

unmitigated scenario (bold line) is compared with use of pre-survey testing (thin line) or surgical masks (dashed line) by field staff.

(a) Myotis lucifugus. (b) Eptesicus fuscus. (c) Tadarida brasiliensis

FIGURE 5 The risk of transmission of SARS-CoV-2 from humans to little brown bats (Myotis lucifugus) as a function of number of bats

handled, with and without the presence of white-nose syndrome in a 500 m3 roost with 1,000 total bats and COVID-19 prevalence of 0.05.

(a)With and without pre-survey testing of field staff for COVID-19 and including infection from both Pathways 1 and 2. (b) With and

without pre-survey testing of field staff for COVID-19 and including infection from Pathway 2 only
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differences in tissue tropism, innate host responses, and
the importance of ACE2 receptor homology in bats com-
pared with humans.

3.4 | Direct transmission from
contaminated surfaces

The expert panel evaluated the risk of direct contact
transmission relative to aerosol transmission in winter
survey settings, with and without the presence of WNS
in their hibernacula (Figures S7–S11). Consistent with
human epidemiological findings, the experts estimated

aerosolized SARS-CoV-2 was likely the primary human-
to-bat transmission route. In aggregate, experts esti-
mated that direct contact risk was highest in Tadarida
brasiliensis (median probability: 0.10; 95% PI: 0.0002–
0.98), and lower in M. lucifugus (median probability:
0.08; 95% PI: 0.0001–0.98) and E. fuscus (median proba-
bility: 0.05; 95% PI: 0.0001–0.94). The primary consider-
ation for the relative risk of direct contact transmission
was the elevated activity patterns in Tadarida
brasiliensis during the winter months. Experts also esti-
mated elevated risk of direct contact transmission to
occur in caves with WNS in M. lucifugus (median proba-
bility: 0.09; 95% PI: 0.0004–0.95) and E. fuscus (median

TABLE 2 Analysis of the sensitivity of the risk of infection to uncertainty in the empirical and expert-derived parameters

Parameter Definition (unit) Source(s) Uncertainty range
Probability
range

Absolute
difference

Relative
sensitivity

r Dose–response
multiplier for bats
(three species)

Expert elicited 0.05 – 48.99 (95%
prediction interval
(PI) upper and lower
bounds)

1.18E-05 –
8.00E-05

7.99E-03 1.00

fs Fraction of bat
infections that occur
from contact with
contaminated
surface

Expert elicited 0.0002 – 0.982 (95% PI
upper and lower
bounds three
species)

3.00E-04 –
8.00E-03

7.70E-03 0.96

σSP Probability of bat
susceptibility (three
species)

Expert elicited 0.0001 – 0.81 (95% PI
upper and lower
bounds three
species)

8.00E-07 –
3.80E-03

3.80E-03 0.48

QI Aerosolized viral
emission rate
(quanta/hr)

Buonanno, Stabile, &
Morawska, 2020,
Buonanno,
Morawska, &
Stabile, 2020; Miller
et al., 2020

3.4 – 390.5 (95%
confidence interval
(CI) upper and lower
bounds)

3.40E-05 –
1.80E-03

1.77E-03 0.22

RSP Bat respiration rate
(m3/hr)

Hock, 1951;
Henshaw, 1968;
Riedesel &
Williams, 1976;
Thomas et al., 1990;
McGuire et al., 2017

9E-07 – 1.3E-05
(minimum and
maximum three
species)

8.54E-05 –
9.00E-04

8.15E-04 0.10

λv Loss rate from
ventilation (% loss/
hr)

De Freitas et al., 1982;
Kowalczk &
Froelich, 2010

0.5 – 15 (minimum
and maximum
reported values)

1.00E-03 –
3.00E-04

7.00E-04 0.09

λDR Loss rate from viral
decay (% loss/hr)

Dabisch et al., 2020 0.5 (5�C, 70%RH) – 3.0
(15�C, 99%RH)

1.00E-03 –
7.00E-04

3.00E-04 0.04

λDS Loss rate from viral
deposition (% loss/
hr)

Thatcher et al., 2002;
Buonanno, Stabile,
& Morawska, 2020

0.2 – 2.0 (minimum
and maximum
reported values)

1.00E-03 –
8.00E-04

2.00E-04 0.03

Note: The absolute difference shows the maximum difference in the probability of at least 1 bat being infected during a survey across the range of the
parameter being investigated. The relative sensitivity re-scales the absolute difference in comparison to the maximum absolute difference (for the dose–
response multiplier, r).
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probability: 0.07; 95% PI: 0.0003–0.94) as a result of
increased activity and co-infection.

3.5 | Infection risk

The results from the infection risk model suggest that
the risk of transmission is quite sensitive to the condi-
tions under which a survey is undertaken. Notably, the
risk of transmission is driven strongly and inversely by
cave volume (Figure 3); for example, the baseline risk of
infection of at least 1 free-tailed bat is 0.095% in a
500 m3 chamber, but jumps to 0.298 in a 100 m3 cham-
ber (Figure 3c). The risk of transmission is driven line-
arly by COVID-19 prevalence in the local human
population (Figure 4); for example, the baseline risk of
infection rises from 0.001% for free-tailed bats when the
local human prevalence is 0.01 to 0.009% when the prev-
alence is 0.05 (Figure 4c). Either a negative pre-survey
COVID-19 test or the use of a surgical mask was esti-
mated to be 65 to 88% effective in reducing the risk of
transmission (Figures 3 and 4).

The results from the infection risk model suggest
that the risk of transmission to bats in caves affected
by WNS is approximately twice as high as for
corresponding caves without WNS (Figure 5), owing
both to increased susceptibility and increased activity
(hence, increased respiration rate). Further, across the
range of conditions we investigated, the risk of infec-
tion was not strongly influenced by the number of bats
that were handled (Figure 5), suggesting that most of
the transmission is occurring by pathways 1 (aerosol)
and 3 (surface contact) rather than pathway
2 (handling).

3.6 | Sensitivity analysis

The results from the comprehensive sensitivity analysis
show that uncertainty in the dose–response parameter
for bats (r) has the greatest influence on the results (rela-
tive sensitivity 1.0), followed by uncertainty in fraction of
bat infections from contaminated surface contact (fS; rela-
tive sensitivity 0.96), and the probability of susceptibility
(σsp; relative sensitivity 0.48) (Table 2). The sensitivity to
the remaining parameters is between 3 and 22% of the
sensitivity to the dose–response parameter.

The results of the infection risk model were highly
sensitive to uncertainty in the dose–response relationship
(Figure 6). During the expert elicitation, the experts
expressed the most concern about this parameter,
because it could be affected by many factors (tissue tro-
pism, innate immune response of bats, ACE2 homology,
adaptation of the virus to human systems), none of which
are well understood yet. Over the wide range of uncer-
tainty expressed by the experts about the infectious dose
for bats relative to humans, the risk of infection varies
widely (Figure 6).

4 | DISCUSSION

Our analysis of the risk of transmission of SARS-CoV-2 to
bats, resulting from winter fieldwork in enclosed spaces
where bats are hibernating or roosting, finds that there is
a small but non-negligible risk if no protective measures
are employed. We adapted an aerosol model, developed
for understanding the transmission of SARS-CoV-2
among humans (Miller et al., 2020), to represent condi-
tions during winter field surveys. By dividing infection

FIGURE 6 The sensitivity of risk of transmission of SARS-CoV-2 from humans to little brown bats (Myotis lucifugus) as a function of

the relative dose parameter, r. In each panel, the unmitigated scenario (bold line) is compared with use of pre-survey testing (thin line) or

surgical masks (dashed line) by field staff. The boxplots indicate the range of uncertainty for the two expert groups for the dose parameter.

(a) Myotis lucifugus. (b) Eptesicus fuscus. (c) Tadarida brasiliensis
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risk into two pathways that included exposure risk from
aerosolized virus and virus-contaminated surfaces, we
could consider control measures that we expected would
reduce the risk of exposure, and that could be
implemented by management agencies, university
researchers, and their personnel when conducting winter
fieldwork. We found that these control measures mark-
edly reduced risk.

The level of risk depends on factors specific to each
cave, mine, or roost site. Because the exposure to SARS-
CoV-2 depends on aerosol transmission, characteristics of
airflow, the number of bats, and the size of the surveyed
areas influence the risk, as does the prevalence of
COVID-19 in the local human population. Sites, where
bats congregate, are highly variable, where some loca-
tions require close proximity of field staff to bats, in con-
fined spaces with little airflow. The risk of exposure and
transmission in these locations is elevated relative to
large spaces where aerosols are diluted in the larger vol-
ume and have a smaller chance of infecting torpid bats
on the hibernacula ceilings.

For critical fieldwork that aids in the conservation of
bat populations, managers have several options to reduce
the risk of transmitting an infection to bats. Suspension of
fieldwork may be warranted on a case-specific basis. Based
on our results, large sites with small, expected population
sizes, in areas of the United States with low COVID-19
prevalence in the human population result in the lowest
risk of bat infection. Field personnel that test negative,
have received a full course of a vaccine, or complete a
14-day quarantine without symptoms reduce the probabil-
ity of infection; however, because of the moderate sensitiv-
ity of current COVID-19 tests (�70%; Arevalo-Rodriguez
et al., 2020; Watson et al., 2020), less than 100% immunity
from current COVID-19 vaccines (e.g., Polack et al., 2020),
and potential for exposure even while in quarantine, the
risk of infected staff in communities with elevated
COVID-19 prevalence is not zero. Further, our findings
suggest that bats that are in close proximity to humans
(e.g., for swabbing for WNS, or to assess body condition
during hibernation) are likely at elevated risk of disease
exposure and are thus, more likely to become infected. We
find that the use of PPE (properly fit cloth or surgical
facemasks, or N95 respirators) reduces risk substantially,
and we assume that individuals are wearing masks that
retain effectiveness during the duration of a survey. For
N95 masks, effectiveness will require fit testing and train-
ing on proper use. Because of the high-humidity environ-
ment of typical surveys, masks will be more effective if
they are replaced regularly before they become saturated
(Dbouk & Drikakis, 2020).

In an earlier risk assessment focused on spring and
summer fieldwork conditions, Runge et al. (2020) had to

rely almost entirely on expert judgment for parameters in
their risk model. Since that time, a substantial amount of
empirical data have accrued, and the risk assessment
described here was able to incorporate empirical esti-
mates for over half of the parameters. Nevertheless, there
remained several key parameters in our model for which
empirical information does not yet exist. Like Runge
et al. (2020), we used a formal process of expert elicita-
tion to obtain estimates of unknown parameters. Expert
elicitation can result in reliable predictions (e.g., Adams-
Hosking et al., 2016; Martin et al., 2012; O'Hagan
et al., 2006; Runge, Converse, & Lyons, 2011; Speirs-
Bridge et al., 2010). Importantly, the values provided by
experts are not substitutes for empirically derived param-
eters; rather they allow an estimate of risk, with associ-
ated uncertainty, to be used until empirical estimates are
available.

Despite the accrual of substantial empirical results to
inform disease transmission pathways and previously
unknown parameters, there remains considerable uncer-
tainty in human-to-bat SARS-CoV-2 transmission risk.
For instance, the dominance of aerosolized transmission
of SARS-CoV-2 among humans may not be entirely
translatable to transmission dynamics from humans-to-
bats. Other known bat coronaviruses appear to be
adapted to fecal-oral routes of transmission as evidenced
by higher viral shedding in feces relative to respiratory
secretions (Dominguez et al. 2007). Thus, it remains
unknown how important aerosolized respiratory trans-
mission may be in North American bat species. Further,
many of the mechanisms of viral binding and replication
remain areas of active epidemiological study. As a result,
the effective dose necessary to initiate infection in wild
species is challenging to estimate; however, in other dis-
ease systems (e.g., rabies) smaller wildlife species can
require higher vaccination doses to trigger an immune
response which is consistent with our estimate of a
higher dose necessary to initiate infection in bats relative
to humans (Te Kamp et al., 2020).

The specific details of the COVID-19 pandemic con-
tinue to change quickly. This analysis, including the
expert elicitation, were conducted in early December
2020, before awareness of more transmissible variants
(like the UK variant B.1.1.7) was common. Thus, this
analysis does not account for the possibility that the prop-
erties of the circulating virus may change, nor did the
experts consider whether new variants would differ in
their potential effect on bats.

A challenge in making management decisions is how
humans deal with uncertainty. Uncertainty is an inability
to precisely know something. In making forecasts, uncer-
tainty may be expressed as a probability of expecting each
of a range of possible outcomes; some of those outcomes
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will be better than others. A risk analysis is composed of
four interrelated parts (OIE & IUCN, 2014). First is the
identification of a hazard (like a pathogen) that might
damage a resource of value (e.g., bat populations). The
second step provides decision-makers with an objective
and defensible method of assessing the risk associated with
the hazard of an undesired outcome for an objective of
interest. Our model was constructed to provide this objec-
tive estimate of risk for RSM work conducted by State,
Tribal, Provincial, and Federal agencies in support of bat
conservation objectives. The third step evaluates the man-
agement options and their ability to mitigate the risk of
negative outcomes. In our application, the evaluation was
based on the desire of agencies to use enhanced PPE and
COVID-19 testing to minimize zoonotic spillover of SARS-
CoV-2 from humans to bats. The last step is the implemen-
tation of management actions to mitigate the identified
risk. An assessment of whether and how risk should be
mitigated will depend on the values and risk tolerances of
the decision-makers and stakeholders. Importantly, the
conservation of bat populations and the management of
their hibernacula and roost sites often involves other objec-
tives unrelated to bats. Mitigation decisions may involve
tradeoffs among these competing objectives, which agen-
cies may assess using formal decision analysis.

Ultimately, how agencies use this decision framing
and risk assessment may differ across agencies, taking
into account their specific mandates. Different decision
contexts may tolerate varying amounts of risk
(i.e., agencies may have different acceptable levels of pro-
tection), and thus, may choose to implement different
sets of mitigation actions. For our results we chose to
examine mitigation options separately, but in practice,
our model allows for the evaluation of integrated mitiga-
tion elements, such as the combination of masks and test-
ing. Our analysis shows that bats are at risk of SARS-
CoV-2 infection from humans during winter surveys, but
mitigation may reduce the risk to satisfactory levels, all-
owing conservation research to continue in some cases.
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