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Abstract. Cdc42 and Racl  are members of the rho 
family of small guanosinetriphosphatases and are re- 
quired for a diverse set of cytoskeleton-membrane in- 
teractions in different cell types. Here we show that 
these two proteins contribute differently to the organi- 
zation of epithelial cells in the Drosophila wing imagi- 
nal disc. Dracl  is required to assemble actin at adher- 
ens junctions. Failure of adherens junction actin 
assembly in Dracl  dominant-negative mutants is asso- 
ciated with increased cell death. Dcdc42, on the other 
hand, is required for processes that involve polarized 
cell shape changes during both pupal and larval devel- 

opment. In the third larval instar, Dcdc42 is required 
for apico-basal epithelial elongation. Whereas normal 
wing disc epithelial cells increase in height more than 
twofold during the third instar, cells that express a dom- 
inant-negative version of Dcdc42 remain short and are 
abnormally shaped. Dcdc42 localizes to both apical and 
basal regions of the cell during these events, and medi- 
ates elongation, at least in part, by effecting a reorgani- 
zation of the basal actin cytoskeleton. These observa- 
tions suggest that a common cdc42-based mechanism 
may govern polarized cell shape changes in a wide vari- 
ety of cell types. 

cell's ability to polarize the organization of its vari- 
ous protein and membrane components is critical 
to the performance of its specialized functions and 

maintenance of the differentiated state. Epithelial cells are 
a particularly well-studied example of such polarity. These 
cells form boundaries separating their basolateral and api- 
cal environments and regulate the passage of substances 
between them (Simons and Fuller, 1995; Rodriguez-Bou- 
lan and Nelson, 1989). 

Epithelial cells organize themselves in response to posi- 
tional cues from their environment. Interaction with basal 
extracellular matrix proteins and with other epithelial cells 
are each thought to contribute to the determination of an 
apical basal axis (Brower and Jaffe, 1989; Wang et al., 
1990; Ojakian and Schwimmer, 1994; van Adelsberg et al., 
1994). These interactions result in the formation of multi- 
protein junctional complexes that link extracellular posi- 
tional cues to the actin cytoskeleton (Gumbiner and 
McCrea, 1993). These junctions and their connection to 
the cytoskeleton are mainstays of epithelial organization 
(N~ithke et al., 1993). In vertebrate cells, alterations in ad- 
herens junction proteins are often associated with loss of 
epithelial morphology and transformation (Behrens et al., 
1989, 1993; Kawanishi et al., 1995). Furthermore, charac- 
terization of the Drosophila disc overgrowth mutants, 
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which cause hyperplasia and loss of epithelial morphology 
in disc epithelia, has emphasized the importance of inter- 
cellular junctions and the cytoskeleton to the maintenance 
of a polarized epithelium (Jursnich et al., 1990; Woods and 
Bryant, 1991; Strand et al., 1994a,b). 

The process of polarization and its effect on cellular ar- 
chitecture has been well studied in the MDCK epithelial 
cell line (Bacallao et al., 1989; Buendia et al., 1990). The 
polarity of MDCK cells can be disrupted by trypsinization 
during passaging and reestablished as cell contacts reform 
(Balcarova-Stander et al., 1984). When MDCK cells make 
contact, actin relocates from the perinuclear region and 
forms both an apical circumferential band underlying the 
junctional region and basal stress fibers. Once intercellular 
junctions have been established, the cells begin to elongate 
apico-basally. Concomitantly, centrioles separate and mi- 
grate apically, and microtubules are reorganized, changing 
from a radial to a polarized longitudinal array with basally 
oriented plus ends. Centriole separation and microtubule 
reorganization probably depend on junctional microfila- 
ments because treatment with either cytochalasin D or low 
calcium disrupts this process. 

Since actin reorganization is implicated in the execution 
of many different aspects of polarization, we would like to 
understand its role in greater detail. To do this, it would be 
desirable to disrupt a specific subset of actin-dependent 
structures without affecting other aspects of the cytoskele- 
ton. One way to perturb particular aspects of the actin cy- 
toskeleton might be to disrupt the function of specific rho 
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family proteins. The rho family of small GTPases is highly 
conserved between phyla and regulates a variety of actin- 
dependent processes in different cell types (Adams et al., 
1990; Chant and Herskowitz, 1991; Ridley and Hall, 1992; 
Ridley et al., 1992; Luo et al., 1994; Miller and Johnson, 
1994; Nishiyama et al., 1994; Nobes et al., 1995; Kozma et 
al., 1995). These processes include budding and shmooing 
in yeast, membrane ruffling, filopodium formation, stress 
fiber formation, neurite outgrowth, and myoblast fusion. 
Despite extensive study of these proteins in other cell 
types, their functions have not yet been addressed in epi- 
thelial cells. We decided to investigate the role of two of 
these proteins, Dcdc42 and Dracl, in epithelial organization. 

The epithelium we have chosen as a model system is the 
Drosophila wing imaginal disc. Imaginal discs are epithe- 
lial tissues that generate the final shape of the adult and 
secrete the adult cuticle (Poodry, 1980). They derive from 
invaginations of the embryonic ectoderm, and while the 
rest of the animal becomes polyploid during the larval in- 
stars, these cells remain diploid and continue to divide. As 
they increase in size they form folded, relatively undiffer- 
entiated epithelial sacs that remain connected to the larval 
ectoderm by a thin stalk. In response to an increase in 
ecdysone titer that marks the beginning of pupal develop- 
ment, the discs unfold and assume the shape of the ap- 
pendages to which they will give rise. 

Since Dcdc42 and Dracl have been shown to play im- 
portant roles in many cell types, mutations in these genes 
are likely to have pleiotropic effects. We therefore decided 
to study Dcdc42 and Dracl function by targeting the ex- 
pression of dominant-negative alleles of these genes to a 
specific subset of disc epithelial cells. Dominant-negative 
and constitutively active mutations, which stabilize the 
GDP- and GTP-bound states, respectively, have been 
made by analogy with the ras mutations and are well char- 
acterized. The expression of a dominant-negative mutant 
protein is thought to render the endogenous protein inac- 
tive by sequestering its interaction partners in nonproduc- 
tive complexes. Conversely, constitutively active proteins 
are functional but unregulatable (Barbacid, 1987). In these 
studies, we use the dominant-negative mutations $89 and 
N17 and the constitutively active mutant V12. These muta- 
tions have been used in many cell types to examine the 
function of cdc42 and racl (Ridley et al., 1992; Luo et al., 
1994; Nobes et al, 1995; Harden et al., 1995; Kozma et al., 
1995). 

Materials and Methods 

Flies 
Flies were raised on a cornmeal, yeast, and molasses medium at 22°C. To 
generate discs in which mutant Dcdc42 and Dracl alleles were expressed 
at the compartment boundary, we crossed females harboring a construct 
that expressed the Dcdc42 or Drac allele under the control of the 
gal4UAS (Luo et al., 1994) with males that expressed gal4 under the con- 
trol of the patched promoter (Hinz et al., 1994). Flies laid eggs for 2 d at 
18°C, and development proceeded at 18°C for another 24 h. The larvae 
were then shifted to 22°C and fed for ,'-4 d. This procedure was followed 
to maximize survival through embryonic and early larval stages. The clon- 
ing of Dcdc42 and Dracl, which map to the X chromosome and 61F, re- 
spectively, has been previously reported (Luo et al., 1994). 

Antibodies 
Antibodies against murine cdc42 were prepared by immunizing chickens 

with a cdc42-glutathione S transferase (GST) fusion protein. Egg extracts 
were first passed over a GST column and the flowthrough applied to a col- 
umn containing cdc42 fused to GST. The resulting affinity-purified anti- 
body was used at a dilution of 1:20. Antibodies against Drosophila racl 
were made by immunizing rabbits with a peptide corresponding to amino 
acids 124-150 (CNTIEKLRDKKLVPITYPQGLAMAKEIG) of the 
Dracl protein (Luo et al., 1994). The peptide was synthesized by Dr. C. 
Turck (Howard Hughes Medical Institute, University of California at San 
Francisco). It was coupled via its NH2-terminal cysteine to keyhole limpet 
hemocyanin and injected into rabbits using standard procedures for anti- 
serum production by CALTAG Corporation (South San Francisco, CA). 
The antibody was affinity purified with a peptide column and used at a di- 
lution of 1:200. [3-integrin was detected with an antibody produced in rab- 
bits against chicken [3-integrin (Marcantonio and Hynes, 1988). This anti- 
body detects the Drosophila 13-integrin protein encoded by the 
myospheroid gene and was used at a dilution of 1:200. The rat monoclonal 
antibody against Drosophila E-cadherin (Oda et al., 1994) was used at a 
dilution of 1:10. The affinity-purified anti-armadillo antibody (Riggleman 
et al., 1990) was used at a dilution of 1:200. The rabbit antiyellow antibody 
(Kornezos and Chia, 1992) was used at a dilution of 1:1,000. The affinity- 
purified rabbit anti-armadillo antibody was used at a dilution of 1:200. 

Immunofluorescent Staining and Light Microscopy 
Wing discs were dissected in Shield and Sang's M3 medium. They were 
kept at room temperature until sufficient numbers of discs had been col- 
lected (a maximum of 30 min). 

The fixation procedure varied depending on the antigen. For staining 
with phalloidin alone, or phalloidin and anticadherin antibody, discs were 
fixed for 10 min in a buffer containing 8% formaldehyde, 100 mM K ca- 
codylate, pH 7.2, 100 mM sucrose, 40 mM K acetate, I0 mM Na acetate, 
and 10 mM EGTA. Discs were then rinsed three times in PBT 1 (PBS and 
0.1% Triton X-100) and permeabilized for 1-2 h in PBS and 1% Triton 
X-100. After permeabilization, the discs were washed three times for 5 
min in PBT, then incubated with 2 U/ml rhodamine phalloidin (Molecular 
Probes, Inc., Eugene, OR) either for 10 min (when staining with phalloi- 
din alone) or throughout the rest of the antibody-staining procedure 
(when staining with both phalloidin and anti-cadherin antibody). This 
procedure gave the best preservation of the basal actin cytoskeleton. 

For double staining with phalloidin and anti-armadillo or phalloidin 
and anti-Dracl antibody, discs were fixed in a buffer containing 0.1 M 
Pipes, pH 6.5, 1 mM EGTA, 2 mM MgSO4 (PEM) and 1% NP-40 and 1% 
formaldehyde for 30 min, then washed three times for 5 min in PBN (PBS 
and 0.1% NP-40). 

For staining with anti-yellow or anti-integrin antibodies, discs were 
fixed for 10 min in PEM and 4% paraformaldehyde, then washed three 
times for 5 min in PBT. 

For staining with anti-cdc42 antibody, discs were fixed for 5 min in 0.1 M 
Pipes, 1 mM EGTA, 2 mM MgSO4, and 4% paraformaldehyde (diluted 
from a freshly prepared 20% stock), rinsed once with PBS, rinsed once 
with ice-cold methanol, and then refixed for 5 min in ice-cold methanol. 
Discs were then washed three times for 5 min in PBT. 

After blocking in 5% normal goat serum for 30 min, binding of primary 
antibodies was routinely performed in either PBT or PBN (as described 
above) overnight at 4°C, excepting anticadherin, which was bound for 2 h 
at room temperature. After binding, the discs were rinsed three times in 
PBT or PBN, washed three times for 15 min, and blocked for 30 rain in 
normal goat serum. Fluorescently labeled or biotinylated secondary anti- 
bodies were preabsorbed with fixed embryos at a 1:10 dilution overnight 
at 4°C, and then diluted 20-50-fold and incubated with discs for 1 h. After 
binding, discs were rinsed three times in PBT or PBN and washed three 
times for 15 min. When biotinylated secondary antibodies were used, this 
was followed by a 5-min incubation with fluorescently labeled streptavidin 
and another series of washes. Discs were then rinsed in PBS and placed in 
mounting medium (87% glycerol, 10 mM Tris, pH 8.5, 4% propyl gallate, 
final pH adjusted to 8.5). In cases where we wished to focus on a particular 
side of the disc (apical or basal), we turned them so that that side faced the 
coverslip to increase the resolution in that region. Coverslips were 
perched on thin bridges cut from cellophane and sealed with nail polish. 

Discs were observed in a confocal microscope built at EMBL (Stelzer 
et al., 1989). 

1. Abbreviations used in this paper: AP, anterior-posterior; GST, glu- 
tathione S transferase; PBN, PBS plus 0.1% NP-40; PBT, PBS plus 0.1% 
Triton X-100. 
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Detection of ff,-Galactosidase by X-gal Staining 
Discs were fixed as described below, washed in PBS, then incubated at 
room temperature in a solution containing 30 mM Na2HP04, 12 mM 
NaHEPO4, 150 mM NaC1, 1 mM MgCI2, 3 mM Ka(Fe(CN)6), 3 mM 
K4(Fe(CN)6), and 0.2% X-gal. 

Histological Sections and EM 
Discs were processed for EM according to a protocol similar in most re- 
spects to that described in Jursnich et al. (1990). Discs were dissected as 
described above and fixed in a buffer containing 0.1 M Na cacodylate, pH 
7.4, 100 mM sucrose, and 2.5% glutaraldehyde for 2 h at room tempera- 
ture. Discs were then washed twice for 5 min in 0.1 M Na cacodylate and 
100 mM sucrose and fixed overnight at 4°C with 1% osmium tetroxide in 
0.1 M Na cacodylate and 100 mM sucrose. If the samples were to be 
stained with X-gal, we first fixed for only 2 rain under these conditions, 
stained with X-gal as described above, and then continued fixation for 2 h. 
We based this protocol on that described in Stollewerk and Campos Or- 
tega (1995). After fixation, discs were rinsed three times in distilled water 
and stained with 2.5% aqueous uranyl acetate for 1 h at room tempera- 
ture. Discs were then rinsed in distilled water and dehydrated through a 
series of 30, 50, 70, 90 and 100% (2x)  ethanol and propylene oxide (2x),  
and then left for several hours to overnight at 4°C in 50% propylene ox- 
ide/50% epon resin. Discs were embedded in epon, which was allowed to 
polymerize at 43°C for 36 h and then sectioned along a line parallel with 
the dorsal-ventral boundary. When the elongated columnar epithelium of 
the wing pouch was reached, sectioning was monitored by drying 0.6-~m 
sections onto glass slides, staining them with toluidine and methylene 
blue, and observing them with phase contrast optics. When we observed 
that the plane of the sections had become parallel to the orientation of the 
cells, we saved the 0.6-1xm section for reference and began to cut thin 
(0.07-~m) sections. These sections were stained with uranyl acetate and 
lead citrate and examined in an electron microscope (model 301; Phillips 
Scientific, Mahwah, N J). 

Results 

We wanted to disrupt Dcdc42 and Dracl  function in only a 
subset of the disc epithelial cells in order to allow the com- 
parison of affected and unaffected cells in the same disc. 
For this reason, we chose to express mutant alleles of 
Dcdc42 and Dracl under the indirect control of the 
patched promoter (see Materials and Methods). Fig. 1 
shows the pattern of patched promoter activity in a third 
instar larval wing disc. It is active in a strip of cells just an- 
terior to and abutting the anterior-posterior (AP) com- 
partment boundary. 

DCDC42 Is Required for the Elongation 
of Epithelial Cells 

Using this approach, we expressed one constitutively active 
and two dominant negative alleles of Dcdc42. Expression of 
the constitutive Dcdc42V12 in the disc epithelium caused too 
much cell death to be informative, but expression of both 
the dominant-negative alleles, Dcdc42S89 and Dcdc42N17, 
caused an ectopic furrow to form at the AP compartment 
boundary. We chose to characterize Dcdc42S89-expressing 
discs further because the Dcdc42S89 phenotype was some- 
what stronger. 

To examine the changes in the cells that caused the fur- 
row, we fixed and sectioned the affected discs along the 
line shown in Fig. 1 and stained them with methylene and 
toluidine blue. The wild-type disc comprises three differ- 
ent kinds of epithelial cells as shown in Fig. 2: the squa- 
mous cells of the peripodial membrane (S), columnar cells 
(C), and highly elongated columnar cells (EC). Since these 
cells are narrower than the nucleus over much of their 
length, the nuclei are packed at different levels, giving the 

Figure 1. Patched-gal4-driven 13-galactosidase expres s ion  in a 
late th i rd  ins tar  wing disc. Flies ha rbo r ing  the  patched gal4 con-  
s t ruct  were  c rossed  to flies car ry ing  the  gene  for [3-galactosidase 
u n d e r  the  cont ro l  o f  the  gal4 U A S .  W i n g  discs f r om late th i rd  in- 
s ta r  la rvae  were  f ixed and  i ncuba t ed  with X-gal  to de tec t  [3-galac- 
tos idase  activity. T h e  da rk  s ta in  m a r k s  the  ceils in which  the  
patched-gal4 cons t ruc t  is active. T h e  b road  str ipe is loca ted  in the  
e longa t ed  c o l u m n a r  epi thel ia l  cells. T h e  n a r r o w e r  s tr ipe is ou t  of  
the  p l ane  of  focus  and  loca ted  on  the  o the r  side of  the  disc at the  
in ter face  b e t w e e n  the  s q u a m o u s  and  c o l u m n a r  cells (see Fig. 2). 
On ly  the  e longa t ed  c o l u m n a r  epi thel ia l  cells were  e x a m i n e d  for 
thei r  r e sponse  to Dcdc42  and  D r a c l  d o m i n a n t - n e g a t i v e  expres-  
sion. A line is d r awn  t h r o u g h  the  wing p o u c h  to indicate  the  ap-  
p r o x i m a t e  pos i t ion  of  the  sec t ions  s h o w n  in Fig. 2. Bar ,  50 p~m. 

epithelium a pseudostratified appearance (Fig 2 A). In the 
disc that expresses Dcdc42S89 at the AP boundary, cells 
that ought to be highly elongated are instead short, result- 
ing in the deep furrow indicated by the arrow in Fig. 2 B). 

To confirm that the furrow was formed by Dcdc42S89- 
expressing cells, we stained these discs with an antibody to 
cdc42. These experiments showed that Dcdc42S89 is over- 
expressed with respect to the endogenous level of Dcdc42, 
and that the region of the disc that expresses Dcdc42S89 
forms the furrow (Fig. 3 A). Dcdc42S89 is localized pre- 
dominantly to apical and basal regions of cells. In wild- 
type cells, the endogenous Dcdc42 also is more abundant 
in apical and basal regions, but has a more cytoplasmic and 
punctate distribution (Fig. 3 B). Under fixation conditions 
that include high levels of detergent (see Materials and 
Methods), Dcdc42 is depleted from the cytoplasm and per- 
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Figure 2. Cross-sections of (A) wild-type, (B) Dcdc42S89/ptc- 
gal4, and (C) DraclN17/ptc-gal4 wing discs. The sections were 
stained with osmium tetroxide, toluidine blue, and methylene 
blue. The position of the sections corresponds to the line in Fig. 1. 
In A, S indicates the squamous cells, C the columnar cells, and 
EC the elongate columnar cells. The apical surface faces the lu- 
men, and the basolateral surface faces out. In B, an arrow indi- 
cates the fold caused by patched-gal4-mediated Dcdc42S89 ex- 
pression. In C, an arrow indicates dead cell s being extruded from 
the basal side of the epithelium. Bar, 50 Ixm. 

sists near membranes (Fig. 3, C-E), suggesting that a 
subpopulation of Dcdc42 interacts tightly with cellular 
components near membranes. In elongated cells, this sub- 
population of Dcdc42 is restricted to the apical and basal 
membranes (Fig. 3, C and D). In contrast, cells in early 
third instar discs, which have not yet elongated (Fig. 3 E) 
and the columnar, but nonelongated, cells at the edges of 
late third instar discs (Fig. 3 D, arrows) display Dcdc42 
over most of the lateral membrane as well. Thus, epithelial 
elongation correlates with depletion of Dcdc42 from lateral 
membranes and relative enrichment on apical and basal 
membranes. 

To examine the disrupted cells in more detail, we pro- 
cessed affected discs for EM. In some experiments, we 

marked the Dcdc42S89-expressing cells with 13-galactosi- 
dase and performed X-gal staining before processing to 
unambiguously identify mutant cells (data not shown). We 
could show that the interface between Dcdc42S89-express- 
ing and -nonexpressing cells was often marked by an inden- 
tation on the basal surface of the disc (Fig. 4, arrow). To 
the right of the indentation one can see the basal regions 
of five undisrupted cells. These cells are quite slim basally 
and have basal filopodia (arrowheads). The disrupted cells 
to the left of the indentation, in addition to being abnor- 
mally short, are bloated basally relative to wild-type cells. 
Because filopodia are thin and easily missed by single sec- 
tions even in wild-type cells, we have not attempted to 
quantify and compare their frequency in Dcdc42S89- 
expressing cells. 

Elongating Cells Reorganize Their Basal Actin 
Cytoskeleton In a Process that Requires Dcdc42 

The apico-basal growth that produces the elongated co- 
lumnar epithelium occurs during the third instar. In other 
cells that require cdc42 for polarized growth, the actin cy- 
toskeleton plays an important role. To examine the role of 
the actin cytoskeleton in epithelial elongation, we stained 
early, middle, and late third instar wing discs with rhodamine 
phalloidin. Viewed in cross-section, discs at all three stages 
have abundant actin at the junctional region. In contrast, 
only the elongated cells accumulate significant amounts of 
basal actin (Fig. 5, A-C). A tangential optical section 
through the basal region of an early third instar disc shows 
that actin is located predominantly on the lateral mem- 
branes of the cells (Fig. 5 D). However, at later stages, ac- 
tin disappears from the lateral membrane and is reorga- 
nized basally so that it has a more focused appearance 
(Fig. 5 E). If the basal reorganization of actin is important 
for elongation, then cells that do not elongate should not 
reorganize their basal actin. We therefore examined the 
columnar cells at the edges of the discs that remain short 
(labeled C in Fig. 2 A). Compared with the elongated cells 
(Fig. 5 C), the columnar cells do not accumulate significant 
amounts of basal actin (Fig. 5 F). The fact that the basal 
actin rearrangement occurs only in the elongating cells 
suggests that it plays a role in polarizing the shape of these 
cells. 

The subcellular localization of Dcdc42 indicated that it 
might mediate elongation by acting at either the apical or 
basal surface (Fig. 3). To determine whether Dcdc42 was 
important for basal actin reorganization, we stained discs 
that expressed Dcdc42S89 at the compartment boundary 
with rhodamine-conjugated phalloidin. Before elonga- 
tion has occurred to a significant extent, the Dcdc42S89- 
expressing cells are only slightly shorter than the adjacent 
cells, and the distribution of actin is not remarkably differ- 
ent, although it may be slightly more abundant laterally 
(Fig. 5 G). By the late third instar, however, normal cells 
have reorganized their basal actin, whereas the Dcdc42S89- 
expressing cells next to them have not (Fig. 5 H). Viewed 
in tangential section through the basal region, actin in 
Dcdc42S89 disrupted cells outlines the cell boundaries; in 
the normal cells to either side it appears more focused (Fig. 
5/) .  Dcdc42S89 does not disrupt localized actin accumula- 
tion in general; despite the extreme misorganization of the 
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basal actin cytoskeleton, accumulation of actin at adherens 
junctions is not affected (Fig. 5 H). Taken together, these 
findings suggest that Dcdc42 specifically promotes the re- 
organization of actin basally and that this reorganization is 
required for elongation. 

Expression of Dominant-negative Dcdc42 Disrupts 
Basal Actin Plaques 

Fristrom and Fristrom (1975) observed via the electron 
microscope dense actin-containing plaques on the basal 
membrane of larval disc epithelial cells. Since we saw by 
staining with phalloidin that the basal actin cytoskeleton 
was disrupted by Dcdc42S89, we wondered whether these 
specific structures were affected. We therefore compared 
the basal region Dcdc42S89-expressing cells with those of 
the adjacent normal cells. We found that the basal mem- 
brane of normal cells contains abundant electron-dense 
plaques (Fig. 6 A, arrows) similar in morphology to those 
described by Fristrom and Fristrom (1975). Cells that ex- 
press Dcdc42S89 have no such structures (Fig. 6 B). In the 
section shown in Fig. 3, we counted 12 electron-dense 
plaques along 12 I~m of wild-type basal surface and only 
one small, abnormally condensed plaque in 12 ~m of dis- 
rupted basal surface. The elimination of basal plaques by 
Dcdc42S89 suggests that Dcdc42 organizes the basal actin 
cytoskeleton by effecting the linkage of actin to the basal 
plasma membrane.  

It is unclear whether these plaques represent classical 
focal adhesions, or whether they might play some other, 
nonadhesive role. Since integrins are often associated with 
basal focal adhesions, we asked whether the absence of the 
basal plaques correlated with a change in basal [3-integrin 
distribution. The basal localization of [3-integrin is not sig- 
nificantly altered in the disrupted cells (Fig. 7). This sug- 
gests that the basal plaques may not mediate adhesion to 
the extracellular matrix. Alternatively, an as yet unidenti- 
fied integrin molecule may nucleate their formation. 

Dcdc42 Controls Apical Cell Shape 

Since we detected Dcdc42 protein apically as well as ba- 
sally, we thought that it might also play a role in organizing 

Figure 3. Subcellular distribution of Dcdc42 and Dcdc42S89 pro- 
teins. (A) XZ confocal section of a disc expressing Dcdc42S89 at 
the compartment boundary stained with an antibody to murine 
cdc42. The Dcdc42S89 protein is enriched at the basal surface, at 
the apical surface, and in the cells that form the ectopic furrow. 
The sheet of cells seen extending into the Dcdc42S89-induced 
furrow is part of the squamous peripodial membrane. (B) XZ 
section through the wing pouch of a wild-type disc stained with 
anti-cdc42 antibody as in A. The gain is increased to reveal the 
weaker endogenous staining, which is punctate and cytoplasmic. 
(C-F) XZ sections through discs that have been detergent ex- 
tracted concomitant with fixation and stained with an antibody to 
cdc42 (see Materials and Methods). (C) Wing pouch of late third 
instar disc. Detergent-resistant Dcdc42 is localized to apical and 
basal membranes. (D) Late third instar disc. Detergent-resistant 
Dcdc42 is present on the lateral membranes of nonelongated co- 
lumnar cells (arrows), but is restricted to the apical and basal 
membranes in elongated cells. (E) Early third instar disc. Deter- 
gent-resistant Dcdc42 is present on all membranes. Apical is up, 
basal down. Bars, 5 p,m. 
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Figure 4. Electron micrograph depicting the region disrupted by 
Dcdc42S89 expression. This section is adjacent to the one shown 
in Fig. 2 B. The arrow indicates an indentation in the basal sur- 
face that correlates with the interface between Dcdc42S89- 
expressing and -nonexpressing cells. The cells to the left of the in- 
dentation have a broader basal surface than the cells to the right 
of the indentation. Arrowheads indicate basal filopodia. Apical is 
up, basal down. Bar, 1 Ixm. 

the apical side of the disc epithelium. Although we were 
unable to detect obvious differences in the apical actin cy- 
toskeleton in Dcdc42S89-expressing cells, the abundant 
apical junctional actin might have obscured any alterations. 
We therefore examined the apical regions of Dcdc42S89- 
expressing cells in the electron microscope to see if any de- 
fects were present at the ultrastructural level. In wild-type 
cells, the adherens junctions (Fig. 8, arrows) are very close 
to the apical lumen. They are rather convoluted and fre- 
quently oriented parallel to the apical membrane (Fig. 8 
A). In contrast, the adherens junctions of the Dcdc42S89- 
expressing cells, although normal in morphology, are fur- 
ther from the apical side and are perpendicular to the apical 
surface (Fig. 8 B). It therefore seems likely that the api- 
cally located Dcdc42 helps to organize the apical shape of 
the cell. 

DraclN17 Does Not Affect Elongation or Basal 
Actin Reorganization 

To determine whether these alterations in cellular struc- 
ture were specific to Dcdc42, we compared the effects 
produced by Dcdc42S89 with those caused by the domi- 
nant-negative Dracl  protein, DraclN17. Histological ex- 

amination of such discs showed that DraclN17 expression 
does not produce a furrow, and cells appear to be of nor- 
mal length (Fig. 2 C). This suggested that, unlike Dcdc42, 
Dracl  is not required for apico-basal elongation. Histolog- 
ical sections also showed that, despite their relatively nor- 
mal appearance, DraclN17-expressing discs often contain 
dead cells that appear to be extruded from the basal side 
of the epithelium (Fig. 2 C, arrow). Next, we examined the 
basal actin cytoskeleton in DraclN17-expressing cells. Un- 
like cells disrupted by Dcdc42S89, these cells produce 
basal loci of actin, consistent with their ability to elongate 
normally (Fig. 9 A). Because these discs appear fairly nor- 
mal by these criteria, and because of the cell death ob- 
served, we worried that DraclN17 might kill cells as soon 
as it was expressed and that no DraclN17-expressing ceils 
might remain in the epithelium. Therefore, we asked 
whether DraclN17-expressing cells were present in these 
discs. Wild-type discs stained with an antibody to Dracl  
exhibit a punctate staining pattern that was uniformly 
abundant throughout the disc (Fig. 9 B). Examining discs 
bearing the UASDraclN17 and GAL4 constructs revealed 
an induction of DraclN17 expression along the compart- 
ment boundary. An optical cross-section through this re- 
gion clearly demonstrates that DraclN17-expressing cells 
are still present in these discs (Fig. 10 A). DraclN17 is 
present throughout the cells where it is expressed. The 
hourglass shape of this region suggested to us that these 
cells are broader apically and basally than their neighbors, 
and somewhat more constricted in the middle. Overall, 
these cells seem to bulge slightly from both the apical and 
basal side, in stark contrast to Dcdc42S89-expressing cells. 
Since the defect caused by DraclN17 expression was com- 
pletely different from those produced by the Dcdc42 dom- 
inant negative, we concluded that the effects we observed 
in each case were specific. Nevertheless, since Dracl  is 
more closely related to Drac2 than to Dcdc42, we cannot 
exclude the possibility DraclN17 interferes with the func- 
tion of Drac2 as well. 

Dracl Is Necessary to Recruit Actin 
to Adherens Junctions 

When we directed our attention to other elements of the 
actin cytoskeleton, we realized that, unlike Dcdc42S89, 
DraclN17 expression prevented the localization of actin 
to adherens junctions. The extent of DraclN17 expression 
(Fig. 10 A) precisely correlates with the region where ad- 
herens junction actin is disrupted (Fig. 10 B). In some 
discs, lateral actin is also depleted; however, this effect is 
not consistently reproducible (data not shown). Disrup- 
tion of adherens junction actin is also apparent in tangen- 
tial optical sections through the apical junctional region 
(Fig. 10, D and F, arrows). Since the adherens junction ac- 
tin in Dcdc42S89-expressing cells appeared normal (Fig. 5 
G-/) ,  we concluded that Dracl  was specifically required 
for its assembly. 

Localized E-Cadherin and fl-Catenin Cannot Recruit 
Junctional Actin in the Absence of  Drac l Activity 

The recruitment of actin to adherens junctions is initiated 
by the interaction of E-cadherin molecules on neighboring 
cells (Nagafuchi et al., 1987; Gumbiner et al., 1988). Actin 
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Figure 5. Actin cytoskeletal dynamics during elon- 
gation of wild-type and Dcdc42S89-disrupted cells. 
A- I  Confocal micrographs of discs stained with 
rhodamine phalloidin to illuminate filamentous 
actin. A-F are wild-type discs. G-I are Dcdc42S89- 
expressing discs. (A) XZ section of an early third 
instar wing disc. Actin is abundant at the apical 
junctions. (B) XZ section of a mid-third instar 
wing pouch. Actin is abundant at apical junctions 
and begins to accumulate basally. (C) XZ section 
of a late third instar wing pouch. In addition to the 
actin at the adherens junctions, bright loci of basal 
actin are observed. (D) XY projection of the basal 
surface of an early-mid-third instar wing disc 
(three XY sections comprising 3 wm total depth 
were projected to obtain the entire basal surface in 
one picture). Actin predominantly outlines the lat- 
eral cell membrane. (E) XY projection (3 txm total 
depth) of the basal surface of a late third instar 
wing pouch. Actin is arranged entirely in a punc- 
tate pattern. (F) XZ section through the columnar, 
nonelongated cells (marked C in Fig. 2) at the 
edge of the late third instar disc shown in C. Very 
little basal actin is observed. (G) XZ section 
through the wing pouch of a mid-third instar disc 
expressing Dcdc42S89 at the compartment bound- 
ary in the center of the section. These cells are 
slightly shorter than their neighbors. (H) XZ sec- 
tion through the wing pouch of a late third instar 
disc expressing Dcdc42S89 at the compartment 
boundary. Focal basal actin is present in the nor- 
mal cells to either side, but the cells at the bound- 

ary have predominantly lateral actin and are missing basal foci. (/) XY projection (3 I~m total depth) of the basal surface of a late third 
instar disc expressing Dcdc42S89 at the compartment boundary. Note the absence of basal actin loci and the presence of lateral actin in 
the disrupted cells in the center of the disc. In A-C and F-H, apical is up, basal is down. Anterior is to the left and posterior to the right 
except for A and D, where dorsal is to the left and ventral is to the right. Bars, 5 Ixm. 

does not  bind directly to E-cadherin;  its binding depends  
on two proteins,  13- and tx-catenin, which themselves bind 
to E-cadher in  (Ozawa et al., 1990; Ozawa and Kemler ,  
1992; Aber l e  et al., 1994). W e  wanted  to know whether  
D r a c l  was required for any of these interactions, or whether  
it p layed a novel  role in the recrui tment  of actin. To deter-  
mine whether  D r a c l  was requi red  for the localization of 
cadherin,  we double-s ta ined  Drac lN17-express ing  discs 
with an ant ibody to Drosophila E-cadher in  (Fig. 10 C) and 
with phal loidin (Fig. 10 D). We found that,  a l though cad- 
herin is lost from the adherens  junct ion in some cells, nev- 
ertheless many cells in which actin is no longer localized 
reta in  normal  amounts  of cadher in  (compare  Fig. 10 C and 
D). To de te rmine  whether  D r a c l  was requi red  for the lo- 
cal izat ion of 13-catenin, we double-s ta ined  discs with arma-  
dillo, the fly homolog  of 13-catenin, (Fig. 10 E), and phal-  
loidin (Fig. 10 F). Again ,  it is clear that  some cells that  
have lost actin still re ta in  armadi l lo  (compare  Fig. 10, E 
and F). Indeed,  armadi l lo  accumulates  to slightly higher 
levels in these cells than in their  normal  neighbors.  We  
concluded f rom these da ta  that  the requ i rement  for D r a c l  
is e i ther  subsequent  to or  independen t  of the localization 
of cadher in  and armadil lo.  

A further  observat ion makes  it l ikely that  the require-  
ment  for D r a c l  is not  independen t  of, but  subsequent  to, 
the local izat ion of these proteins.  We  not iced that  the ad- 
herens  junct ion actin in the vicinity of  the dorsa l -ven t ra l  

boundary  was resistant  to the depredat ions  of Drac1N17 
(Fig. 10, D and F). The dorsa l -vent ra l  boundary  runs per-  
pendicular  to the A P  boundary  where D r a c l N 1 7  is ex- 
pressed and intersects it in the middle  of the disc (Fig. 10, 
D and F, arrowheads). The dorsa l -vent ra l  boundary  cells 
express wingless, which causes the accumulat ion of arma- 
dillo pro te in  (Riggleman et al., 1990; Peifer  et al., 1991; 

Figure 6. Basal electron-dense plaques are absent in Dcdc42S89- 
expressing cells. (A) Basal side of wild-type epithelium. (B) Basal 
side of a cell expressing Dcdc42S89. Arrows point to electron- 
dense plaques, which are absent in Dcdc42S89-expressing cells. 
Apical is up, basal down. Bar, 0.22 I~m. 
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Figure 7. Integrin localization is unaffected by Dcdc42S89. Con- 
focal XZ section of a disc expressing Dcdc42S89 at the compart- 
ment boundary stained with an antibody to [3-integrin. The 
Dcdc42S89-expressing cells form the ectopic furrow (see Fig. 3). 
Anterior is left, posterior right. Bar, 5 Ixm. 

van Leewen et al., 1994). The fact that increasing the level 
of armadillo can compensate for reducing Drac l  function 
suggests that these proteins participate in the same path- 
way and that Drac l  does not act independently of arma- 
dillo and cadherin. 

Neither Dcdc42S89 Nor Drac lN17 Disrupts Polarized 
Protein Accumulation 

The actin cytoskeleton is thought to play a role in the po- 
larized delivery of apical and basolateral proteins in epi- 

Figure 9. Basal actin organization is not altered by DraclN17. 
(A) XY projection (3 Ixm total depth) of the basal side of a disc 
expressing DraclN17 at the compartment boundary. The disc 
was stained with rhodamine phalloidin to detect filamentous ac- 
tin. Basal actin in DraclN17-expressing cells remains punctate. 
(B) XZ section of a wild-type disc stained with anti-racl anti- 
body. Anterior is left, posterior right. Bar, 5 Ixm. 

Figure 8. Dcdc42S89 expression alters the apical shape of epithe- 
lial cells. (A) Electron micrograph of the apical region of a wild- 
type cell. (B) Electron micrograph of the apical region of a 
Dcdc42-expressing cell. Arrows point to the adherens junctions. 
Apical is up, basal down. Bar, 0.22 txm. 

thelial cells, both directly (Achier et al., 1989; Fath and 
Burgess, 1993) and indirectly via its effect on the polariza- 
tion of microtubules (Buendia et al., 1990). Our  results 
thus far suggest that Dcdc42S89 and Drac lN17 disrupt 
different functional subsets of the actin cytoskeleton; 
Dcdc42S89 causes both apical and basal abnormalities, 
and Drac lN17 perturbs adherens junction actin. To deter- 
mine which, if any, of these aspects of the actin cytoskele- 
ton is involved in this process, we examined the effects of 
Dcdc42S89 and Drac lN17 on the distribution of apically 
and basolaterally located proteins. 

Cadherin is normally present at high levels at the junc- 
tional region, which separates the apical and basolateral 
domains, and also localizes to spots on the basolateral 
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Figure 11. Neither Dcdc42S89 nor DraclN17 disrupts polarized 
accumulation of yellow or cadherin. Figure shows XZ confocal 
sections through the wing pouch of discs expressing either 
Dcdc42S89 (A and C) or DraclN17 (B and D) at the compart- 
ment boundary. A and B are stained with an antibody to E-cad- 
herin. C and D are stained with an antibody to yellow. Apical is 
up, basal down, anterior left, posterior right. Bars, 5 txm. 

Figure 10. Adherens junction actin is disrupted in DraclN17- 
expressing cells. A-F are confocal micrographs of discs express- 
ing DraclN17 at the AP compartment boundary. (A and B) XZ 
optical sections of a disc double-stained with an antibody to 
Dracl (A) and with rhodamine phalloidin (B). (C and D) XY 
projections (2 tzm total depth) of the apical junctional region of a 
disc double-stained with an antibody to cadherin (C) and with 
phalloidin (D). (E and F) XY projections (3 Ixm total depth) of 
the apical junctional region of a disc double-stained with an anti- 
body to armadillo (E) and with phalloidin (F). The arrows in D 
and F delimit the AP compartment boundary region where actin 
is disrupted; the arrowheads bracket the subset of cells at the in- 
tersection of the AP and dorsal/ventral compartment boundaries, 
where adherens junction actin is not disrupted. The fixation pro- 
cedure used for the disc shown in C and D was different from the 
procedure used in A, B, E, and F (see Materials and Methods). 
These protocols optimize the staining of each antibody, but the 
preservation of actin differs. Preservation of the fuzzy-appearing 
actin in the mutant cells in D and preservation of the basal actin 
cytoskeleton (seen clearly in Fig. 5, but not in B) both depend on 
utilization of the fixation protocol described in Materials and 
Methods as being for "phalloidin alone." Anterior is left, poste- 
rior right. Bar, 5 Ixm. 

membrane.  Both Dcdc42S89- (Fig. 11 A) and Drac1N17- 
(Fig. 11 B) expressing cells properly localize the cadherin 
protein to these regions. Furthermore,  we are unable to 
detect any ectopic cadherin apical to its concentration in 
the junctional region. The yellow protein is normally lo- 

cated apically, and there is no evidence of ectopic basolat- 
eral protein in cells disrupted by either Dcdc42S89 (Fig. 11 
C) or Drac lN17 (Fig. 11 D). Furthermore,  examining the 
adult wing reveals that the cuticle, which comprises a host 
of apically secreted proteins, is normal in the wing gener- 
ated by both Dcdc42S89- and DraclN17-expressing cells 
(Fig. 12, C and E). There is no evidence that cuticle has 
been secreted basally, where it would accumulate between 
the dorsal and ventral wing surfaces. These data suggest 
that neither Dcdc42 nor Drac lN17 is required to specifi- 
cally localize or maintain these proteins on the apical or 
basolateral surface. Furthermore,  it suggests that neither 
Drac l -dependent  adherens junction actin nor Dcdc42- 
dependent basal actin plays a continuing role in these pro- 
cesses. 

Dcdc42 and Drac l Play Different Roles 
in Wing Morphogenesis 

Both cell shape and the actin cytoskeleton are highly dy- 
namic during pupal wing morphogenesis when the final 
shape of the adult wing is attained. During morphogenesis,  
the elongated columnar cells of the wing pouch undergo 
profound changes in shape and are folded into an epithe- 
lial bilayer whose basal sides are apposed and adhere to 
each other via integrin-dependent focal contacts. Each cell 
in this bilayer extends a hair from its apical side. We won- 
dered whether Dcdc42 or Drac l  were involved in these 
processes as well. To address this, we examined the wings 
of  adult flies and asked whether regions of the wing de- 
rived from Dcdc42S89- or DraclN17-expressing cells dif- 
fered from other parts of the wing. 

In 30% of flies that expressed Dcdc42S89 at the com- 
partment  boundary,  the dorsal and ventral sides of the 
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Figure 12. Effects of Dcdc42S89 and Drac1N17 on the adult 
wing. (A) Wing from a wild-type female. The dashed line indi- 
cates the boundary between anterior and posterior compartments 
(Gareia-Bellido et al., 1973). (B) Enlargement of the wild-type 
compartment boundary region. (C) Wing from a female express- 
ing Dcdc42S89 at the compartment boundary. (D) Enlargement 
of the Dcdc42S89-affected region. The fuzzy spots are out-of- 
focus hairs on the opposite side of the wing. (E) Wing from a fe- 
male expressing Drac1N17 at the compartment boundary. (F) 
Enlargement of the DraclN17-affected region. In each case, an- 
terior is up and distal is right. Bars: (A, C, and E) 250 txm; (B, D, 
and E) 31 I~m. 

wing come apart and form a blister in this region (Fig. 12 
C). This suggests that the apposition or adhesion of the 
basal surfaces of the two epithelia is dependent on Dcdc42. 
The formation of blisters in the wing may reflect an epi- 
thelial elongation defect similar to that observed in the 
third instar, since apposition of the basal surfaces of the 
dorsal and ventral wing epithelia depends on elongation 
that occurs after pupariation (Fristrom et al., 1994). We 
also found that Dcdc42 is required for the formation of 
wing hairs in 100% of the flies examined. Comparing 
wings derived from wild-type (Fig. 12 B) and Dcdc42S89- 
expressing (Fig. 12 D) cells at high magnification reveals 
that the mutant hairs are either stunted or absent. The af- 
fected hairs are strictly limited to the compartment bound- 
ary region, but the penetrance is incomplete. Wings are 
most severely affected proximally, and cells near the wing 
margin rarely display abnormalities. Furthermore, the 
width of the band of cells affected (approximately four 
cells) is smaller than observed in the third instar disc, sug- 
gesting that penetrance also decreases anteriorly. This 
may reflect small differences in the level of dominant-neg- 

ative expression in these cells, or a differential sensitivity 
to the dominant negative. 

In contrast, DraclN17 caused none of the defects pro- 
duced by Dcdc42S89; there was no evidence of blistering 
(Fig. 12 E), and the wing hairs were of normal length (Fig. 
12 F). DraclN17 caused defects that were not produced by 
Dcdc42S89, however. Wings from these flies were of nor- 
mal length but narrow. The reduction in area (of '--42%) 
was limited to the anterior compartment, which contains 
the cells that express DraclN17. To determine whether 
the anterior compartment contained fewer cells than nor- 
mal, or whether the cells had a narrower cross-section, we 
counted the wing hairs along a line from the compartment 
boundary to the anterior wing margin. We found that the 
number of wing hairs, and hence the number of cells, was 
abnormally low throughout the anterior compartment 
(data not shown). This supports the conclusion we made 
on the basis of the histology of these discs: DraclN17 
causes defects that result in higher rates of cell death. 

When we examined wings at higher magnification, we 
noticed that DraclN17 expression caused the duplication 
or triplication of wing hairs (Fig. 12 F). Again, the pene- 
trance of this defect decreased near the wing margin. The 
wing margin corresponds to the dorsal-ventral boundary, 
which we have observed to be insensitive to the expression 
of dominant-negative Dracl  in the imaginal disc (Fig. 10, 
D and F). A similar insensitivity at later developmental 
stages may preclude the formation of multiple wing hairs 
near the wing margin. The formation of multiple wing 
hairs is a defining characteristic of the tissue polarity mu- 
tants. Tissue polarity genes are thought to polarize epithe- 
lial cells with respect to the body axis, a phenomenon 
termed planar polarization (for review see Adler, 1992). 
We therefore think that Dracl  contributes to this process. 

Discussion 

In this study, we have perturbed different aspects of epi- 
thelial morphology by expressing dominant-negative al- 
leles of Dcdc42 and Dracl  in imaginal discs. The specific- 
ity of the effects produced by Dcdc42S89 and DraclN17 is 
remarkable. We did not detect any overlap in the function 
of these two molecules at any stage of development. Since 
the effects produced by dominant-negative Dcdc42 and 
Dracl  do not overlap, it is clear that neither nonspecifi- 
cally disrupts the activity of the other. Furthermore, it is 
unlikely that Drho activity is altered because Dcdc42 and 
Dracl  share even less homology with Drho than they do 
with each other; Dcdc42 and Dracl  are 70% identical at 
the amino acid level (Luo et al., 1994), but share only 46% 
identity with DrhoA (Hariharan et al., 1995). Therefore, 
the phenotypes produced by Dcdc42S89 and Drac1N17 
expression probably accurately reflect the roles of these 
proteins in cellular organization. 

On the other hand, expression of dominant-negative 
forms of these proteins may not produce the equivalent of 
a null phenotype if the activities of the endogenous pro- 
teins are not completely eliminated. Although the basal 
actin cytoskeleton is most sensitive to reduction in the ac- 
tivity of Dcdc42, we cannot rule out the possibility that a 
low level of Dracl  activity (lower than that required for 
the assembly of adherens junction actin) is also needed. 
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Similarly, small amounts of Dcdc42, in addition to Dracl ,  
might be required to assemble actin at adherens junctions. 
Nevertheless, the protein most likely to be regulatory for 
each process in vivo is the one to which it is most sensitive. 

The Role of  Dracl In Adherens Junction Assembly 

Our results show that Dracl  activity is required for actin 
assembly at adherens junctions. Since assembly of actin is 
critical for cadherin-mediated adhesion, modulation of 
Dracl  activity in vivo might help regulate the ability of ep- 
ithelial cells to adhere to each other. Dracl  does not seem 
to promote actin assembly by helping to localize either 
E-cadherin or 13-catenin (armadillo) because DraclN17 
disrupts actin assembly in cells with properly localized 
cadherin and armadillo (Fig. 10, C-F). This suggests that 
Dracl  acts either downstream or independently of the lo- 
calization of these proteins. Our data also suggest that fail- 
ure to assemble actin in response to the localization of the 
cadherin-armadillo complex might result in the delocal- 
ization of cadherin or armadillo because we also observe 
cells that lack cadherin and armadillo as well as actin. As 
expected, we never observed cells with normal amounts of 
junctional actin but depleted cadherin or armadillo. 

An intimate relation between armadillo and Dracl  is 
suggested by the observation that dorsal-ventral boundary 
cells, which contain higher levels of armadillo due to wing- 
less expression, are resistant to the effects of expressing 
dominant negative Dracl  (Fig. 10, C and E). A simple ex- 
planation for this is that armadillo interacts directly with 
Dracl.  The dominant-negative DraclN17 protein binds 
nonproductively to armadillo, preventing a productive in- 
teraction with the endogenous, active Dracl.  In cells with 
particularly high levels of armadillo protein, DraclN17 
might not be able to bind and sequester all the armadillo, 
leaving some protein free to interact with the endogenous, 
active Dracl .  Similar suppression of the dominant inhibi- 
tory activity of Ha-ras N17 is obtained by expressing the 
exchange factor SDC25-C in yeast (Schweighoffer et al., 
1993). Intriguingly, armadillo contains 12 repeats of a mo- 
tif found in smgGDS (Peifer et al., 1994), an exchange fac- 
tor for small GTPases including rac (Hiraoka et al., 1992). 
This raises the possibility that armadillo might act as an 
exchange factor for Dracl .  

Recently, Harden et al. (1995) have reported the effects 
of heat shock-induced expression of DraclN17 on embry- 
onic development. They found a failure in dorsal closure 
that correlated with altered cell shape and decreased fila- 
mentous actin at the leading edge of the dorsally migrating 
epithelial cells, but no defects in adherens junction actin 
were apparent. Differences between the expression sys- 
tems probably account for this discrepancy; when DraclN17 
is expressed under the indirect control of the patched pro- 
moter, the dominant-negative protein is present through- 
out ongoing cell division, when new adherens junctions 
must be assembled. Taken together, our results and those 
of Harden et al. suggest that Dracl  probably plays multi- 
ple roles in regulating actin accumulation. 

The Survival of  Normal Epithelial Cells May Require 
Intact Adherens Junctions 

A wide range of experiments with tissue culture cells has 

established that the integrity of adherens junction compo- 
nents is critical to adhesion, and that tumorigenesis corre- 
lates with their inactivation (Navarro et al., 1991; Vlem- 
inckx et al., 1991; Matsuyoshi et al., 1992; Behrens et al., 
1993). On this basis we might have expected that disc cells 
expressing DraclN17 would fail to adhere to the rest of 
the epithelium and lose their single-layered structure. We 
saw no evidence of this; instead, we observed increased 
levels of cell death. Cell death was seen both histologically 
(Fig. 2 C) and deduced from the reduction in the size of 
the wing (Fig. 12 E). One possible explanation for increased 
mortality is that DraclN17 disrupts another vital cellular 
function, such as cytokinesis. Alternatively, disassembly of 
the adherens junction itself may be toxic. Interestingly, ep- 
ithelial cells mutant for dco, in which no adherens junc- 
tions are detectable in the electron microscope, also ex- 
hibit high levels of cell death and retain a monolayered 
structure (Jursnich et al., 1990). It is possible that death 
may be a common response of normal, nonimmortalized 
epithelial cells to compromised adherens junction function. 
This response would share strategic features with anoikis, 
a term coined to describe epithelial apoptosis that occurs 
as a result of detachment from the extracellular matrix 
(Frisch and Francis, 1994). Both responses would ensure 
that continued growth occurs only when cells are con- 
strained within an epithelium. It is clear that a cell's ability 
to evade anoikis is one requirement for full transforma- 
tion. Our results suggest that this may also be true in the 
case of cell-cell contact; for tumorigenesis to progress, cells 
must not only abrogate contact with their neighbors; they 
must circumvent the apoptotic response that results. 

Drac l Helps to Generate Planar Polarity 

Another difference between the developing disc and cells 
in tissue culture is that disc cells develop obvious planar 
polarity, that is, polarity with respect to the body axis, as 
well as apico-basal polarity. In the wing this is reflected in 
the regular array of distally pointing hairs, one of which is 
elaborated by each cell on the wing blade. By disrupting 
Dracl  function in vivo, we have been able to observe that 
generation of planar polarity in the disc epithelium appar- 
ently requires Dracl.  

The realization that epithelial cells are polarized with 
respect to the body axis came from the study of the Dro- 
sophila tissue polarity mutants. This class of mutants per- 
turbs the normally well-ordered arrays of cuticular hairs 
and bristles (Adler, 1992). The tissue polarity genes affect 
many epithelial tissues, but efforts to understand their 
mechanism of action have focused on the wing. In the 
wing, planar polarity within each epithelial cell is reflected 
in the choice of the site at which hair outgrowth initiates 
(Wong and Adler, 1993). The hair begins as an actin-filled 
apical projection that is restricted to the distal-most vertex 
of the cell (i.e., the point at which it contacts its two most 
distal neighbors). Some tissue polarity mutants make wing 
hairs that do not point distally. In these cells, the actin- 
filled outgrowth can occur anywhere on the apical surface 
of the cell and is not limited to a site of cell-cell contact. 
Other tissue polarity mutants, like DraclN17, cause a sin- 
gle cell to form multiple wing hairs (Fig. 12 F). These cells 
fail to limit the initiation of actin polymerization to the dis- 
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tal vertex; instead, actin accumulates at multiple regions of 
cell-cell contact. This phenotype is very different from 
that observed by Dcdc42S89 expression, which causes ei- 
ther the absence of wing hairs or stunted hairs (Fig. 12 D). 
One simple explanation for the requirement for Dracl in 
the establishment of planar polarity is that specification of 
the distal vertex is signaled by some modification of the 
adherens junction. 

Dcdc42 Controls Cell Shape Changes in Epithelial Cells 

The control of epithelial cell shape changes is of critical 
importance to morphogenesis and differentiation. Despite 
the importance of these events, very little is known about 
how epithelial cells change their shape. This work estab- 
lishes that Dcdc42 mediates epithelial elongation and sug- 
gests that elongation depends on Dcdc42-mediated changes 
in the basal actin cytoskeleton. Although Dcdc42 is proba- 
bly also required to shape the apical region (Fig. 8), we do 
not observe any apical cytoskeletal changes that correlate 
with elongation during the third instar. Adherens junction 
actin cannot be required for the maintenance of an elon- 
gated shape, because DraclN17-expressing cells that lack 
it are of normal height. Furthermore, adherens junction 
actin accumulates normally in Dcdc42S89-expressing cells 
(Fig. 5 H). In contrast, we find that the basal actin cyto- 
skeleton is organized differently in elongating versus non- 
elongating cells, and that this organization is dependent on 
Dcdc42. Cells in which the basal actin cytoskeleton is dis- 
rupted by Dcdc42S89 expression are missing electron- 
dense plaques on their basal plasma membrane, suggesting 
that Dcdc42 may act by promoting the linkage of microfil- 
aments to the membrane in this region. 

Interestingly, other types of metazoan cells also use 
cdc42 to generate different kinds of actin-dependent po- 
larized shape changes. Neurons require cdc42 for neurite 
extension (Luo et al., 1994), and fibroblasts respond to cdc42 
activation by extending filopodia (Nobes and Hall, 1995). 
These processes occur in different cellular contexts, never- 
theless the common requirement for cdc42 activity sug- 
gests that they all share a basic mechanism. Since the gen- 
eration of polarized cell shape changes in fibroblasts and 
neurons has been intensively studied in tissue culture, in- 
formation gleaned from these studies might shed light on 
the mechanism by which epithelial cells change their shape. 

Are Filopodia Involved in Dcdc42-mediated Epithelial 
Cell Shape Changes? 

Both fibroblast migration and neurite extension depend 
on the formation of filopodia. In fibroblasts, these dy- 
namic, actin-filled projections seek out new contacts with 
the substrate, and are subsequently connected by the ac- 
tin-dependent formation of lamellipodia. Contraction re- 
sults in the breakage of old attachments and net forward 
movement of the cell (Small, 1994; Cramer et al., 1994). 
Filopodia also form in growth cones when neurites are 
elongating. Here, they perform a similar function and search 
out new connections between the growing neurite and its 
substrate (Bentley and O'Connor, 1994; Doherty and Walsh, 
1994). In fibroblasts, activating cdc42 promotes filopo- 
dium formation (Kozma et al., 1995; Nobes and Hall, 
1995); in neurons, perturbation of cdc42 activity prevents 

neurite outgrowth (Luo et al., 1994). In light of these facts, 
a straightforward explanation for the failure of neurite 
outgrowth is that cdc42 is required for filopodium forma- 
tion in neurons as well. This suggests the intriguing possi- 
bility that Dcdc42-dependent epithelial elongation and 
wing hair formation are similar processes and also involve 
filopodia. Basal filopodia have been described in a variety 
of epithelia including the sea urchin archenteron (Morrill 
and Santos, 1985; Keller and Hardin, 1987), the ectoderm 
of the insect Calpodes (Locke and Huie, 1981), and cul- 
tured vertebrate cells (Vasiliev, 1987; Reinsch and Karsenti, 
1994). We also observe filopodia in normal disc epithelial 
cells (Fig. 4 and Fig. 6 A). 

Basal filopodia in epithelial cells contact both the extra- 
cellular matrix and neighboring cells, suggesting that they 
may be able to generate focal contacts with either depend- 
ing on the exigencies of the task at hand. When epithelial 
cells elongate, they must increase the percentage of their 
surface area in contact with neighboring cells. Under these 
conditions, filopodia may favor contacts with other cells 
over contacts with the extracellular matrix. Subsequent re- 
traction of filopodia into the body of the cell might result 
in an increase in height (Locke and Huie, 1981). Clearly, 
such a mechanism requires a specific and intricate ar- 
rangement of the actin cytoskeleton, and this may be re- 
flected in the basal reorganization of actin that occurs 
when cells elongate. This mechanism also demands coordi- 
nation of the processes occurring in neighboring cells to 
bring about an increase in the height of the apposed lateral 
surface membranes. 

Dcdc42 And Dracl In Epithelial Polarity 

The defects caused by dominant-negative Dracl and Dcdc42 
expression do not affect the maintenance of epithelial po- 
larity in general, because apical and basolateral proteins 
remain correctly localized. We were particularly surprised 
by the observation that Drac1N17 did not affect polarity, 
because adherens junction actin is thought to help polarize 
the organization of epithelial microtubules (Buendia et al., 
1990). It may be that the increased rate of cell death 
caused by DraclN17 expression interferes with our ability 
to observe depolarization; if cells in which the adherens 
junction is fatally compromised undergo apoptosis, they 
may die before apical and basolateral proteins are observ- 
ably delocalized. 

These experiments address the function of Dcdc42 and 
Dracl in the imaginal epithelium, but the generation of 
epithelial polarity occurs much earlier, during embryogen- 
esis (Knust, 1994). Although Dcdc42 and DraclN17 ap- 
pear not to be required for the maintenance of polarity, 
they may yet play a part in its generation. Manipulating 
the activity of Dcdc42 and Dracl at the time that polarity 
is being established may reveal a different set of functions 
for these versatile proteins and provide insights into these 
fascinating changes in cell structure. 
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