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Abstract

Cancer stemness, which covers the stem cell-like molecular traits of cancer cells, is

essential for tumor development, progression and relapse. Both transcriptional and

epigenetic aberrations are essentially connected with cancer stemness. The engage-

ment of bromodomain (BrD) proteins—a family of epigenetic factors—has been pres-

ented in the pathogenesis of several tumor types, although their association with

cancer stemness remains largely unknown. Here, we harnessed TCGA and GEO data-

bases and used several bioinformatic tools (ie, Oncomine, PrognoScan, GEPIA2,

TIMER2.0, TISIDB, GSEA, R2 platform) to characterize the association between the

BrD family members' expression and cancer stemness in solid tumors. Our results

demonstrate that significant upregulation of ATAD2 and SMARCA4, and down-

regulation of SMARCA2 is consistently associated with enriched cancer stem cell-like

phenotype, respectively. Especially, higher-grade tumors that display stem cell-like

properties overexpress ATAD2. In contrast to most BrD members, the gene expres-

sion profiles of ATAD2HIGH expressing tumors are strongly enriched with known

markers of stem cells and with specific targets for c-Myc transcription factor.

For other BrD proteins, the association with cancer de-differentiation status is rather

tumor-specific. Our results demonstrate for the first time the relation between

distinct BrD family proteins and cancer stemness across 27 solid tumor types.

Specifically, our approach allowed us to discover a robust association of high

ATAD2 expression with cancer stemness and reveal its' versatility in tumors.
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As bromodomains are attractive targets from a chemical and structural perspective,

we propose ATAD2 as a novel druggable target for de-differentiated tumors,

especially those overexpressing MYC.
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What’s new?

While epigenetic alterations are linked to stem cell-like molecular traits in cancer cells, associa-

tions between cancer stemness and aberrations in epigenetic factors known as bromodomain

(BrD) proteins remain unclear. In the present investigation of associations between BrD protein

expression and cancer progression and de-differentiation status, several BrD members were

linked to cancer stem cell-like phenotypes in solid tumors. Notably, BrD family member ATAD2

was found to be consistently overexpressed in high-grade tumors with stem cell properties. The

findings shed light on the molecular basis of de-differentiation and could inform novel therapeu-

tic strategies for eradicating tumors with stem cell-like properties.

1 | INTRODUCTION

The bromodomain is an evolutionarily conserved, about 110 amino

acid-long, protein-protein interaction domains that facilitates the rec-

ognition of acetylated lysine residues. This essential activity provides

versatile functions to bromodomain-containing (BrD) proteins, primar-

ily associated with the chromatin-templated gene transcription,

recombination, replication and repair of the DNA.1 As the majority of

BrD proteins also contain additional structurally conserved functional

domains, they display diverse physiological activities, including post-

translational histone modifications (acetylation and methylation),

chromatin remodeling and recruitment of distinct transcription fac-

tors. Moreover, BrD members affect both transcription initiation and

elongation. Notably, all those functions are fundamental for epige-

netic regulation of gene expression.1,2

BrD family members can be classified into nine subgroups based

on their major molecular functions.1 Group I of BrD family members

comprises nine members of histone acetyltransferases, group II—2

proteins acting as histone methyltransferases, group III—11 members

of chromatin remodeling factors, group IV—2 proteins with AAA

ATPase activity, group V—4 members of BET transcriptional

coactivators, group VI—4 proteins with E3 SUMO/ubiquitin ligase

activities, group VII—4 SP family proteins of PML nuclear bodies,

group VIII—2 transcriptional co-repressors with MYND zinc-finger

domain and group IX—3 members of WD-repeat proteins. However,

all BrD members are epigenetic “readers,” and numerous of them are

known to be involved in the pathogenesis of distinct human diseases,

including cancer.2-5

Epigenetic dysregulation of gene expression contributes to

tumorigenicity (at least partially) via facilitating the self-renewal of

cancer cells.6 Cancer cells that possess the ability to self-renew and to

differentiate into the more specialized progeny are known as cancer

stem cells (CSCs). This population exhibits highly metastatic potential

and facilitates tumor relapse after treatment due to intrinsic resistance

to standard therapies.7,8 Moreover, the high plasticity of CSCs

provides the transition between stem-like and non-stem-like states.

Therefore, it is difficult to unequivocally define the CSC population

and to determine whether distinct tumor types are organized into a

rigid hierarchy.9 An increasing number of data demonstrates that

molecular features characteristic for stem cells (“stemness”) are indis-

putable for cancer progression and therapy resistance.10,11 Although

it is unclear whether the cancer stemness reflects the presence of

bona fide CSCs, the molecular signatures sufficient for grading stem

cell-like phenotype essentially contribute to the development of novel

therapeutic approaches that may directly target the stem cell-like

compartment of the tumor.12

Recent reports suggest that several BrD members play a role in

the regulation of the cancer stem cell population in distinct types of

tumors.13-15 Especially, the role of BRD4 protein, a member of BET

transcriptional coactivators, has been well documented in several

studies in vitro. BRD4 regulates the self-renewal of glioma,16

medulloblastoma,17 prostate,18 breast19 and stomach cancer stem

cells,20 and is essential for normal stem cell maintenance.15,21 Simi-

larly, TRIM28 (also known as TIF1-β or KAP1) facilitates stemness

acquisition in distinct types of tumors, including breast,22,23 lung24

and melanoma,25 and contributes to the stemness machinery of

normal stem cells on several distinct levels.26,27

However, little is known about other BrD family members and

their association with cancer stemness. Here, we harnessed publicly

available transcriptomic data from 27 distinct types of TCGA tumors

to delineate the connection between specific BrD family proteins and

cancer stemness measured with previously reported stemness indices

or signatures.10-12,28 Using the TIMER2.0 platform,29 we reported that

for most BrD family members, the differential expression in tumor tis-

sues vs normal adjacent tissues could be observed. According to the

GEPIA2 database,30 for several BrD genes, we demonstrated a signifi-

cant correlation with TCGA cancer patients' outcomes, mostly nega-

tive. These results were further validated with additional datasets
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from the Oncomine,31 PrognoScan32 and the GEO databases. Next,

we used a transcriptome-based stemness index (mRNA-SI) and other

stem cell-derived gene expression signatures10-12,28 to analyze the

relation between BrD proteins' expression and the level of tumor de-

differentiation. We observed that among 41 tested BrD family mem-

bers, the correlation with cancer stemness across 27 tumor types was

consistently positive or negative for only five and four BrD genes,

respectively (namely ATAD2, BRD7, KAT2A, SMARCA4, TRIM28 [posi-

tive], and KAT2B, BAZ2B, SP100 and SMARCA2 [negative]). Using clini-

copathologic data, we demonstrated that higher-grade tumors display

significant upregulation of ATAD2 and SMARCA4 expression, and

downregulation of SMARCA2 expression, which further confirms a

universal relation of these BrD proteins' expression with cancer

stemness. Moreover, the gene set enrichment analysis (GSEA)33 rev-

ealed that ATAD2-associated and SMARCA4-associated trans-

criptome profiles are significantly enriched with known markers of

stem cells. On the other hand, SMARCA2HIGH and KAT2BHIGH tumors

are significantly depleted with stemness markers. Further GSEA ana-

lyses with MSigDB Hallmark (v7.4) gene sets as a reference confirmed

robust enrichment of ATAD2-associated transcriptome profiles with

“cancer hallmark” terms specific for stemness-high tumors, especially

the activation of c-Myc-dependent transcription.

Altogether, our results clearly demonstrate yet unrecognized

association of high ATAD2 expression with cancer stem cell-like phe-

notype of solid tumors, regardless of the tumor type. However,

molecular studies are necessary to determine the precise role of

ATAD2 in stem cell-like tumors and to ascertain whether epigenetic

functions mediated by ATAD2 are sufficient to promote cancer

stemness.

2 | MATERIALS AND METHODS

2.1 | TCGA solid tumor types selected for the
study

In the current study, we selected 27 solid TCGA tumor types

(a) with more than 50 samples collected and (b) with survival data

available (tumor types that were excluded: CHOL, PCPG and UCS)

for analyses (Table S1). All data is available online, and the access

is unrestricted and does not require patients' consent or other

permissions. The use of the data does not violate the rights of any

person or any institution.

2.2 | The expression of BrD family members in
distinct TCGA cohorts

The differential expression of BrD family members (Table S2) in

tumor tissues vs normal adjacent tissues across 18 out of 27 tested

solid TCGA tumor types was analyzed using the Gene_DE module

of the TIMER2.0 platform (http://timer.cistrome.org/).29 Only

those tumor types for which normal adjacent tissue was available

were analyzed with TIMER2.0. The Gene_DE module allows users

to study the differential expression (log2-normalized TPM values)

between tumor and adjacent normal tissues for any gene of interest

across TCGA tumors. The statistical significance was computed by

the Wilcoxon test.

The data regarding BrD family members' expression in other GEO

datasets was retrieved from the online database, Oncomine (https://

www.oncomine.org/resource/login.html).30 For further details, see

Supporting Information Materials and Methods and Figure S1.

2.3 | The association between BrD family
members expression and patients' outcome

The association between BrD family members expression and

patients' overall survival (OS) across 27 solid TCGA tumor types was

analyzed with the Survival_Map panel of the GEPIA2 database

(http://gepia2.cancer-pku.cn/#index).31 The hazard ratio was esti-

mated using the Mantel–Cox test using the mean BrD family mem-

bers' expression as a cut-off. As for additional GEO cohorts, the

PrognoScan (http://dna00.bio.kyutech.ac.jp/PrognoScan/)32 database

was used for the meta-analysis of the prognostic value of various

genes. For further details, see Supporting Information Materials and

Methods and Table S3.

2.4 | TCGA genomic data

Genomic data for 27 solid TCGA tumors were directly downloaded

from the cBioportal (www.cbioportal.org) database.33

2.5 | Transcriptomic data

The RNA sequencing-based mRNA expression data were directly

downloaded from the cBioportal. RNASeq V2 from TCGA is

processed and normalized using RSEM.34 Specifically, the RNASeq V2

data in cBioPortal corresponds to the rsem.genes.normalized_results

file from TCGA. The Spearman's correlation was used for detection of

co-expressed genes with P-value <.05 and FDR < 0.01 as cut-offs.

Differentially expressed genes (DEGs) were cut off at P-value <.05

and FDR < 0.05.

2.6 | Stemness-associated scores

The mRNA-SI stemness score12 and other stemness signatures

(Ben-Porath_ES_core, Wong_ESC_core and Bhattacharya_ESC) used

in this study were previously described.10,11,28 Briefly, the mRNA-SI

signature was calculated based on previously built predictive model

using one-class logistic regression (OCLR) on the pluripotent stem cell

samples (ESC and iPSC) from the PCBC dataset. The resulting training

matrix contained 12 945 mRNA expression values measured across all
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available PCBC samples. The obtained signature was further applied

to score TCGA samples using the Spearman correlations between the

model's weight vector and the sample's expression profile. The index

was subsequently mapped to the [0,1] range by using a linear transfor-

mation that subtracted the minimum and divided by the maximum. As

for Ben-Porath_ES_core,10 Wong_ESC_core11 and Bhattacharya_ESC28

signatures, we used R2 platform (http://r2.amc.nl, accessed on

25 June 2021) to calculate the mean value (log2-transformed

z-score) for each of the signatures in tested samples (each TCGA

tumor type separately).

2.7 | Histologic tumor grades

The association between BrD family members' expression and the his-

tologic tumor grade was assessed using the TISIDB portal (http://cis.

hku.hk/TISIDB/index.php).35 The correlation was calculated using

Spearman's rank correlation coefficient (r).

2.8 | Gene set enrichment analysis

The GSEA (http://www.broad.mit.edu/gsea/index.html)36 was used to

detect the coordinated expression of a priori defined groups of genes

within the tested samples. Gene sets are available from the Molecular

Signatures Database (MSigDB, http://www.broad.mit.edu/gsea/.

msigdb/msigdb_index.html).37 All significantly DEGs were imported to

GSEA. The GSEA was run according to the default parameters: each

probe set was collapsed into a single gene vector (identified by its

HUGO gene symbol), permutation number = 1000, and permutation

type = “gene-sets.” The FDR < 0.01 was used to correct for multiple

comparisons and gene set sizes.

2.9 | Validation datasets from the GEO database

Additional datasets used in this study (Table S4) for GSEA analyses

were obtained from the R2 Genomics Analysis and Visualization Plat-

form. All datasets were analyzed online using the R2 Platform (http://

r2.amc.nl, accessed on 25 June 2021) to find genes that correlate with

selected BrD family members' expression. All data are freely available

online, and access is unrestricted and does not require patient consent

or other permissions.

2.10 | Statistical analyses

Statistical analyses were carried out with GraphPad Prism 8.0 soft-

ware (GraphPad Software, Inc, La Jolla, California). Multiple compari-

sons were performed with the ANOVA test. The correlation between

two variables was assessed with Spearman's rank correlation coeffi-

cient (r).
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3 | RESULTS

3.1 | The expression of BrD family members in
tumor and normal adjacent tissues and the association
with cancer patients' survival

Recent reports demonstrate that several BrD family members

exhibit distinct expression patterns in tumor vs normal adjacent

tissues. Here, we analyzed the expression for all 41 BrD family

members (Tables S1 and S2) in 18 TCGA tumor types vs normal

adjacent tissue using TIMER2.0 (http://timer.cistrome.org/).29 We

observed that for most BrD family members, the differential

expression highly depends on the tumor type. Only for five genes,

namely KAT2A, SMARCA4, BAZ1A, ATAD2 and TRIM28, we

observed consistently higher levels and for two genes—KAT2B and

SMARCA2—lower levels, respectively, regardless of the tumor type
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(Figure 1A). This observation was further validated with the data

from the Oncomine database (Figure S1).31

Next, we used the average expression of BrD family members as

a cut-off for patients' stratification and observed that several BrD

family members are substantially associated with a patient's outcome

in TCGA datasets (Figure 1B). Especially in ACC and in LGG, the

upregulation of 16 and 11 distinct BrD members, respectively, is asso-

ciated with a worse prognosis. On the other hand, the upregulation of

18 distinct BrD family members in KIRC is associated with a better

prognosis. As observed for the differential expression, the association

of BrD family members with patient survival is tumor-specific. For

most BrD members, their level rarely correlates with tumor patients'

survival, with only nine members (BRPF1, SMARCA2, BAZ1A, BAZ1B,

ATAD2, TRIM28, SP100, SP110 and SP140) being significantly associ-

ated with either better or worse survival of at least five distinct tumor

types. We further validated this observation with additional datasets

from the Prognoscan database (Figure S2).32

We also verified the frequencies of alterations in BrD family

members with the cBioportal platform.34 As presented in Figure S3A,

the mutation rates (including missense mutations, amplifications and

deletions) in BrD member-encoding genes were relatively low across

all tested tumor types. Specifically, ATAD2 exhibit the highest level of

aberrations that accounts for 10% of all profiled samples (10 506 sam-

ples in 27 solid TCGA tumor types). A closer look at ATAD2 mutation

revealed a very high frequency of alterations in OV (35.3%) and ele-

vated levels of alterations in ESCA (20.5%) and LIHC (20.2%;

Figure S3B); most of these being amplifications.

3.2 | The relation between BrD family members'
expression and cancer stemness

As previously reported, solid tumors display distinct levels of cancer

stemness.12 Here, we analyzed the association between the expres-

sion of BrD family members and the level of tumor stemness quanti-

fied with the previously described transcriptome-based stemness

index (mRNA-SI). As presented in Figure 2A, the expression of most

BrD members significantly negatively correlated with cancer stemness

across many TCGA tumor types, although only for KAT2B, KMT2A,

SMARCA2, BAZ2B, SP100 and SP140, the association was highly

consistent (regardless of the tumor type). Moreover, we observed a

significant positive correlation of KAT2A, SMARCA4, ATAD2, TRIM24

and TRIM28 expression with tumor stemness across most solid

tumor types (with the last two members previously reported38).
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These associations were further confirmed with additional stem cell

gene signatures (Figures 2B and S4), especially for KAT2B, SMARCA2,

SMARCA4, ATAD2 and TRIM28 genes.

Next, for each of the tested tumor types, we compared the mean

mRNA-SI score with the mean expression of BrD encoding genes. As

presented in Figure 2C,D, we observed a robust positive association for

12 markers, namely KAT2A, EP300, BRD1, SMARCA4, CECR2, ATAD2,

BRD4, BRD2, BRDT, TRIM28, ZMYND8 and BRWD3 genes, and a nega-

tive correlation for KAT2B and SMARCA2. These results strongly sug-

gest that stemness-like TCGA tumors (that exhibit high mean mRNA-SI

level) are significantly over-expressing KAT2A, SMARCA4, ATAD2 and

TRIM28, and significantly underexpressing KAT2B and SMARCA2.

Previously, Malta et al12 have found a strong association between

the mRNA-SI and known clinical and molecular features of TCGA

BRCA tumors, demonstrating that the basal subtype, known to exhibit

an aggressive phenotype associated with an undifferentiated state,

display the highest levels of mRNA-SI. Therefore, we analyzed the

expression of all BrD members in individual TCGA BRCA samples,

stratified by molecular subtype (PAM50). As presented in Figure 2E,

several BrD members, namely BRPF1, SMARCA4, BRD7, BRD9, BAZ1B,

ATAD2 and BRD4 are significantly upregulated in basal breast cancer

subtype (when compared to less aggressive luminal A and normal-like

subtype), which strongly mimics the results obtained for the mRNA-SI

(Table S5).

3.3 | The expression of BrD family members in
lower and higher-grade tumors

As we have shown previously, higher-grade tumors clearly exhibit

stemness characteristics mirrored by elevated mRNA-SI scores, espe-

cially in LIHC and UCEC (Figure S5).38 Therefore, we determined

the association between the expression of BrD encoding genes

and the tumor grade (Figure 3A). We observed significantly higher

expression of ATAD2 and significantly lower levels of SMARCA2 in

de-differentiated tumors (Figure 3B), while the level of other previ-

ously selected BrD family members (KAT2B, KAT2A and SMARCA4)

was relatively unchanged. Although we did not detect statistical

significance in the analyses of IHC staining from the Human Protein

Atlas37), we suggest that the level of ATAD2 protein is elevated while

the level of SMARCA2 is depleted (Figure S6) in the higher grade LGG

tumors, further supporting our first observation.

3.4 | Stemness signature enrichment in the
transcription profiles associated with the expression
of BrD family members

Next, using the mean expression of each BrD member as a cut-off, we

divided patients from all 27 solid tumor cohorts into BrD low-expressing
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or high-expressing groups. We further used all significantly DEGs

between those groups to define the BrD-related transcription pro-

files. The numbers of DEGs for each TCGA tumor type are presented

in Figure S7. We used the GSEA to determine whether the BrD-

associated transcription profiles exhibit the enrichment of previously

defined signatures of stemness.10-12,28 For most BrD-associated

transcription profiles we observed significant depletion with

stemness markers (Figure 4A) across distinct TCGA tumor types. As

expected, we also detected a robust enrichment of ATAD2-

associated and TRIM28-associated gene expression profiles with

stemness signatures across most TCGA tumor types. Moreover, this

was further validated with additional stem cell-associated gene sig-

natures (Figures 4B and S8).39,40 As the association of TRIM28

expression with cancer stemness was reported22,25 and the versatil-

ity of this phenomenon was demonstrated recently,38 we have fur-

ther focused on other BrD family members.

To unequivocally confirm the enrichment of selected BrD-

associated transcriptome profiles with the stemness signatures, we

used additional GEO datasets in our studies (Table S4). The results

presented in Figure S9 further validated our first observation of

ATAD2-associated transcriptome profiles being significantly enriched

with stemness signatures regardless of the tumor type.
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3.5 | Targets for E2F and c-Myc transcription
factors are significantly enriched in ATAD2, SMARCA4
and KAT2A associated expression profiles

Recently, Malta et al12 have demonstrated that stemness-associated

expression profiles are significantly enriched with targets for c-Myc

(MYC proto-oncogene) transcription factor, and depleted with

markers of hypoxia, Wnt/β-catenin signaling, tumor growth factor-β

(TGF-β) signaling and epithelial-mesenchymal transition (EMT). Here,

we performed the GSEA analysis of mRNA-SI gene signature

(Figure S10) to define the top enriched or depleted “hallmarks of

cancer” terms (FDR < 0.05) and observed a significant enrichment of

c-Myc and E2F transcription factor target genes in the mRNA-SI gene

signature. Subsequently, using the GSEA tool and the MSigDB

Hallmark (v7.4) dataset as a reference, we observed that ATAD2-

associated transcription profiles are also significantly enriched with

the targets for E2F and c-Myc transcription factors. Moreover, we

detected a significant enhancement of cell cycle-related term “G2/M
checkpoint” in ATAD2HIGH expressing tumors across all tested TCGA

tumor types (Figure 5A). To confirm that this is specific for ATAD2, we

also analyzed the ATAD2B-related expression profiles and observed

that these are barely enriched with the targets for c-Myc transcription

factors, although still exhibiting significant enrichment of E2F targets

and G2/M checkpoint-related genes (Figures 5B and S11A).

Similarly, we observed opposite results for SMARCA2 and

SMARCA4-related gene expression profiles (Figures 5C and S11B,C)

as well as for KAT2A and KAT2B-associated transcription profiles

(Figures 5D and S11D,E), with SMARCA4-related and KAT2A-related

gene expression profiles exhibiting significant enrichment of c-Myc

and E2F transcription factors' target genes.

Next, we looked at the association between selected BrD members

and c-Myc and E2F family transcription factors and observed that only

ATAD2 (according to the pathway commons protein-protein interac-

tions dataset) interacts with c-Myc transcription factor and that the

expression of ATAD2 positively correlated with the MYC level across

TCGA tumor types (Figure S12A-D), while for other BrD members, the

association was rather tumor-specific. Also, the TCGA tumors with high

average ATAD2 levels express significantly higher levels of E2F1 and

E2F2 transcription factors (Figure S12E-G), which together might

explain the enrichment of ATAD2-associated gene expression profiles

with the targets for c-Myc and E2F transcription factors. ATAD2 and

MYC are both encoded within the long arm of chromosome 8, therefore

we excluded that the abovementioned association results strictly from

shared localization. As presented in Figure S13, results obtained for

FBXO32, ZHX1 and ANXA13 genes encoded within the same region as

ATAD2 clearly emphasize the specificity of ATAD2 and MYC as well as

ATAD2 and cancer stemness associations.

All the abovementioned results strongly support our claim that

ATAD2 is positively associated with cancer stemness, regardless of

the tumor type and this association might be mediated at least

partially by the interaction with the c-Myc transcription factor—an

essential factor facilitating the acquisition and maintenance of stem

cell properties.

4 | DISCUSSION

This is the first report of the association between distinct BrD

proteins and cancer de-differentiation status across different types of

solid tumors. Here, we used transcriptomic data from TCGA and GEO

and harnessed several publicly available bioinformatic platforms or

tools to demonstrate that: (a) most BrD members exhibit differential

expression in tumor and normal tissues and the expression pattern is

protein-specific and highly depends on the tumor type; (b) the associ-

ation between BrD proteins expression and cancer stemness is mostly

negative, with only several proteins being consistently positively

correlated with cancer de-differentiation status regardless of the

tumor type; (c) higher-grade tumors of different types express signifi-

cantly higher levels of ATAD2 and lower levels of SMARCA2; (d) the

transcriptome profiles associated with high expression of ATAD2,

SMARCA4 or KAT2A are significantly enriched with stemness signa-

tures; (e) ATAD2-associated gene expression profiles display signifi-

cant enrichment with the c-Myc targets that mirrors the enrichment

observed for the mRNA-SI gene signature; (f) ATAD2 and MYC are

commonly upregulated in cancer tissues and together might regulate

the acquisition of stem cell-like phenotype by solid tumors.

This is the first report that comprehensively analyzes the associa-

tion of BrD proteins with cancer de-differentiation status across

numerous types of solid tumors based on previously reported stemness

quantifiers: the mRNA-SI—the transcriptome-based stemness index

developed by the machine learning algorithm12 using a significant

number of molecular profiles of distinct stem cell populations and their

differentiated progeny, as well as other stem cell gene signatures,

derived from transcriptional profiling of undifferentiated normal stem

cells.10,11,28,39,40 The transcriptional program previously recognized in

normal stem cells is commonly launched by different human epithelial

cancers, which strongly suggests its' prevalence in gaining cancer

stemness regardless of the tumor type, and stemness signatures were

demonstrated as very efficient in quantifying cancer stemness

(commonly reflected in the histopathological grade).10,28

To date, only several members of BrD family were directly con-

nected with cancer stemness. Especially, the engagement of BRD4, a

member of BET transcriptional coactivators, as well as the role for

TRIM28—a transcriptional co-repressor, known to mediate E3

SUMO/ubiquitin ligase activity, have been well established in mediat-

ing the self-renewal properties of cancer stem cells.15-27

We have recently reported that TRIM28 overexpression closely

associates with cancer stemness in breast cancer and melanomas and

subsequently demonstrated that this phenomenon is very universal

across diverse types of solid tumors.22,25,38 Several potential modes of

actions for TRIM28 in obtaining cancer stemness have been suggested

including (a) transcriptional co-repression of differentiating genes27

followed by (b) the enhancement of stem cell markers' expression.41

Also, TRIM28 might act (c) by targeting for proteasomal degradation

(through RING-mediated E3 ubiquitin ligase activity) various proteins,

that is, AMPK, a “metabolic switch” that attenuates cancer stemness.22

As for BRD4, Venkataraman et al17 have demonstrated an indisputable

role in mediating the self-renewal of cancer cells in c-Myc-driven
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medulloblastomas, which was further observed in gliomas,16

stomach,20 and liver tumors.19 Similar to TRIM28, the exact mechanism

of BRD4-associated cancer stemness-high phenotype is not clear,

although unequivocally it depends on bromodomain activity. Surpris-

ingly, using the TCGA transcriptomic data we did not observe a signifi-

cant association of BRD4 expression with cancer stemness across

27 tested tumor types, in contrast to previously reported TRIM28 and

newly discovered ATAD2 (and to some part also SMARCA4) and cancer

de-differentiation status.

ATAD2, a chromatin modulator that possesses an AAA+ ATPase

domain and a bromodomain, is normally overexpressed in non-

specialized cells, including embryonic stem cells, and in germ cells.

Recently, ATAD2 has been recognized as essential in supporting spe-

cific transcriptional programs in ESC cells, modulating their proliferation

and differentiation.42 Here, using the TCGA and GEO transcriptomic

data, we report yet unrecognized association between ATAD2 over-

expression and cancer stemness in solid tumors across distinct tumor

types.

Several studies have previously reported significant upregulation

of ATAD2 expression in solid tumors of distinct origins as well as its

association with poor patients' outcome, especially in lung, breast,

liver, ovarian and cervix cancers.43 Our results demonstrate that a

high ATAD2 level is significantly associated with a worse outcome in

ACC, KIRP, LGG, LUAD, MESO, PAAD TCGA tumors, strongly

suggesting that ATAD2 overexpression favors malignant transforma-

tion of unrelated cancer types. As previously reported, a high ATAD2

expression correlated with more aggressive tumor subgroups of

cervical,43 colorectal,44 gastric45 and liver cancer patients,46 although

a direct link with a cancer stem cell compartment was not tested.

Here, we demonstrate that ATAD2 upregulation positively correlates

with a higher tumor grade of HNSC, KIRC, LGG, LIHC, OV, PAAD

and UCEC tumors, and higher-grade tumors clearly display stem cell

features, particularly stemness-related gene expression profiles.

Moreover, a significant correlation between the mean ATAD2

expression and the mean mRNA-SI score across tested tumor types

suggests that strongly de-differentiated tumors overexpress ATAD2.

We report yet unrecognized correlation between ATAD2 upregulation

and significant enrichment of stem cell-like phenotype in cancer and

prove its' versatility across solid tumors. The transcriptome profiles of

ATAD2HIGH cancers are robustly overrepresented with predefined

stemness gene signatures as well as with the targets for E2F and

c-Myc transcription factors. Previously, ATAD2 has been identified as

a transcriptional co-regulator modulating the expression of estrogen

and androgen receptors or E2F and c-Myc transcription factors, all

known as cancer/proliferation-promoting factors.47 The pRB-E2F

pathway tightly regulates ATAD2 expression, which is essential for the

growth of normal and cancer cells. As a direct binding partner for both

E2F and c-Myc, ATAD2 induces the expression of genes that facilitate

cell cycle progression and inhibition of apoptosis in many different

types of cancers, including breast, lung and prostate tumors.48 Also,

Wu et al49 proposed that ATAD2 might cooperate with the c-Myc to

control the level of SMO and GLI1, leading to the Hedgehog

(Hh) pathway and feedback of the Hh pathway activation in liver

tumor cells. Similar results were recently reported for esophagus

tumors. Li et al50 suggested that ATAD2 could regulate cancer stem

cell biological features by activating the Hh pathway, as silencing of

ATAD2 decreased the proliferation, invasion, migration and colony

formation abilities of CSCs which corresponds to the Hh pathway

inhibition.

Our results are in line with previously reported ATAD2

and MYC co-expression. c-Myc dysregulation accounts for most of

the similarities between aggressive tumors and normal stem cell

characteristics. Therefore, we suggest that the ATAD2-related

cancer stem cell-like phenotype is mediated through both ATAD2

and c-Myc proteins and propose ATAD2 as a druggable target for

de-differentiated tumors (especially those overexpressing MYC),

which emerges achievable when considering its ATPase activity

and its bromodomain. However, molecular studies are indispens-

able in order to determine the exact role for ATAD2 in cancer stem

cell-like phenotype of solid tumors.

5 | CONCLUSIONS

To conclude, our results demonstrate that BrD family genes display

diverse expression patterns in stem cell-like solid tumors. Among all

tested BrD proteins, the newly discovered positive association

between ATAD2 and cancer de-differentiation status emerges as

universal regardless of the tumor type. Higher-grade tumors display

significant upregulation of ATAD2 expression and high ATAD2 level

corresponds to enhanced c-Myc transcriptional activity. Together,

we suggest that ATAD2 might serve as a potential therapeutic target

for de-differentiated solid tumors that strongly exhibit cancer stem

cell-like characteristics.
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