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Chagas disease (ChD), a complex and persistent parasitosis caused by Trypanosoma

cruzi, represents a natural model of chronic infection, in which some people exhibit

cardiac or digestive complications that can result in death 20–40 years after the

initial infection. Nonetheless, due to unknown mechanisms, some T. cruzi-infected

individuals remain asymptomatic throughout their lives. Actually, no vaccine is available

to prevent ChD, and treatments for chronic ChD patients are controversial. Chronically

T. cruzi-infected individuals exhibit a deterioration of T cell function, an exhaustion

state characterized by poor cytokine production and increased inhibitory receptor

co-expression, suggesting that these changes are potentially related to ChD progression.

Moreover, an effective anti-parasitic treatment appears to reverse this state and improve

the T cell response. Taking into account these findings, the functionality state of T cells

might provide a potential correlate of protection to detect individuals who will or will not

develop the severe forms of ChD. Consequently, we investigated the T cell response,

analyzed by flow cytometry with two multicolor immunofluorescence panels, to assess

cytokines/cytotoxic molecules and the expression of inhibitory receptors, in a murine

model of acute (10 and 30 days) and chronic (100 and 260 days) ChD, characterized

by parasite persistence for up to 260 days post-infection and moderate inflammation

of the colon and liver of T. cruzi-infected mice. Acute ChD induced a high antigen-

specific multifunctional T cell response by producing IFN-γ, TNF-α, IL-2, granzyme

B, and perforin; and a high frequency of T cells co-expressed 2B4, CD160, CTLA-4,

and PD-1. In contrast, chronically infected mice with moderate inflammatory infiltrate

in liver tissue exhibited monofunctional antigen-specific cells, high cytotoxic activity

(granzyme B and perforin), and elevated levels of inhibitory receptors (predominantly

CTLA-4 and PD-1) co-expressed on T cells. Taken together, these data support our

previous results showing that similar to humans, the T. cruzi persistence in mice promotes
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the dysfunctionality of T cells, and these changes might correlate with ChD progression.

Thus, these results constitute a model that will facilitate an in-depth search for immune

markers and correlates of protection, as well as long-term studies of new immunotherapy

strategies for ChD.

Keywords: Chagas disease, T cell response, multifunctionality, inhibitory receptors, clonal exhaustion,

immune activation

INTRODUCTION

During the last decades, animal models have facilitated the study
of complex diseases to analyze the components that potentially
explain human pathologies. Indeed, studies using mice have
provided major insights into the immunopathology of infectious
diseases (1, 2). Protozoa are complex eukaryotic unicellular
organisms because of their structure and metabolic activities
(3). These parasites are a challenge to human health and a
global threat because they persist for long periods of time,
causing severe pathologies. Some species, such as Leishmania
spp., Plasmodium spp., and Trypanosoma cruzi, are human
pathogens, causing leishmaniasis, malaria, and Chagas disease
(ChD), respectively. Although these illnesses were described
many years ago, no vaccines are currently available and their
effective etiological treatments are limited (4, 5). Thus, the
use of appropriate animal models is crucial to understand the
immunopathogenesis of these infectious diseases, to develop
vaccines or immunotherapy strategies and to explore alternative
approaches to treat infected individuals. A striking example of
this success is the measurement of the quality (or multifunctional
capacity) of the CD4+ T cell cytokine response as a crucial
determinant for monitoring vaccine-mediated protection against
L. major and Plasmodium berghei infection in mice (6, 7).

Furthermore, ChD, which is caused by the obligate
intracellular protozoan T. cruzi, is a potentially life-threatening
illness that was discovered more than 100 years ago and is
responsible for more than seven times as many disability-
adjusted life-years lost as malaria (8, 9). An estimated 6 to 7
million people have ChD (8), but it is increasingly spreading
in non-endemic areas, mainly due to the migration of people
from South and Central America (10). ChD, a complex and
persistent parasitosis, has two clinical phases: acute and chronic.
The acute phase lasts ∼6–8 weeks and is usually asymptomatic
in 90% of individuals or causes non-specific symptoms (11, 12).
If infected individuals are not treated, the infection evolves
into the chronic phase; ∼60–70% of these patients will have
the asymptomatic clinical form (indeterminate), while the
remaining infected individuals develop the symptomatic clinical
form (determinate) 20–40 years after the initial infection and
exhibit cardiac, digestive, or mixed complications due to as
yet unknown mechanisms (9). The etiological treatments in
the chronic phase are controversial due to their toxicity and
the lack of evidence for efficacy of the treatment. To date, the
mechanisms involved in the pathogenesis of the disease are not
well-established, and the immune mechanisms that prevent the
progression of the chronic phase are being studied (9).

The long natural history of ChD makes the monitoring of
patients and the sequential study of the immune mechanisms
underlying protection or disease pathogenesis difficult. Indeed,
experimental models of T. cruzi infection have been successfully
used to propose or develop new strategies to combat ChD.
To date, several animal models have been used to study many
aspects of T. cruzi infection (13), including zebrafish (14), rabbits
(15), dogs (16), rats (17), mice (18), and non-human primates
(19). Given their small size and cost-effectiveness of laboratory
maintenance, mice are one of the most promising animal models
used to study this parasitic disease (18, 20).

Similar to other intracellular pathogens, T. cruzi induces
CD4+ Th1 and CD8+ Tc1 cell responses, resulting in the
secretion of cytokines and the release of cytotoxic granules
upon antigen presentation (21, 22). Interestingly, in protozoan
models of infection, the multifunctional response of T cells
is essential for efficient parasite control (6). In contrast,
in models of persistent infection, the failure to control
the infection has been associated with the presence of
T cells exhibiting a pronounced state of dysfunctionality
known as T cell exhaustion, which is characterized by a
monofunctional response, as measured by cytokine secretion,
and increased inhibitory receptor co-expression on T cells (23,
24). Indeed, according to previous studies by our research
group, T cells from individuals with advanced forms of
ChD (i.e., established chagasic cardiomyopathy) have a higher
monofunctional capacity and increased inhibitory receptor co-
expression than T cells from asymptomatic patients with ChD
(25, 26). Interestingly, when evaluating T cell responses in
asymptomatic patients treated with anti-parasitic agents, a better
quality or functional phenotype of T cells (i.e., increased
proportion of multifunctional T. cruzi-specific CD8+ T cells)
and decreased inhibitory receptor expression of 2B4 (CD244),
CD160, TIM-3 (CD366), CTLA-4 (CD152), and PD-1 (CD279)
on T cells have been observed (27). Based on these data, changes
in these T cell immune parameters (such as multifunctionality
and dysfunctionality) are potentially related to the failure of
parasite control and ChD progression. However, a higher
proportion of cytotoxic T cells, detected in chronically infected
mice and in patients with symptomatic forms of ChD, has been
related to a mechanism of tissue damage induced by T. cruzi
infection (28–31).

In an effort to develop an animal model that will facilitate the
identification of immune markers and correlates of protection,
and, in the long term, new immunotherapy strategies for ChD,
in the present study, we analyzed whether experimental acute
(10 and 30 days) and chronic (100 and 260 days) ChD alters
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the CD4+ Th1 and CD8+ Tc1 cell multifunctional capacities and
inhibitory receptor co-expression on T cells in a murine model
with a reticulotropic Y strain of T. cruzi.

MATERIALS AND METHODS

Ethics Statement
This study was performed in accordance with the ethical
standards of the Institutional Animal Care and Use Committee
(IACUC, approval FUA-007-14) from the Unidad de Biología
Comparativa (UBA) at Pontificia Universidad Javeriana (PUJ,
Bogotá, Colombia). All animal studies were conducted in
accordance with the “Guide for the Care and Use of Laboratory
Animals” from UBA-PUJ. The present study was described
according to the Animal Research: Reporting in vivo Experiments
(ARRIVE) criteria from the National Center for the Replacement,
Refinement and Reduction of Animals in Research (NC3Rs) (32).

Mice
Female inbred BALB/cAnNCr mice (6–8 weeks old) were
purchased from Charles River Laboratories International, Inc.
(Wilmington, MA, USA) and housed in specific pathogen-free
(SPF) animal facilities at the UBA-PUJ. The BALB/c mouse strain
was chosen to minimize variability in comparisons with previous
studies (22, 33–35). The animals were housed in ventilated racks
in an animal biosafety level 2 (ABSL-2) room under constant
noise-free environmental conditions at a room temperature of
21 ± 1◦C, a humidity of 50 ± 1%, an air exchange rate of
22.55 air changes/h, and a day–night rhythm of 12–12 h (light
phase from 6 a.m. to 6 p.m.) in polycarbonate cages (4 or 5
animals/cage) with sterile soft wood shaving bedding, which
was changed weekly. The mice received filtered water (changed
weekly) and a standardmousemaintenance diet ad libitum. Stress
and microbiological monitoring (behavioral and animal welfare
analyses, as well as microbiological and serological testing) were
performed according to IACUC guidelines.

Parasites
Trypanosoma cruzi trypomastigotes from the Y strain
(MHOM/BR/00/Y isolate; discrete typing unit (DTU) TcII)
were obtained by culture passage on a monolayer of renal
fibroblast-like cells (VERO cells, ATCC CCL-81, Manassas, VA,
USA). Then, Y strain trypomastigotes were passaged in female
inbred BALB/cAnNCr mice at least 3 times to increase their
virulence. The parasite strain was chosen to minimize variability
in comparisons with previous studies (33, 36, 37).

Mouse Infection
BALB/c mice were randomly divided into 4 experimental groups
(G1–G4, 5 mice per group) and infected with the parasite. All
mice were simultaneously intraperitoneally injected with 105

Y strain trypomastigotes in 100 µl of 1 × PBS under aseptic
conditions and euthanized by CO2 inhalation at different time
points after infection. G1, G2, G3, and G4 mice were euthanized
at 10, 30, 100, and 260 days post-infection (dpi), respectively. In
addition, another group of mice (G5) was injected with 100 µl
of 1× PBS under the same conditions and euthanized on the

same dpi described above. Parasitemia was evaluated daily in
5 µl of tail venous blood by performing a direct microscopic
observation of 50 fields during the first 10 days, and then every
2 days until day 40 dpi. Data are presented as the number of
parasites per ml. The sample size was determined based on the
average number of mice used in previous studies of T. cruzi
infection in mice (33, 38–40). The time periods for acute (10 and
30 dpi) or chronic phases (100 and 260 dpi) were selected based
on previous reports that evaluated immunological parameters
in T. cruzi-infected mice (33, 41–43). Animal welfare indicators
(score sheet) were recorded weekly for the first 30 days and
then every month thereafter. Supplementary Figure 1 shows the
experimental design of the present work.

T. cruzi Soluble Antigens (Ags)
The T. cruzi soluble Ags (TcSAs) were obtained using previously
described methods, with some modifications (44–46). Briefly, T.
cruzi trypomastigotes (Y strain) were obtained on a monolayer
of VERO cells (44, 45), which were cultured in DMEM
(Eurobio, Les Ulis, France) supplemented with 10% FBS,
2mML-glutamine, 100 U/ml penicillin, 100µg/ml streptomycin,
and 0.01M HEPES (Eurobio; Les Ulis, France) at 37◦C
in a humidified atmosphere of 5% CO2. Amastigotes and
trypomastigotes (1:1 ratio) were collected from the VERO cell
culture supernatants at 96–120 h post-infection (44). Then, the
parasites were washed twice with cold 1× PBS (Eurobio) and
resuspended at a density of 1 × 106 parasites/µl in lysis buffer
as previously reported (46). Parasites were incubated on ice for
30min, and the supernatants containing TcSAs were collected
by centrifugation at 12,000 × g for 15min at 4◦C and stored at
−80◦C until use. The protein concentrations were determined
using the Bradford assay, and the protein profiles were analyzed
using SDS-PAGE followed by Coomassie blue staining (Gibco
BRL; Grand Island, NY, USA).

Monoclonal Antibodies for Staining
The following conjugated Abs were used for cell surface staining:
CD3-PerCP-Cy5.5 (clone 17A2), CD4-Alexa Fluor 700 (clone
GK1.5), CD8a-APC-H7 (clone 53–6.7), PD-1-APC (clone J43),
2B4-FITC (clone 2B4), and CD160-PE-CF594 (clone CNX46-3)
(BD Biosciences; San Jose, CA, USA). The conjugated antibodies
for intracellular staining included: IFN-γ-PE-CF594 (clone
XMG1.2), IL-2-BV-421 (clone JES6-5H4), TNF-α-PE-Cy7 (clone
MP6-XT22) (BD Biosciences), perforin-APC (clone eBioOMAK-
D) and granzyme B-PE (clone NGZB) (Thermo Fisher Scientific,
Waltham, MA, USA). The Fixable Aqua Dead Cell Stain viability
marker (LIVE/DEAD) (Invitrogen; Eugene, OR, USA) was used
to exclude the dead cells. All conjugated antibodies were titrated
and evaluated as previously described (45).

Analysis of the Cell Surface and
Intracellular Cytokine Staining Using
Flow Cytometry
One million spleen cells were stained with two multicolor panels
to assess the cytokine/cytotoxic response associated with CD4+

Th1 and CD8+ Tc1 cells and inhibitory receptors on T cells.
Cells were cultured for 3 h at 37◦C in a humidified atmosphere
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containing 5% CO2 with Mock (as a negative control) and TcSAs
(1µg/ml) in the presence of anti-CD28 (1µg/ml, clone 37.51,
BD Pharmingen) and then incubated in the presence of brefeldin
A (1µg/ml) and monensin (0.7µg/ml) (BD Biosciences) for
an additional 9 h to examine the cytokine/cytotoxic response
by T cells. After incubation in 96-well round-bottom tissue
culture plates, the cells were stainedwith the LIVE/DEADmarker
followed by anti-CD3, anti-CD4, and anti-CD8 Abs for 30min
in the dark at 4◦C and washed with staining buffer. Cells
were fixed and permeabilized with Cytofix/Cytoperm buffer (BD
Biosciences), incubated with anti-IFN-γ, anti-TNF-α, anti-IL-
2, anti-granzyme B, and anti-perforin antibodies for 30min in
the dark at 4◦C and then washed with 1× Perm/Wash buffer
(BD Biosciences).

In 96-well round-bottom tissue culture plates, the cells were
stained with the viability marker, incubated with the anti-
CD3, anti-CD4, anti-CD8, anti-2B4, anti-CD160, and anti-PD-1
antibodies for 30min in the dark at 4◦C and then washed with
staining buffer to assess the expression of inhibitory receptors.
Then, cells were fixed and permeabilized with Cytofix/Cytoperm
buffer for 20min at 4◦C prior to staining with the anti-CTLA-
4 antibody and then washed with 1× Perm/Wash buffer. At
least 100,000 events, gated on live CD3+ cells, were acquired
on a FACS Aria II flow cytometer (BD Biosciences). Data were
analyzed using FlowJo 9.3 (Tree Star; Ashland, OR, USA), Pestle
1.7 (National Institutes of Health (NIH), Bethesda, MD, USA),
and SPICE 5.3 (NIH) software. Dead and doublet cells were
excluded from the analysis (Supplementary Figure 2). A positive
cytokine/cytotoxic response was defined as a frequency >0.05%,
which was determined as the median frequency of a T cell
response obtained from uninfected mice after stimulation with
TcSA plus 1 SD after background subtraction (cells from each
mouse cultured with Mock).

Parasite Detection and Quantification
Using Conventional and Quantitative PCR
Cardiac blood, skeletal muscle from the posterior leg, heart,
colon and liver tissue were collected for DNA extraction.
The blood was placed in guanidine hydrochloride-EDTA and
stored at 4◦C, while the other tissues were stored in absolute
ethanol at 4◦C. Genomic DNA (gDNA) was extracted using
a High Pure PCR template preparation kit according to
the manufacturer’s instructions (Roche, Mannheim, Germany).
Afterwards, conventional PCR (cPCR) was performed with the
CytB Uni fw 5′-TCATCMTGATGAAAYTTYGG-3′ and CytB
Uni rev 5′-ACTGGYTGDCCBCCRATTCA-3′ primers, which
amplify the cytochrome B gene of small mammalian species, as
described previously (47), to assess DNA integrity and exclude
the presence of inhibitors in the sample. For parasite detection,
cPCRs were performed using gDNA from all tissues with the
primers S35 5′-AAATAATGTACGGG(T/G)GAGATGCATGA-
3′ and S36 5′-GGTTCGATTGGGGTTGGTGTAATATA-3′,
based on the conserved regions of minicircles from T. cruzi
kinetoplast DNA, and the primers TcH2AF 5′-CGAGCTCTT
GCCCACACGGGTGCT-3′ and TcH2AR 5′-CCTCCAAGCAG
CGGATAGTTCAGG-3′, based on T. cruzi satellite DNA which

amplify a fragment present in the non-coding region of the
histone H2A from T. cruzi, using previously described conditions
(48, 49). Subsequently, quantitative PCR (qPCR) was performed
with the Cruzi 1 5′-ASTCGGCTGATCGTTTTCGA-3′ and Cruzi
2 5′-AATTCCTCCAAGCAGCGGATA-3′ primers and the Cruzi
3 5′-6FAM-CACACACTGGACACCAA-BBQ-3′ probe, which
amplify a 166-bp segment of T. cruzi satellite DNA (50).
Each sample was analyzed in duplicate (with a coefficient of
variation of <20%), and the parasite load was estimated based
on a standard curve. The curve was constructed with different
concentrations of T. cruzi Y strain gDNA mixed with 50 ng of
gDNA from the heart or colon tissue of one uninfected mouse,
ranging from 10−1 to 104 parasite equivalents per 50 ng of
DNA (Supplementary Figure 3), as described previously (51).
Parasite loads below the limit of quantification (LOQ) were set
to LOQ/2 (0.05 parasite equivalents per 50 ng of DNA), as
previously described (52). Amplification was performed using

the Applied Biosystems
TM

QuantStudio
TM

3 Real-Time PCR
System (Applied Biosystems, USA) with previously described
qPCR conditions (53). For both PCR methods, the following
controls were included: reaction (water added in the room
containing the reaction mixture), gray (water added in the
room where the sample was added to the reaction), negative
(genomic DNA from one uninfected mouse), and positive
(genomic DNA from T. cruzi).

Histopathology
Paraffin-embedded tissues were stained with hematoxylin and
eosin (H&E), and the following features were blinded and
analyzed: presence of inflammation, type of cellular infiltration
and pathological changes (e.g., necrosis). Histopathological
scores were assigned as follows using previously described
methods (54): absent, mild, moderate, or severe.

Statistical Analysis
Statistical analyses were performed using the Mann–Whitney U
test for two groups. Correlations between the multifunctional T
cell response and inhibitory receptor co-expression on T cells
were analyzed using Spearman’s rank correlation coefficient. The
tests were two-tailed, and statistical significance was achieved
at p < 0.05. GraphPad Prism 6.0b for Mac OS X software
(GraphPad, San Diego, CA) was used for statistical analyses.
The multifunctional and co-expression pie charts were compared
using 10,000 permutations calculated with SPICE version 5.3
software (55).

RESULTS

The Presence of T. cruzi Is Associated With
Inflammatory Infiltration in the Colon and
Heart of Experimental ChD Model Mice
BALB/c mice were infected and followed for 260 dpi to
experimentally mimic the course of a human T. cruzi
infection (Supplementary Figure 1). After infection with 105

Y strain trypomastigotes, parasitemia was observed at 3 dpi,
peaked at 5 dpi [median (range), 9.3 × 104 parasites/ml
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(3.1 × 104-1.85 × 105)], and became undetectable after 8 dpi
(Supplementary Figure 4A). Then, we sought to compare the
detection and quantification of the parasite in the colon, heart,
liver, skeletal muscle, and blood of mice with acute (10 and
30 dpi) and chronic (100 and 260 dpi) experimental ChD. As
expected, the parasite was detected in most of the tissues from
acutely infected mice analyzed (colon: 90%, heart: 80%, liver:
30%, skeletal muscle: 60%, and blood: 100%), whereas it was
found less often in tissues from chronically infected mice (colon:
20%, heart: 20%, liver: 10%, skeletal muscle: 10%, and blood:
20%) (Supplementary Table). Furthermore, mice with an acute
infection showed higher parasite loads in the colon and heart
than in the liver and blood. Although the parasite load was
below the LOQ in themajority of chronically infectedmice, when
comparing the parasite loads according to the dpi, higher parasite
loads in the colon, heart, liver, and skeletal muscle tissues were
detected in mice at 10 or 30 dpi compared with those at 100
or 260 dpi (Supplementary Figure 4B). On the contrary, similar
parasite loads in the colon, heart, liver, and skeletal muscle tissues
were detected in mice at 100 and 260 dpi (Figure 1A).

Subsequently, we compared the histological findings in the
colon, heart, liver, and skeletal muscle tissues of mice with acute
and chronic experimental ChD. No changes in histology were
observed in any of the tissues harvested from uninfected control
mice, while mononuclear infiltration was present in all tissues
(colon, heart, liver, and skeletal muscle) obtained from mice
with acute and chronic experimental ChD (Figures 1B,C). The
average inflammatory infiltrate was higher in the colon and
liver tissues than in the heart and skeletal muscle tissues from
all mice, and was more evident in tissues from the chronically
infected mice (Figure 1C). Necrosis was mainly observed in
the heart and skeletal muscle of mice with an acute infection
(data not shown). Finally, the parasite detected using cPCR
and qPCR was associated with inflammatory infiltration in the
colon [p = 0.0281, OR (95% CI) = 14.0 (1.2–156.7)] and
heart [p = 0.0325, OR (95% CI) = 21.0 (0.9–454.3)] of all
infected mice (Supplementary Figure 5A), and higher parasite
loads were observed in colon (p = 0.0201), heart (p = 0.0001),
liver (p = 0.0071), and skeletal muscle (p = 0.0017) tissues with
moderate inflammatory infiltrate compared with those with low
or absent inflammatory infiltrate from T. cruzi-infected mice
(Supplementary Figure 5B). Thus, the parasite persists for up
to 260 dpi, preferably in liver, and high parasite loads induce a
moderate inflammatory infiltrate in the colon, heart, liver, and
skeletal muscle tissues from T. cruzi-infected mice.

Acute T. cruzi Infection Induces
Multifunctional T Cells, Whereas Chronic
Infection Promotes Monofunctional T
Cell Responses
The induction of a CD4+ Th1 and CD8+ Tc1 cell responses by
the production of IFN-γ, TNF-α, IL-2, granzyme B, or perforin
by T cells in response to TcSA was evaluated as described in
the Materials and Methods section to compare the function
of T cells between acute and chronic T. cruzi-infected mice.
Initially, the secretion of individual cytokines from T cells was

assessed, and greater percentages of CD4+ and CD8+ T cells
producing IFN-γ, TNF-α, or IL-2 were observed in infected
mice at 10 and 100 dpi than in mice at 30 dpi. Comparable
proportions of CD4+ T cells producing IFN-γ, TNF-α, or IL-2
and of CD8+ T cells producing IFN-γ or TNF-α were found in
infected mice at 10 and 260 dpi (Figures 2A, 3A). Interestingly,
in mice at 100 dpi, higher proportions of CD4+ and CD8+ T
cells producing TNF-α appeared to be present compared with
CD4+ and CD8+ T cells producing IFN-γ and IL-2 (Figures 2A,
3A). In CD8+ T cells, most mice at 260 dpi had low or
undetectable levels of IL-2 (Figure 3A). When comparing the
percentages of total cytokine-producing T. cruzi-specific T cells,
as expected, increased percentages of Ag-specific CD4+ and
CD8+ T cells were observed in mice at 10 (median: 0.6419 and
0.9386%, respectively) and 100 dpi (median: 1.067 and 1.488%,
respectively) compared with those at 30 (median: 0.2731 and
0.1000%, respectively) and 260 dpi (median: 0.4743 and 0.8312%,
respectively). Notably, although lower percentages of T cells
producing IFN-γ, TNF-α, or IL-2 were observed in mice at
30 dpi, the total Ag-specific responses of CD4+ and CD8+ T
cells were higher in these mice (median: 0.0671 and 0.0876%,
respectively) than in uninfected mice (data not shown). When
individual cytotoxic molecules on CD8+ T cells were assessed,
greater percentages of T cells expressing granzyme B or perforin
were observed in infected mice at 10 dpi than in the other
experimental groups (Figure 3A).

Next, a Boolean gating approach was used to compare the
proportions of multifunctional and monofunctional cells with
CD4+ Th1 and CD8+ Tc1 cell profiles among mice at 10, 30,
100, and 260 dpi. At 10 dpi, mice displayed higher proportions
of multifunctional CD4+ and CD8+ T cells with two and three
functions than at 30, 100 or 260 dpi. At 100 dpi, CD4+ and
CD8+ T cells had two functions in infected mice, whereas
T cells collected from mice at 30 and 260 dpi showed one
function. Interestingly, the predominant functional profiles of
Ag-specific CD4+ and CD8+ T cells were similar in all mice,
i.e., preferentially, T cells with one function produced TNF-α,
whereas those with two functions produced IFN-γ and TNF-α.
Multifunctional CD4+ T cells producing IFN-γ and IL-2, IFN-
γ and TNF-α, and IL-2 and TNF-α occurred more frequently in
mice at 10 dpi than at 100 dpi, whereas monofunctional CD8+ T
cells producing TNF-α were more commonly observed in mice
at 100 dpi than at 10 and 260 dpi (Figures 2B, 3B). We next
compared the proportions of cytotoxic profiles of CD8+ T cells
by measuring granzyme B and perforin production in mice at
10, 30, 100, and 260 dpi. Notably, no CD8+ T cells producing
granzyme B or perforin were detected in mice at 30 dpi. An
increased proportion of CD8+ T cells producing granzyme B and
perforin was detected in mice at 260 compared with that at 100
dpi (Figure 3C).

Inhibitory Receptors Are Upregulated
During Acute and Chronic
Experimental ChD
Because inhibitory receptors have been classically characterized
as molecules that regulate or inhibit the activation of T cells
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FIGURE 1 | Analysis of the parasite load and inflammatory cell infiltration in mice with acute and chronic experimental ChD. (A) Parasite loads in the colon, heart, liver,

skeletal muscle, and blood samples from mice with acute (left panel) and chronic (right panel) T. cruzi infections. The bar graphs show the median parasite equivalent

per 50 ng of DNA (LOG10) in each tissue from each mouse. The dotted line represents the cut-off for the limit of detectable quantification (LOQ) based on serially

diluted T. cruzi-spiked tissue DNA as described in the Materials and Methods (0.1 parasite equivalents per 50 ng of DNA). (B) Images of representative

histopathological staining of cross-sections of tissues from mice with acute and chronic experimental ChD. (C) Inflammatory infiltrate scores in the colon, heart, liver,

and skeletal muscle tissues from mice with acute (left panel) and chronic (right panel) T. cruzi infections. The bar graphs show the average inflammatory infiltrate

scores in the tissues. The inflammatory infiltrate score was obtained as described in the Materials and Methods. *p < 0.05, **p < 0.01, ***p < 0.001, and

****p < 0.0001, Mann-Whitney U-test.
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FIGURE 2 | Functional activity profiles of T. cruzi–specific CD4+ Th1 cells from mice with acute and chronic experimental ChD. (A) Representative dot plot (left panel)

and percentages (right panel) of CD4+ T cells producing IFN-γ, TNF-α, or IL-2 in mice with acute and chronic experimental ChD. The gates applied for the

identification of cytokine production on the total population of CD4+ T cells were defined according to the cells cultured with Mock for each mouse. The number on

the upper right side corresponds to the frequency detected in spleen cells cultured with Mock or TcSAs. The dotted line represents the cut-off for the assessment of a

positive cytokine response, as described in the Materials and Methods. (B) Proportions of the functional profiles of CD4+ T cells with one, two, or three functions after

stimulation with TcSA. The boxes (25–75th percentiles) and whiskers (minimum to maximum) show the median percentages (A) or proportions (B) of Ag-specific

CD4+ T cells. The pie chart depicts the median proportion of Ag-specific CD4+ T cells, and the color depicts the T cells with one, two, or three functions. *p < 0.05

and **p < 0.01, Mann-Whitney U-test (boxes and whiskers) or permutation test (pie charts).

during acute and chronic infection, respectively (23, 56), we
compared the inhibitory receptor expression or co-expression
on T cells from mice with acute and chronic experimental
ChD (Figures 4A, 5A). Increased expression of some inhibitory
receptors was observed on CD4+ and CD8+ T cells from mice
acutely and chronically infected with T. cruzi. Interestingly, 2B4,
CD160, CTLA-4, or PD-1 were expressed at higher levels on
CD4+ and CD8+ T cells from infected mice at 10 dpi than in
uninfected mice and infected mice at 30 or 100 dpi, suggesting
that the acute T. cruzi infection induced the expression of these
molecules. Indeed, similar levels of 2B4, CD160, CTLA-4, or PD-
1 expression were observed on T cells from uninfected mice and
infected mice at 30 dpi, and in some cases, infected mice at 100
dpi (Top panel, Figures 4B, 5B). Additionally, CD4+ and CD8+

T cells obtained from infected mice at 100 dpi expressed 2B4 or
PD-1 at higher levels than T cells from infected mice at 30 dpi,
and mice at 260 dpi exhibited higher expression of CTLA-4 or
PD-1 than mice at 100 dpi. Interestingly, chronically infected
mice (at 260 dpi) exhibited increased or similar expression
of CTLA-4 or PD-1 on CD4+ and CD8+ T cells compared

with infected mice at 10 dpi (Top panel, Figures 4B, 5B).
Upon analyzing the co-expression of these inhibitory molecules
using a Boolean gating approach, the most prevalent population
observed consisted of CD4+ and CD8+ T cells expressing CTLA-
4 (median: 15.35 and 3.4%, respectively), CTLA-4 and PD-1
(median: 2.08 and 0.44%, respectively), and CD160, CTLA-4, and
PD-1 (median: 0.05 and 0.06%, respectively) (data not shown).
Notably, CD4+ and CD8+ T cells that co-expressed 2B4, CD160,
CTLA-4, and PD-1 were detected in mice at 10 (median: 0.3
and 0.2%, respectively) and 260 dpi (median: 0.5 and 0.4%,
respectively) but not in mice at 30 and 100 dpi (Bottom panel,
Figures 4B, 5B). Thus, 2B4, CD160, CTLA-4, and PD-1 were
transiently expressed on T cells after T. cruzi infection but were
then rapidly downregulated. However, the expression of these
molecules increased again in chronically T. cruzi-infected mice,
and high levels of co-expression were maintained up to 260 dpi.

We correlated the Ag-specific T cells endowed with two and
three functions and T cells that co-expressed three and four
inhibitory receptors in mice with acute and chronic experimental
ChD to determine whether multifunctionality was associated
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FIGURE 3 | Functional activity profiles of T. cruzi–specific CD8+ Tc1 cells from mice with acute and chronic experimental ChD. (A) Representative dot plot (left panel)

and percentages (right panel) of CD8+ T cells producing IFN-γ, TNF-α, IL-2, granzyme B, or perforin in mice with acute and chronic experimental ChD. The gates

applied for the identification of cytokine, granzyme B or perforin production on the total population of CD8+ T cells were defined according to the cells cultured with

Mock for each mouse. The number on the upper right side corresponds to the frequency of molecules detected in spleen cells cultured with Mock or TcSAs. The

dotted line represents the cut-off for the assessment of a positive response, as described in the Materials and Methods. (B) Proportions of the functional profiles of

CD8+ T cells with one, two, or three functions after stimulation with TcSA. (C) Proportions of the cytotoxic profiles of CD8+ T cells producing granzyme B or perforin

(Continued)
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FIGURE 3 | from mice with acute and chronic experimental ChD stimulated with TcSA. The boxes (25–75th percentiles) and whiskers (minimum to maximum) show

the median percentages (A) or proportions (B,C) of Ag-specific CD8+ T cells. The pie chart depicts the median proportion of Ag-specific CD8+ T cells, and the color

depicts the T cells with one, two, or three functions (B) or the production of granzyme B, perforin, or both (C). *p < 0.05 and **p < 0.01, Mann-Whitney U-test

(boxes and whiskers) or permutation test (pie charts). GzmB, granzyme B; UD, undetected.

FIGURE 4 | Inhibitory receptor expression and co-expression on CD4+ T cells from mice with acute and chronic experimental ChD. (A) Representative dot plot of the

gating strategy for CD4+ T cell expressing 2B4, CD160, CTLA-4, or PD-1. The number on the upper right side corresponds to the frequency of molecules detected in

CD4+ T cells. (B) Percentages (top panel) and median proportions (bottom panel) of CD4+ T cells expressing 2B4, CD160, CTLA-4, or PD-1 in mice with

experimental ChD. The boxes (25–75th percentiles) and whiskers (minimum to maximum) show the median percentages and range of expression of inhibitory

receptors on CD4+ T cells. The pie chart depicts the median proportion of inhibitory receptors. *p < 0.05 and **p < 0.01, Mann-Whitney U-test (boxes and

whiskers) or permutation test (pie charts).

with the co-expression of inhibitory receptors in experimental
ChD. In acutely infected mice (10 and 30 dpi), the percentage
of multifunctional CD4+ and CD8+ T cells correlated positively
with the level of inhibitory receptor co-expression on CD4+ and
CD8+ T cells (Spearman’s r= 0.8896, p= 0.0013 and Spearman’s
r = 0.8211, p = 0.0067, respectively). In contrast, in chronically
infected mice, the percentage of multifunctional CD8+ T
cells correlated negatively with the level of inhibitory receptor
co-expression on CD8+ T cells (Spearman’s r = −0.8232,
p = 0.0046), but no correlation was observed with CD4+ T cells

from chronically infected mice (data not shown). In addition, a
positive correlation between the percentage of multifunctional T
cells and 2B4 and CD160 expression on CD4+ and CD8+ T cells
was observed in acutely infected mice, and a negative correlation
was observed between the percentage of multifunctional CD8+

T cells and CTLA-4 and PD-1 expression on CD8+ T cells in
chronically infected mice (Supplementary Figure 6).

Finally, given that moderate inflammatory infiltrate and high
parasite load in liver in chronically infected mice at 260 dpi
could be related with the fact that the reticulotropic Y strain of
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FIGURE 5 | Inhibitory receptor expression and co-expression on CD8+ T cells from mice with acute and chronic experimental ChD. (A) Representative dot plot of the

gating strategy for CD8+ T cell expressing 2B4, CD160, CTLA-4, or PD-1. The number on the upper right side corresponds to the frequency of molecules detected in

CD8+ T cells. (B) histopathological Percentages (top panel) and median proportions (bottom panel) of CD8+ T cells expressing 2B4, CD160, CTLA-4, or PD-1 in

mice with experimental ChD. The boxes (25–75th percentiles) and whiskers (minimum to maximum) show the median percentages and range of expression of

inhibitory receptors on CD8+ T cells. The pie chart depicts the median proportion of inhibitory receptors. *p < 0.05 and **p < 0.01, Mann-Whitney U-test (boxes and

whiskers) or permutation test (pie charts).

T. cruzi causes liver pathology (Supplementary Figure 5B) (57,
58), we analyzed whether there was any relationship between the
inflammatory infiltrate in liver tissue and the functional activity
or inhibitory receptor co-expression in chronically T. cruzi-
infected mice. In 3 chronically infected mice at 100 and 260 dpi
was found a moderate inflammatory infiltrate in the liver tissue,
whereas in the rest of the mice (7 mice) it was detected a low
inflammatory infiltrate. The comparison of the effector function
and the inhibitory receptor expression revealed a reduction of
antigen-specific multifunctional CD8+ T cells and an increase
in the inhibitory receptor co-expression on CD8+ T cells in
chronically infected mice that presented moderate inflammatory
infiltrate in the liver tissue than in mice with low inflammatory
infiltrate. However, no differences were found in effector function
and the inhibitory receptor co-expression on CD4+ T cells

in chronically infected mice that presented moderate or low
inflammatory infiltrate in the liver tissue (Figure 6). In summary,
the pathology in liver tissue in chronically T. cruzi-infected
mice could be related with the dysfunctionality of CD8+ T
cells, characterized by a low multifunctional effector T cell
response and a high expression of inhibitory receptors on
T cells.

Based on our results, an acute T. cruzi infection with
the reticulotropic Y strain induces a multifunctional CD4+

Th1 and CD8+ Tc1 cell responses and high inhibitory
receptor co-expression on T cells (2B4 and CD160),
while a chronic T. cruzi infection is characterized by a
monofunctional T cell response, high cytotoxic activity,
and high levels of inhibitory receptor co-expression
(CTLA-4 and PD-1) (Figure 7).
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FIGURE 6 | Effector function of T cells and inhibitory receptor co-expression on T cells according to the inflammatory infiltrate score in the liver tissue in chronically T.

cruzi-infected mice. Comparison of the effector function of T cells and the inhibitory receptor co-expression on T cells between chronically T. cruzi-infected mice with

moderate and low inflammatory infiltrate in the liver tissue. The comparative analysis with CD4+ and CD8+ T cells is shown in (A,B), respectively. The bar graphs

show the median percentages of total cytokine-producing T. cruzi-specific T cells, percentages of multifunctional T cells endowed with two and three functions, or

percentages of T cells co-expressing three and four inhibitory receptors on T cells. *p < 0.05, Mann-Whitney U-test. FC, fold change.

DISCUSSION

The acquired T cell dysfunction, known as T cell exhaustion, is a

state commonly observed during chronic infections and cancer,
and is associated with the severity of infection or pathology.

This phenomenon is characterized by the gradual loss of antigen-

specific T cell effector capacity and increased inhibitory receptor
expression and co-expression on CD4+ and CD8+ T cells (23, 24,
59). In ChD, chronically infected individuals have dysfunctional
CD8+ T cells exhibiting impaired cytokine production and
increased inhibitory receptor co-expression, similar to the
findings described above (25, 26). Interestingly, an anti-parasitic
treatment improves the response of antigen-specific CD8+ T cells
and decreases inhibitory receptor co-expression (27), suggesting
that, similar to other models, changes in these T cell immune
parameters are potentially related to the failure of the etiological
treatment and progression of ChD. Thus, in the present study, we
analyzed whether acute and chronic experimental ChD alters the
multifunctional capacity and inhibitory receptor co-expression
on T cells. In summary, acute experimental ChD in BALB/c
mice induced a multifunctional CD4+ Th1 and CD8+ Tc1 cell
responses and high inhibitory receptor co-expression on T cells.
In contrast, chronically infected mice presented monofunctional
antigen-specific T cells, high cytotoxic activity, and high levels
of inhibitory receptor co-expression on T cells. In addition, we
observed that the pathology in liver tissue in chronically T. cruzi-
infected mice could be related with the dysfunctionality of CD8+

T cells, characterized by a low multifunctional effector T cell
responses and high inhibitory receptor expressions on T cells.
To our knowledge, this study is the first to provide evidence
suggesting that similar to humans, chronic T. cruzi infection

in mice leads to T cell exhaustion with impaired cytokine
production and increased inhibitory receptor co-expression.

To date, experimental models of ChD have shown substantial
variability in terms of infection outcomes, parasite load and
tropism that depend on both the host and the parasite (60,
61). For instance, C57BL/6 mice are more resistant to T. cruzi
infection than BALB/c mice, which show intermediate resistance
to parasite infection (33, 61). In addition, T. cruzi is a parasite
that includes different genetic lineages, known as DTUs (62),
which have shown different tropisms (e.g., of the reticulotropic
or myotropic strains) and infection outcomes in experimental
models of ChD that causes heart, gastrointestinal tract, or liver
pathologies (48, 60). For example, a lower parasite load has
been observed in chronic T. cruzi-infected mice than in acutely
infected mice (63), but these results can vary, even in studies
using the same parasite strain (64). Indeed, another parameter
that can affect the evolution of ChD is the number of parasites
infecting the host, because murine models have shown that a
high inoculum correlates with parasite persistence, inflammation
or tissue damage (65, 66). Given this feature and to control the
effect of the inoculum in our experimental ChD model, in a pilot
experiment, we infected mice with different inocula (104 and 105

parasites) to select a dose that would allow for the detection of
high levels of parasitemia, as shown here. However, it is still
necessary to understand how the inoculum affects the course
of the T. cruzi-infected humans, as the experimental dose of
parasites may not reflect what occurs naturally. Thus, given the
complexity of T. cruzi infection (60), the development of models
that have similar characteristics to humans is important and
potentially useful for identifying immune markers and correlates
of protection, and, in the long term, new immunotherapy
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FIGURE 7 | Schematic depicting the multifunctionality and dysfunctionality of T cells in an animal model of acute and chronic Chagas disease. In the present study,

whether experimental acute (10 and 30 days) and chronic (100 and 260 days) ChD alters the CD4+ Th1 and CD8+ Tc1 cell multifunctional capacities and inhibitory

receptor co-expression on T cells was analyzed in a murine model. Representative results of CD8+ T cells across the experimental infection conditions with T. cruzi

are shown. The black, blue, and red lines show the median proportions of functional and cytotoxic activity and the co-expression of inhibitory receptors, respectively.

The colors in the pie charts depict the number of T cell functions, as well as the inhibitory receptors co-expressed on CD8+ T cells in the acute and chronic phases of

experimental ChD. Based on our results, an acute T. cruzi infection induces a multifunctional T cell response and high inhibitory receptor co-expression on T cells,

whereas chronic T. cruzi infection is characterized by a monofunctional T cell response, high cytotoxic activity, and high levels of inhibitory receptor co-expression.

GzmB, granzyme B; Perf, perforin.

strategies for ChD. Studies using acute experimental models
of ChD have shown that T. cruzi infection leads to transient
mononuclear inflammatory infiltrates in many tissues, including
the colon, heart, liver, and skeletal muscle, which decrease
during chronic infection (54). Here, T. cruzi infection induced a
mononuclear inflammatory infiltrate that was potentially related
to the presence of the parasite in tissues, as it was observed in
nearly all of the colon and heart tissue samples obtained from
infected mice. Additionally, high parasite loads were observed
in colon, heart, liver, and skeletal muscle tissues with moderate
inflammatory infiltrate obtained from mice with acute and
chronic infections compared with those with low or absent
inflammatory infiltrate, suggesting that our experimental model
is similar to that of other studies (54, 67). As it was to be
expected, reticulotropic strains, such as Y strain, might be
involved in increased inflammatory infiltrates in liver and spleen
tissues and causes pathology as reported previously (57, 58),
but to evaluate the pathological forms of experimental ChD, is
important to implement other methodological approaches, such
as the measurement of heart rate or the identification of fibrosis
in tissue samples (57, 60, 68). However, to date, it has been very
difficult to establish the direct relationship among the parasite
load, the inflammatory infiltrate and the pathogenesis of ChD as
previously described (69).

During acute infection, naïve antigen-specific T cells are
activated, proliferate, acquire effector functions, and differentiate
into effector T cells that are capable of mounting an immune
response that will control or eliminate the pathogen (70). In
contrast, during a chronic infection, the panorama is more
complex; although antigen-specific effector T cells are developed,
these T cell subsets lose their effector functions hierarchically.
IL-2 production and cytotoxic capacity are the first functions to
be compromised, followed by TNF-α production, and finally,
IFN-γ production (23, 24). Additionally, T cells with this
dysfunctional phenotype express inhibitory molecules such as
PD-1 and CTLA-4 at high levels (71). This exhaustion state
has been reported in infections caused by other parasites, such
as Plasmodium spp. (72, 73), Toxoplasma gondii (74, 75), and
Leishmania spp. (76–78), in human andmousemodels. Although
the precise features of T cell exhaustion vary during infection
(24), a partial (i.e., poor effector response) or completely (i.e., a
lack of effector capacity) dysfunctional T cell effector response
can occur (23, 79). During a chronic T. cruzi infection, patients
with advanced-stage ChD disease exhibit a lower percentage of T
cells producing IFN-γ, TNF-α, or IL-2 and a lower proportion
of multifunctional T cells than patients in the early stage of the
disease (25), as well as decreased proliferation (59), which is
associated with a decrease in the number T stem cell memory
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cells (26). Indeed, T cells from T. cruzi-infected children are more
multifunctional than T cells from T. cruzi-infected adults, which
have monofunctional T cells, suggesting that a persistent parasite
infection promotes the exhaustion of T cells and contributes to
the long-term progression of the disease in infected individuals
(80). Here, as expected, acutely (10 dpi) infected mice showed
an increased proportion of multifunctional T cells that produced
cytokines and cytotoxic activity compared to infected mice at 30
dpi or chronically infected mice (100 or 260 dpi), as previously
shown (81); however, although the elimination of the parasite
was not achieved, a reduction in the parasite load in the colon,
heart, liver, skeletal muscle, and blood was detected in chronically
T. cruzi-infected mice. These chronically infected mice at 100
dpi showed a higher percentage of T cells producing IFN-γ,
TNF-α, or IL-2 and a higher proportion of multifunctional T
cells endowed with two functions than mice chronically infected
at 260 dpi. Thus, chronic T. cruzi infection in mice potentially
leads to partial T cell exhaustion or poor T cell effector functions,
as has been observed in adult patients with ChD at advanced or
severe disease stages (25). Interestingly, in our experimental ChD
model that included the reticulotropic Y strain of the parasite
allowed us to reveal that chronically infected mice with moderate
inflammatory infiltrate in liver tissue has low percentages of
antigen-specific multifunctional T cells, suggesting that a poor
effector T cell response might be related with the liver pathology.
However, validation of the T cell response in chronically infected
mice with a myotropic T. cruzi strain is still necessary to
validate our results. Under our experimental conditions, no
direct relationship between the parasite load in tissues and the
effector response of the CD4+ and CD8+ T cells was found.
We hypothesized that this result may be related to different
variables that converge in this complex infection. These variables
include low levels of parasite load and low frequencies of T cells
detected during the chronic infection (technical), antigenic
variability, tropism and latency of the parasite (parasitological)
and genetic background and immune response (host)
(60, 69, 82–84).

Tissue injury has been suggested to be mediated by the
immune response, which plays a decisive role in the development
of chronic ChD (85). For instance, an association between TNF-
α-producing cells and cardiac damage has been observed in
the heart and plasma samples from patients with chronic ChD
with cardiac complications (86, 87), and TNF-α production by
T cells from patients with chronic ChD persists and is related
to CD8+ T cell degranulation (88). Furthermore, patients with
advanced-stage ChD disease exhibit a higher proportion of
cytotoxic CD8+ T cells producing granzyme B and perforin
than patients in early stages of the disease (25). Indeed, in
chronically infected mice, cytotoxic T cells were observed in
cardiac tissue samples, suggesting that these cells are implicated
in cardiac damage (31). For instance, studies have suggested
that cytotoxic T cells could be related to a mechanism of tissue
damage induced by T. cruzi infection, because these cells can be
detected in tissue from chagasic patients withmegaoesophagus or
myocardial lesions (28–31). However, it is necessary to elucidate
whether, during chronic T. cruzi infection, the absence of these
molecules —TNF-α, granzyme B, or perforin— could prevent

or enhance the Chagasic tissue lesions. Chronically infected
mice exhibited a higher percentage of T cells that produce
TNF-α than acutely infected mice, and late chronically infected
mice showed a higher proportion of cytotoxic CD8+ T cells
producing granzyme B and perforin than infected mice at 100
dpi, suggesting that our results are similar to previous studies
and correlated with the severity of ChD. Recently, despite the
chronic infection with T. cruzi, a population of CD8+ T cells
retain functional and cytotoxic activities against the parasite
in the tissue (89). Accordingly, in contrast with the classical
exhaustion model described for lymphocytic choriomeningitis
virus (LCMV) (90), the dysfunctionality of T cells observed in
the experimental model of ChD in the present study did not
affect all of the functional characteristics of CD8+ T cells (i.e.,
cytotoxic capacity). However, the roles of these populations of
T cells in the natural course of T. cruzi infection remain to
be elucidated.

Classically, inhibitory receptors are associated with processes
related to immune regulation, tolerance and the prevention
of autoimmunity (23, 56). However, these molecules are also
associated with T cell exhaustion during chronic infections (24).
Acute experimental models of ChD have shown that the infection
induces the transient expression of inhibitory receptors, such
as PD-1 (CD279) and CTLA-4 (CD152), on T cells and tissue-
infiltrating T cells in the myocardium (91, 92). In addition,
acute T. cruzi-infected mice treated with blocking antibodies
against PD-1 or PD-L1 show reduced parasitemia and parasitism
and an increased cardiac inflammatory response and mortality
compared to infected mice treated with an isotype control (IgG)
(91). In contrast, acute T. cruzi-infected mice treated with anti-
CTLA-4 show reduced parasitemia and mortality compared to
mice treated with an isotype control (IgG) (92). In chronic
experimental models of ChD and in patients with a severe form
of chronic ChD, a continuous increase in inhibitory receptor
expression and co-expression on T cells from peripheral blood
and cells from cardiac tissue has been observed (68, 93). Recently,
cardiac tissue cells from mice with a chronic infection and
heart failure showed high levels of PD-1 and PD-L1 expression
at 330 dpi (68). Moreover, mice treated with anti-PD-1 show
reduced parasitemia, increased numbers of cardiac T cells with
an effector memory phenotype, and increased deterioration of
cardiac function compared with infected mice treated with an
isotype control (IgG) (68). Remarkably, in the present study,
acute T. cruzi-infected mice expressed inhibitory receptors, such
as 2B4 (CD244), CD160, CTLA-4, and PD-1, at higher levels
and exhibited higher co-expression of these molecules at 10
dpi than at 30 dpi, suggesting that the transient increase in
inhibitory receptor expression and co-expression on T cells from
acute T. cruzi-infected mice is related to immune regulation
in an acute inflammatory microenvironment. In acutely T.
cruzi-infected humans, the dynamics of inhibitory receptor
expression on T cells are unknown. Given the difficulties of
detecting individuals in the acute phase due to non-specific
symptoms, inhibitory receptor expression has been evaluated
in asymptomatic chagasic patients, and low frequencies of 2B4,
CD160, TIM-3, CTLA-4, and PD-1 on CD8+ T cells were
found compared with those in symptomatic chronic chagasic
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patients (25). The model described here could reflect the
asymptomatic/latent phase, because these molecules are poorly
expressed on T cells from T. cruzi-infected humans (in the
asymptomatic phase) and in mice (at 30 dpi). In addition, we
observed a constant increase in the expression of inhibitory
receptors and co-expression on CD4+ and CD8+ T cells
from chronically infected mice. Indeed, a higher percentage
of T cells expressed CTLA-4 and PD-1 in infected mice at
260 dpi than at 10 dpi. Notably, although these preliminary
findings should be further explored, a positive correlation
between the percentage of multifunctional T cells and 2B4 and
CD160 expression on CD4+ and CD8+ T cells was observed
in acutely infected mice, and a negative correlation between
the percentage of multifunctional CD8+ T cells and CTLA-
4 and PD-1 expression on CD8+ T cells was observed in
chronically infected mice. Thus, these inhibitory molecules likely
play a crucial role in immune regulation (2B4 or CD160) and
inhibition (CTLA-4 or PD-1) during acute and chronic T.
cruzi infection, respectively, and might serve as biomarkers for
monitoring the progression of ChD. Intriguingly, although it was
postulated that the expression of inhibitory receptors in an acute
microenvironment could be related to the regulation of CD4+

and CD8+ T cell activation, it has been proposed that some of
these molecules, such as 2B4 and CD160, could be associated
with the optimal activation of T cells (94, 95). However, in
acute T. cruzi infection, it is necessary to determine whether the
expression of these molecules is related to lymphoid regulation
or activation. Consequently, blocking the interaction between the

inhibitory receptors and their ligands must be carefully analyzed

because these molecules play important roles in regulating the
hyperactive immune response in both the acute and chronic
inflammatory microenvironment.

In conclusion, during acute T. cruzi infection with the
reticulotropic Y strain, immune activation leads to the generation
of antigen-specific multifunctional CD4+ Th1 and CD8+ Tc1
cells and their regulation by inhibitory receptor co-expression. In
contrast, during chronic T. cruzi infection, the chronicity of the
infection induces amoderate inflammatory infiltrate in colon and
liver tissues accompanied with poor T cell effector function that
is possibly related to the co-expression of inhibitory receptors
on T cells, but this phenomenon does not occur in cytotoxic
CD8+ T cells. Taken together, these data support our previous
study in which we hypothesized that similar to several chronic
infectious diseases in humans and murine models, the T. cruzi
persistence could promotes the dysfunctionality of T cells, and
these changes are potentially related to the progression of ChD.
Thus, these data constitute a useful model for the identification of

immune markers and correlates of protection, and for long-term
explorations of new immunotherapy strategies for ChD.
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