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ABSTRACT

ChlamDB is a comparative genomics database con-
taining 277 genomes covering the entire Chlamy-
diae phylum as well as their closest relatives be-
longing to the Planctomycetes-Verrucomicrobiae-
Chlamydiae (PVC) superphylum. Genomes can be
compared, analyzed and retrieved using accessions
numbers of the most widely used databases includ-
ing COG, KEGG ortholog, KEGG pathway, KEGG
module, Pfam and InterPro. Gene annotations from
multiple databases including UniProt (curated and
automated protein annotations), KEGG (annotation
of pathways), COG (orthology), TCDB (transporters),
STRING (protein—protein interactions) and InterPro
(domains and signatures) can be accessed in a com-
prehensive overview page. Candidate effectors of
the Type lll secretion system (T3SS) were identi-
fied using four in silico methods. The identification
of orthologs among all PVC genomes allows users
to perform large-scale comparative analyses and
to identify orthologs of any protein in all genomes
integrated in the database. Phylogenetic relation-
ships of PVC proteins and their closest homologs
in RefSeq, comparison of transmembrane domains
and Pfam domains, conservation of gene neighbor-
hood and taxonomic profiles can be visualized using
dynamically generated graphs, available for down-
load. As a central resource for researchers work-
ing on chlamydia, chlamydia-related bacteria, verru-
comicrobia and planctomyces, ChlamDB facilitates
the access to comprehensive annotations, integrates
multiple tools for comparative genomic analyses and
is freely available at https://chlamdb.ch/. Database
URL: https://chlamdb.ch/

INTRODUCTION

All known members of the phylum Chlamydiae are ob-
ligate intracellular bacteria exhibiting a unique life cycle.
Described chlamydial species cause a broad range of dis-
eases in various species of birds, fishes, reptiles, amphib-
ians, marsupials and mammals (1), and include major hu-
man pathogens such as Chlamydia trachomatis—a leading
cause of blindness and infertility (1,2). Chlamydiae are dif-
ficult to cultivate and genetic manipulations are only avail-
able for a few species, which drastically slows down the
understanding of their fascinating biology. Other members
of the Planctomycetes-Verrucomicrobiae- Chlamydiae (PVC)
superphylum include the closest relatives of the Chlamydiae:
The Planctomycetes are extremely attractive for the field of
evolutionary cell biology given their peculiar intracellular
compartments (3). Like Chlamydiae, they replicate using an
FtsZ-independent mechanism but contrarily to the Chlamy-
diae, Planctomycetales were shown to have a complete pep-
tidoglycan cell wall (4-7). There is currently no database al-
lowing an easy access and comparison of comprehensive
genomics data for members of the PVC superphylum. A
database focusing on the curation of chlamydial genome an-
notation was recently published (8), but it is limited to three
species of the genus Chlamydia. A phylum-scale perspective
including comparative data with the closest free-living rel-
atives of the Chlamydiae would provide significant added
value for the research community given the conserved intra-
cellular lifestyle of these bacteria that were estimated to di-
verge over 700 million years ago (9). The PVCbase (10) pro-
vides updated automated protein annotations of forty-two
PVC genomes, but only offers limited browsing capabilities
and no comparative data. ChlamDB offers a centralized re-
source for genomic data and annotations of the entire PVC-
superphylum. Its simple search engine allows browsing pro-
tein annotations, identifying orthologs in PVC genomes and
performing a variety of comparative analyses.

“To whom correspondence should be addressed. Tel: +41 21 314 49 79; Fax: + 41 21 314 40 60; Email: trestan.pillonel@chuv.ch

© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.


http://orcid.org/0000-0002-5725-7929
http://orcid.org/0000-0003-3664-2139
http://orcid.org/0000-0003-0550-8981
http://orcid.org/0000-0001-9529-3317
https://chlamdb.ch/
https://chlamdb.ch/

Table 1. Overview of ChlamDB content

Phylum # genomes # species
Chlamydiae 221 48
Planctomycetes 20 20
Verrucomicrobia 34 12
Lentisphaerae 1 1
Kiritimatiellaeota 1 1
TOTAL 277 82

Genomic data and search

ChlamDB release 2.0 integrates data from 277 PVC
genomes of 82 different species (Table 1), retrieved from
GenBank (11) or RefSeq (12) (when GenBank records were
not annotated). It includes all complete PVC genomes as
well as draft genomes of the Chlamydiae phylum to in-
crease the diversity of genera and species represented in
the database. Draft genomes of the most studied Chlamy-
dia species were discarded to reduce unnecessary redun-
dancy in the database. Most genomes (n = 221) belong
to the Chlamydiae phylum, including 86 C. trachomatis,
20 Chlamydia muridarum, 20 Chlamydia psittaci and 12
Chlamydophila pneumoniae genomes, thus allowing intra-
species comparison for these important human pathogens.
Species-level diversity was shown to determine C. trachoma-
tis tissue tropism, hence showing the interest of such com-
parisons to elucidate novel aspects of chlamydial lifestyle
and pathogenesis. To allow for broader comparisons, this
database also contains the genomes of 34 Verrucomicro-
bia, 20 Planctomycetes, 1 Lentisphaerae and 1 Kiritimatiel-
laeota. Among the 34 Verrucomicrobia, there are 23 Akker-
mansia muciniphila, a bacterium commonly found in the hu-
man gut (13).

The database provides various tools for comparing, an-
alyzing and retrieving genomic data. A simple Boolean
search interface allows querying the database for specific
entries using NCBI protein accessions and locus tags or
UniProt accessions. Accessions numbers of widely-used
databases such as COG (14), KEGG ortholog (KO) (15),
KEGG pathway (16), KEGG module, Pfam (17) and In-
terPro (18) are also recognized and can be used to search
for proteins with specific annotations. The annotation of
individual genomes can be browsed in tables of genes that
are accessible directly from the front web page. In addition,
sequence homology searches can be performed through
a BLAST interface integrating the different blast flavours
(BLASTp, BLASTn, tBLASTn and BLASTX) (19).

Individual protein annotation view

Searching for a protein allows to access a ‘locus’ page, de-
signed to summarize automated and imported functional
annotations, and provides comprehensive comparative data
to facilitate the interpretation of annotations (Figure 1).
It integrates annotations from multiple databases includ-
ing UniProt (curated and automated protein annotations)
(20), KEGG (annotation of pathways), COG (orthology),
TCDB (transporters) (21), STRING (protein-protein inter-
actions) (22) and InterPro (domains and signatures). The
different tabs at the top of the page link to additional data
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such as the list of orthologs in other PVC genomes (Figure
1C), identified using OrthoFinder (23). Orthologs are listed
in a table containing the locus tag, the gene name, the name
of the organism, the product, the percentage of amino acid
identity as compared to the reference locus and the UniProt
annotation score. Orthologs that were reviewed on Swis-
sProt are flagged to quickly identify orthologs with man-
ually curated annotations. Additional tabs link to (i) a pre-
computed phylogeny of the orthologous group, (ii) a second
phylogeny that includes the closest non-PVC RefSeq hits of
each sequence of the orthogroup, allowing to investigate the
phylogenetic relationship of PVC proteins and their clos-
est homologs available in public databases (Figures 1J and
2J), precomputed homology searches with (iii) RefSeq and
(iv) SwissProt databases (200 top hits), (v) links to pub-
lished literature based on text-mining from the STRING
database (24) and PaperBLAST hits (25) and (vi) candi-
date functional interactors. Putative interactors were pre-
dicted in-house from genomic data alone using phylogenetic
profiling and investigation of conserved gene neighborhood
(see online methods) (Figure 1G). See (26) and (27) for the
rationale justifying use of those two approaches.

We put a strong emphasis on the visual representation
of the data (Figure 2). The pattern of presence/absence of
orthologous groups within the PVC superphylum can be
visualized with help of an annotated reference phylogeny
(Figures 1D and 2D). The reference phylogeny was recon-
structed with FastTree (28) (default parameters, JTT+CAT
model) based on the concatenated alignment of 32 single
copy orthologs conserved in at least 266 out of the 277
genomes.

The organization of transmembrane and Pfam domains
in orthologs can be easily compared along the phylogeny of
the orthologous group (Figures 1H and 2H). The conser-
vation of proteins encoded in the direct neighborhood (23
kb upstream and downstream) of the protein of interest can
also be visualized (Figures 1E and 2E).

The ‘orthogroup’ link (Figure 1K) provides an overview
of the annotation of orthologs including gene name, prod-
uct, COG annotation, KEGG annotation, InterPro anno-
tations, number of transmembrane domains and sequence
length. It allows verifying the consistency of annotations
among putative orthologs and identifying wrongly grouped
proteins (e.g. non-orthologous proteins sharing a domain).

Annotation of candidate type III secretion system effectors

Chlamydiae use a type 111 secretion system (T3SS) to deliver
effector proteins that will allow the bacterium to overcome
eukaryotic host defenses and to manipulate host cells. Ef-
fectors are difficult to identify because they evolve quickly
and are much less conserved than proteins encoding com-
ponents of the T3SS apparatus (29,30). Between 5 and 8%
of Chlamydia spp. coding sequences (CDS) are estimated to
be effectors (31). Candidate T3SS effectors were identified
using four different machine-learning classifiers that were
trained with known effector sequences: BPBAac (32), ef-
fectiveT3 (33), DeepT3 (34) and T3_MM (35). In addition,
we tagged proteins harboring eukaryotic domains rarely
found in bacterial genomes. Such domains are known to
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Figure 1. Protein annotation page of CT_495, an ADP/ATP transporter. (A) Main search bar. (B) Menu to access comparative analyses tools for the
comparison of genome content based on the clustering of proteins into orthologous groups and for comparison of COG, KEGG, Pfam and InterPro
annotations. (C) ‘Homologs’ tab with the list of the 527 orthologs of CT_495 in other PVC genomes. (D) Tab with the reference species phylogeny and
the pattern of presence/absence of orthologs in each genome of the database as well as the locus tag of the closest ortholog in each genome. (E) ‘Region’
tab showing the conservation of proteins encoded in the direct neighborhood of the target protein. (F) Best hits in RefSeq and SwissProt databases.
(G) Predicted protein interactors based on phylogenetic profiling and conservation of gene neighborhood. (H) Phylogenetic trees of the orthogroup and
associated Pfam and transmembrane (TM) domain organization of each protein. (J) Phylogenetic tree including the best RefSeq hits of each protein of the
orthologous group. (K) Name of the orthologous group with link to an overview of the annotation of the considered orthogroup (here 527 orthologs for
group_33). (L) COG and KEGG annotations with link to the detailed list of proteins annotated with the same COG/KO in other genomes of the database;
(M) Pfam and InterPro annotations with basic taxonomic information from the InterPro website: the numbers and percentages of proteins harboring this
domain that are classified as Bacteria, Eukaryote, Archaea and Virus (data retrieved from InterPro version 60). Clicking on the Pfam accession numbers
links to more detailed taxonomic information and a detailed list of proteins harboring the same domain in 6677 representative RefSeq genomes.

be frequently involved in bacteria—host interactions (36,37).

of different strains and species can help identify genetic
The ADP/ATP transporter domain (InterPro accession

variations that can be involved in defining tissue tropism

IPR004667) is for instance frequently found in both bacte-
ria (70.48%) and eukaryotes (29.52%) (Figure 1L). A dedi-
cated page allows visualizing the taxonomic distribution of
each COG and Pfam domains across respectively 2,031 (for
COQG) and 6,677 (for Pfam) representative Archaea, Bacte-
ria, Eukaryotes and Viruses genomes (Figure 1M and 2M).
The detailed list of identified homologs can (for instance)
be used to quickly determine whether a candidate effector
protein harbors a domain predominantly identified in the
genome of eukaryotes and other intracellular bacterial par-
asites such as Rickettsia or Legionella.

Comparative genomics and data mining tools

Since C. trachomatis genome became one of the first se-
quenced genomes (38), hundreds of Chlamydiae genomes
have been sequenced. Comparisons of complete genomes

or host specificity (39), or identify genes essential to the
unique intracellular lifestyle of Chlamydiae. ChlamDB al-
lows users to perform various comparative analyses based
on orthologous proteins to identify highly conserved and
genome-specific or clade-specific orthologous groups (Fig-
ure 3.1 and 3.2). Whole genome comparisons can be vi-
sualized using interactive circular genome maps, Venn di-
agrams or heat maps (Figure 3.3, 3.4 and 3.5). In addition,
ChlamDB enables the alignment of local genomic regions
in two or more genomes (Figure 3.6).

Pfam domains, KEGG orthologs and InterPro entries
can also be compared to identify clade-specific or highly
conserved protein features (Figure 3.7). A simple form en-
ables the user to compare the size of gene families or the
frequency of domains/ KEGG annotations in each genome,
allowing the identification of large protein families or fre-
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Figure 2. Selected examples of comparative data that can be retrieved from protein annotation pages. Panels are named according to the links shown in
Figure 1. (D) Profile of presence/absence of orthologs in other PVC genomes with the identity of the closest ortholog in each genome. (E) Visualization of
the conservation of proteins encoded in the neighborhood of CT_495. (H) Comparative view of transmembrane domains organization of CT_495 (TIcB)
orthologs. (J) Phylogeny of CT_495 orthologous group including the closest identified RefSeq homologs. Red labels are proteins from the ChlamDB
database whereas blue and green labels indicate non-PVC proteins. In this example, a sequence of Cardinium, a Bacteroidetes endosymbiont of the whitefly
Bemisia tabaci, is clustering with Chlamydiae spp. and Proteobacteria symbionts such as Paracaedibacter and Rickettsia spp. are clustering with other
Chlamydia spp., suggesting multiple events of horizontal gene transfer. Panels present only a subset of the 277 genomes currently present in the database
to fit on a single page. Complete figures can be retrieved from the ChlamDB website. (M) Overview of the taxonomic profile of the Pfam domain PF03219
in 6677 representative RefSeq genomes. We can observe that this domain can be found in 100% of Chlamydiae genomes and in most Viridiplantae, but also
in some genomes of other bacterial phyla. The detailed list of hits can also be browsed and downloaded.
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Figure 4. Comparative analysis of KEGG Pathways and Modules. (1) Comparison of KEGG modules of the ‘ATP synthesis’ category. Numbers indicate
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phylum can also be investigated visually (blue cells) for any module and pathway. Green cells indicate genomes for which no protein was annotated with the
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quent domains. For instance, the polymorphic membrane
protein family (Pmp), a family of proteins involved in ad-
hesion identified in all sequenced Chlamydiaceae genomes
(40), is present in up to 28 copies in C. psittaci CP3 genome.
Interestingly, the Pfam domain PF05150 (‘ Legionella pneu-
mophila major outer membrane protein domain’), a domain
extremely rarely identified outside of the Legionella genus
(see https://chlamdb.ch/pfam_profile/PF05150/phylum) is
present in 219 copies within the PVC superphylum (https:
/Ichlamdb.ch/fam/PF05150/pfam). This domain is also the
most frequent domain identified in the genome of Simka-
nia negevensis (36 occurrences). Proteins harboring this do-
main were probably acquired by horizontal gene transfer
by Chlamydiae, Legionella or both and might share similar
functions.

Annotations from the KEGG database were used to clas-
sify proteins into metabolic pathways and modules (16).
Data for individual pathways and modules can be retrieved
by searching KEGG accessions in the main search bar. In
addition, KEGG annotations in various genomes can be
compared as annotated phylogenies (Figure 4.1) and inter-
active bar charts or accessed from summary tables available
for each genome (Figure 4.2). Modules and pathways pages
detail KEGG orthologs associated to a given entry (Figure
4.3) and report the list of orthologs identified in each PVC
genome (Figure 4.4).

Implementation, methods and updates

The interface was developed using the Django framework
(https://www.djangoproject.com/). Data are stored on a
MySQL server and visualized with existing JavaScript li-
braries allowing to draw interactive plots and tables such
as jvenn.js (41), datatables.js (https://datatables.net), cy-
toscape.js (42) and feature—viewer.js (https://github.com/
calipho-sib/feature-viewer) (43). The python module Geno-
meDiagram is used to draw genome schematics, includ-
ing alignments of multiple genomic locations (44). Cir-
cular representations of genomes and plasmids are made
with Circos (45). The Ete3 Python module is used to draw
phylogenetic trees with associated metadata (46). Some
plots are also made using R (47), ggplot2 (48) and plotly
(https://plot.ly). Annotations, phylogenetic trees and multi-
ple sequence alignments can be downloaded from the web-
site. A detailed description of the methods used to pre-
compute functional and comparative analyses and setup the
database is available online (https://www.chlamdb.ch/docs/
index.html). The code source of the website is freely avail-
able on Github and issues can be reported online (https:
/[github.com/metagenlab/chlamdb). This database has been
developed at the Centre for Research on Intracellular Bac-
teria (CRIB) in Lausanne and will be maintained and up-
dated at least once a year.

CONCLUSION AND FUTURE DIRECTIONS

As the number of genome sequences quickly increases, there
is a need for a centralized genomics resource providing
updated annotations and extensive comparative genomics
capabilities for the PVC superphylum. A superphylum-
specific database has a significant added value with re-
spect to large-scale genomic databases such as PATRIC (49)

or Microscope (50): ChlamDB greatly facilitates access to
comprehensive annotations and comparative data mean-
ingful to the Chlamydia and PV C research community, with
an intuitive interface and a special focus on visual represen-
tations of comparative data. Easy access to precomputed
homology searches and phylogenetic reconstructions will
help researchers to investigate the function and evolution-
ary history of proteins encoded in PVC genomes. Annota-
tions of proteins specific for intracellular life such as predic-
tions of type III secretion system effectors and identification
of eukaryote-like domains will also facilitate the identifica-
tion of uncharacterized proteins that might be involved in
chlamydia-host interactions.

Since the annotation of PVC genomes stored in Gen-
bank is generally not up-to-date with the most recent re-
search, the existing ChlamDB could be extended to al-
low manual curation of the annotation and tracking of
protein annotation history. Indeed, successful examples of
community-curated databases exist for major pathogens,
such as the Pseudomonas Database (www.pseudomonas.
com) (51). The inference of orthologous relationships could
be used to propagate the annotation of characterized pro-
teins to less studied members of the phylum.
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