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Background: Long noncoding RNAs (IncRNAs) are significantly implicated in tumor
proliferation. Nevertheless, proliferation-derived INcCRNAs and their latent clinical
significance remain largely unrevealed in hepatocellular carcinoma (HCC).

Methods: This research enrolled 658 HCC patients from five independent cohorts. We
retrieved 50 Hallmark gene sets from the MSigDB portal. Consensus clustering was
applied to identify heterogeneous proliferative subtypes, and the nearest template
prediction (NTP) was utilized to validate the subtypes. We introduced an integrative
framework (termed “ProlLnc”) to identify proliferation-derived INncRNAs. Moreover, a
proliferation-related signature was developed and verified in four independent cohorts.

Results: In 50 Hallmarks, seven proliferation pathways were significantly upregulated and
correlated with a worse prognosis. Subsequently, we deciphered two heterogeneous
proliferative subtypes in TCGA-LIHC. Subtype 2 displayed enhanced proliferative activities
and a worse prognosis, whereas subtype 1 was associated with hyperproliferative HCC
and a favorable prognosis. The NTP further verified the robustness and reproducibility of
two subtypes in four cohorts derived from different platforms. Combining the differentially
expressed INcRNAs from two subtypes with proliferative INcRNA modulators from our
ProlLnc pipeline, we determined 230 proliferation-associated INncRNAs. Based on the
bootstrapping channel and the verification of multiple cohorts, we further identified ten
INcRNAs that stably correlated with prognosis. Subsequently, we developed and validated
a proliferative INcRNA signature (ProLncS) that could independently and accurately assess
the overall survival (OS) and relapse-free survival (RFS) of HCC patients in the four cohorts.
Patients with high ProLncS score displayed significantly genomic alterations (e.g., TP53
mutation, 8p23-8p24 copy number variation) and higher abundances of immune cells and
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immune checkpoint molecules, which suggested immunotherapy was more suitable for
patients with high ProLncS score.

Conclusion: Our work provided new insights into the heterogeneity of tumor proliferation,
and ProL.ncS could be a prospective tool for tailoring the clinical decision and management

of HCC.

Keywords: hepatocellular carcinoma, proliferation, multi-omics, machine learning, IncRNA

INTRODUCTION

Global Cancer Statistics 2020 demonstrated that hepatocellular
carcinoma (HCC) ranks sixth in incidence and second in
mortality (Sung et al, 2021). Although there are many
treatment options for HCC patients, such as radical surgery,
transcatheter arterial chemoembolization (TACE) therapy,
targeted therapy, chemotherapy, and immunotherapy, the
recurrence and mortality rates remain unsatisfactory (Craig
et al, 2020; Cheng, 2021). The HCC management mainly
relies on the clinicopathological stage. Existing studies have
found significant heterogeneity in the risk of recurrence and
death, even among patients at the same stage (Bou-Nader et al,,
2020; Beaufrere et al, 2021). This is mainly because these
classification systems only consider the clinicopathological
factors but ignore the tumor’s molecular characteristics, and
this inadequacy might be a potential cause of overtreatment or
undertreatment in the clinic (Qian et al, 2021). Hence,
developing a novel tool to improve the clinical outcomes of
HCC patients is necessary.

The enormous development in high-throughput sequencing
techniques has brought the molecular study of tumors into a new
era and facilitated the breaking of genomic codes over the last few
decades (Aizarani et al.,, 2019; Calderaro et al.,, 2019). These
technologies provided new perspectives to explore the
heterogeneity of tumors (Chia and Tan, 2016). Previous
scholars have revealed the heterogeneity of HCC in terms of
immune microenvironment, hypoxia, ferroptosis, and
metabolism by analyzing the expression profiles (Huo et al,
2021). The intra- and inter-tumor heterogeneity of HCC
might be the primary driver of distinct clinical outcomes in
patients with the same stage. As previously reported, the
different clinical outcomes might be mirrored at the
heterogeneous molecular and cellular level (Liu et al., 2021a).
Koncina et al. thought biomarkers were only considered
appropriate if their expression was the same between and
within tumor tissues, as they will then be expressed robustly
in all patients. Therefore, a multigene panel might be a promising
tool to address both inter- and intra-tumor heterogeneity
(Koncina et al., 2020).

Recently, a novel class of non-coding RNA (IncRNAs) has
been significantly implicated in tumorigenesis, progression,
microenvironment, relapse, and prognosis of tumors
(Klingenberg et al., 2017; DiStefano and Gerhard, 2021). For
example, ID2-AS1 could suppress tumor metastasis via
advancing the HDACS/ID2 pathway (Zhou et al, 2020).
ZFPM2-AS1 promotes HCC progression by activating the

miR-653/GOLM axis and predicts worse prognosis (Zhang
et al., 2021). DUBR induced by SP1 could facilitate oxaliplatin
resistance of HCC by E2F1-CIP2A feedback (Liu S. et al., 2021).
However, in the era of big data, proliferation-derived IncRNAs
and their latent clinical significance remain largely unrevealed in
hepatocellular carcinoma (HCC).

In our research, based on 50 Hallmarks, we identified seven
proliferation pathways that upregulated and correlated with
worse prognosis in HCC. Subsequently, we deciphered and
verified two heterogeneous proliferative subtypes. The two
subtypes displayed significant differences in proliferation state,
prognosis, and underlying biological processes. A novel pipeline
(termed “ProLnc”) was further introduced to recognize the latent
IncRNA modulators of proliferation pathways. Ultimately, a
proliferative IncRNA signature that possessed robust and
accurate performance in assessing the prognosis of HCC was
constructed and validated in our study.

METHODS AND MATERIALS

Data Generation and Processing

The RNA-seq raw count data of HCC and adjacent normal tissues
were obtained from The Cancer Genome Atlas database (TCGA-
LIHC). Three microarrays, including GSE76427, GSE116174, and
GSE144269, were generated from Gene Expression Omnibus
(GEO) database. Additionally, the E-TABM-36 dataset was
acquired from the ArrayExpress database. Patients with
primary HCC, complete survival information and expression
profile were enrolled in this study. The affy and Lumi
packages applied to normalize microarrays from
Affymetrix and Illumina companies, respectively. Collectively,
the TCGA-LIHC dataset included 50 adjacent normal tissues and
351 HCC tissues, GSE76427, GSE116174, GSE144269, and
E-TABM-36 datasets included 115, 64, 68, and 60 eligible
HCC tissues, respectively.

were

Hallmark Gene Sets

The Molecular Signature Database contains 50 Hallmark gene
sets retrieved by previous researchers (Liberzon et al., 2015). The
Hallmark gene sets were broadly applied in tumor-associated
researches (Liu et al., 2021c). The gene set variation analysis
(GSVA) was used to quantify the pathway activities.

Consensus Clustering
Consensus clustering was an unsupervised machine learning
algorithm, which provided a quantitative indication for
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determining the number and membership of potential clusters
within a dataset. This approach was executed in the
ConsensusClusterPlus package. The possible clustering number
was set to 2-9, and this procedure relies on the K-mean clustering
method and Euclidean distance was iterated 1000 times. The valid
evidence was provided from distinct perspectives, including
cumulative distribution function (CDF), the consensus matrix,
and the proportion of ambiguous clustering (PAC). The
silhouette statistic was employed to measure the affinity of
samples in the cluster (Lovmar et al, 2005), which was a
graphical aid to the interpretation and validation of cluster
analysis. The principal component analysis (PCA) exhibited
the spital distribution of all samples in two-dimensional space
was shown by the principal component analysis (PCA).

Survival Analysis
Cox regression and Kaplan-Meier analysis were performed by the
survival package. The survminer package determined the optimal
cutoff value. Univariate and multivariate analyses were utilized to
calculate the hazard ratio (HR) and test the independent
significance, respectively.

Gene Set Enrichment Analysis

To further explore the biological functions of different groups,
gene set enrichment analysis (GSEA) was adopted, a
computational approach that tests whether the specific genes
are enriched in prior gene sets. This random permutation was
executed 1000 times, and gene terms with Benjamini-Hochberg
(BH) corrected false discovery rate (FDR) < 0.05 were considered
statistically significant. Moreover, as previously reported (Liu
et al., 2021d), the single-sample gene set enrichment analysis
(ssGSEA) quantified the relative abundance of 28 immune cells.
Gene sets for labeling these 28 cells were generated from
Charoentong et al. study (Charoentong et al, 2017). In
addition, we use another algorithm (microenvironment Cell
Populations-counter, MCP-counter) to calculate the immune
cell infiltration (Becht et al., 2016).

Nearest Template Prediction

To further validate our clusters in different datasets derived from
distinct platforms, we performed the nearest template prediction
(NTP) in each cohort. The NTP approach conveys a convenient
way to compute the prediction confidence of a single patient
based on gene expression data (Hoshida, 2010). In line with
previous reports, we excluded samples according to the BH
corrected FDR >0.2 (Isella et al., 2017; Wang et al.,, 2021).

Statistical Analysis

The differential analysis between the two groups was calculated
by the limma package. The clusterProfiler package was applied to
perform the GSEA analysis (via GSEA function) and GO and
KEGG Hypergeometric test (via enrichGO and enrichKEGG
functions). The glmnet package was utilized to fit the least
absolute shrinkage and selection operator (LASSO) model. The
concordance index (C-index) was calculated by survival package.
The timeROC package was utilized to estimate the receiver
operating characteristic curve (ROC) and area under the ROC
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curve (AUC). According to the C-index estimation, the
compareC package was used to determine the significance
between the two variables. The ESTIMATE package assessed
tumor purity. The genomic analysis was performed as previously
reported (Liu et al., 2021e). All data processing, visualization, and
statistical analysis were performed in the R v4.1 software.

RESULTS

Proliferation Pathways Upregulated and

Correlated With Worse Prognosis

Based on the 50 Hallmark gene sets, we quantified each pathway
activity across the TCGA-LIHC tumor and adjacent normal samples
via the GSVA algorithm. Subsequently, the limma package was
utilized to identify the dysregulated pathways in HCC. As illustrated
in Figure 1A, the pathway activities of two immune pathways,
including inflammatory response and TNF-a signaling via NFKB,
were weakened in HCC (Supplementary Figure S1), which
suggested that immune inactivation might be a key signal of
HCC progression. Interestingly, we found that all the upregulated
pathways were associated with tumor proliferation, such as unfolded
protein response, DNA repair, and mitotic spindle (Figure 1A and
Supplementary Figure S1). Furthermore, the Kaplan-Meier survival
analysis was used to evaluate the prognostic value of these
dysregulated pathways. In seven proliferation pathways, patients
with higher pathway activities presented significantly dismal overall
survival (OS) (log-rank p < 0.005, Figures 1B-H). Nevertheless, two
immune pathways didn’t show conspicuous prognostic significance
in HCC (log-rank p > 0.05, Figures 1L]J). Univariate Cox regression
analysis further validated these results (Supplementary Figure S2).

Identification of Two Heterogeneous
Proliferation-Related Subtypes

According to the activities of seven proliferation pathways, we
intended to decipher heterogeneous subtypes using consensus
clustering. The consensus values range from 0 to 1 (never
clustered together to always clustered together) colored by
white to red in the consensus matrix (Figure 2A). When the
cluster number was equal to 2, almost no color overlap in the
consensus matrix (Figure 2A). We calculated the PAC of all
cluster options based on the CDF curves (Supplementary Figure
$3). As illustrated in Figure 2B, the two subtypes have the lowest
value, indicating two optimal cluster selections.

Moreover, we further employed the silhouette statistic to
confirm the stability of the clustering, and the two clusters
displayed stable and robust silhouette widths (Figure 2C). To
elevate the purity and significance of two subtypes, we applied
silhouette width to screen out those samples residing on the
periphery of the subtypes, as previously reported (Isella et al.,
2017). The PCA distribution exhibited essentially no overlap
between two subtypes in two-dimensional spatial space
(Figure 2D). Subsequently, we quantified the proliferation
pathway activities between two subtypes. As illustrated in
Figure 2E, subtype 2 (S2) displayed a significantly higher
abundance of seven proliferation pathways relative to subtype
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FIGURE 1 | Proliferation pathways upregulated and correlated with a worse prognosis. (A) Differential analysis of the activity variation of fifty Hallmark gene sets
between tumor and normal samples. (B-J) Kaplan-Meier plots of OS based on the activities of nine pathways.

Frontiers in Pharmacology | www.frontiersin.org

May 2022 | Volume 13 | Article 907433


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Liu et al. Proliferative LncRNA Signatures of HCC

_ Cluster2

o
~

Subtype

o
w

o
N

Proportion of ambiguous clustering 00

5 Ave Sil =0.36 AvaSlim d. 38
2 3 4 5 6 7 00 0z 04 0.0 0%
Cluster number K Silhouette Width Sllhouette Width
D Principal Components Analysis
3 7
{ G2M_CHECKPOINT ‘ ‘ ‘ ‘ ‘ 1 ‘ ‘
E2F_TARGETS ‘ ‘ ‘ ‘ ‘ H
— wronsenene| (11 Hy \ 1 Fon
MYC_TARGETS_V2 ‘ ‘ |‘ | } H ;’
-
MYC_TARGETS_V1 H | ‘ [
DNA_REPAIR H ‘ } ‘ ‘ ‘ ‘
L— UNFOLDED_PROTEIN_RESPONSE | H || ‘ H | ‘ ‘ m
-5.0 -2.5 0.0 25
Dim1 (65.1%)
F G
1.00 1.01 & ]
-+ st | -+ S1 w0 1
s2 s2 J
= 0.75 % e 30
= S
> 2] o
] 2 2 | Overexpressed _Overexpressed
@ @ s
B ‘706 D20 in 1 in S2
= ) 2
g 0.50 é T 5 .
[ . )
= 04 12 . 0
o Log-rank L,__I Log-rank J o ]
P =0.0055 L_( P=0.0019 o iy i R e C TR
T [ ]
0.0 25 5.0 75 10.0 0.0 25 5.0 75 10.0 -2 0 2
Time (years) Time (years) log2 (Fold Change)
H Overall Survival Relapse—free Survival
© e ® * | Stage (IlI+1V vs 1+11)
—_—" * ——— * | Subtype (S2 vs S1)
———— ——— - Age (>65 vs £65)
e — - Grade (G3+4 vs G1+2)
——— — - Gender (Male vs Female)
1 2 3 1 2 3
Hazard ratio Hazard ratio

FIGURE 2 | Identification of two heterogeneous proliferation-related subtypes. (A) The consensus score matrix of all samples when k = 2. Consistent scores
between the two samples were positively correlated with the probability that they were grouped into the same cluster in different iterations. (B) The proportion of
ambiguous clustering (PAC) score (k = 2 was the most suitable k value). (C) The silhouette statistic of the high- and low-risk groups. (D) The principal component analysis
(PCA) algorithm showed the two-dimension spatial distribution of the high- and low-risk groups were shown by the principal component analysis (PCA) algorithm.

(E) Heatmap displayed that S2 possessed a significantly higher proliferative quantity compared to S1. (F,G) The Kaplan-Meier plots of OS (F) and RFS (G) of the high-
and low-risk groups. (H) Multivariate Cox regression of OS and RFS. *p < 0.05. (l) Differentially expressed analysis of INcRNAs between two subtypes in the TCGA-LIHC
cohort.
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FIGURE 3 | Underlying biological processes of proliferation-related subtypes. (A,B) GO (A) and KEGG (B) of GSEA according to the proliferative subtypes. (C) The
immune correlation analysis between the two groups, including immune cell infiltrations and immune checkpoint.

1 (S1), which suggested an enhanced proliferative activity in S2.
Thus, we defined S2 as hyperproliferative HCC, whereas S1 was
defined as hypoproliferative HCC. In line with the proliferative
state, S2 presented significantly worse OS and RFS than S1 (log-
rank p < 0.01, Figures 2F,G). Further multivariate Cox regression
analysis revealed that the proliferation-related subtypes were
independent prognostic factors for OS and RFS after adjusting
for clinical features (age, AJCC stage et al.) (Figure 2H).
Additionally, we performed differentially expressed analysis
between two subtypes based on the IncRNA expression matrix

and identified 375 differentially expressed IncRNAs (DElncs),
which were regarded to be associated with the proliferative
activity of HCC (Figure 2I).

Underlying Biological Processes of
Proliferation-Related Subtypes
To further explore the underlying mechanisms and biological

processes of proliferation-related subtypes, we performed
GSEA-GO and GSEA-KEGG analysis. As shown in Figures
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3A,B, S2 enriched many pathways consistent with its inherent
properties, such as DNA replication initiation, cell cycle
checkpoint, metaphase anaphase transition of the cell cycle,
ribosome, spliceosome, and mismatch repair. On the other
hand, S1 was significantly associated with metabolism-related
pathways, such as epoxygenase P450 pathway, drug catabolic
process, linoleic acid metabolism arachidonic, acid metabolic
process. This suggested that SI might serve as a
hypoproliferative and high-metabolic (especially lipid

metabolism) subtype. Furthermore, we delineated the
immune microenvironment of two subtypes. Overall, these
two subtypes demonstrated  less differentiated
microenvironmental cell infiltration (Figure 3C and
Supplementary Figure S4A). S1 had a dramatically higher
abundance of fibroblasts, whereas S2 displayed a superior score
in the monocytic lineage (Supplementary Figure S4A).
Interestingly, the two subtypes presented striking
differences in the immune checkpoint profiles. S1 was
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FIGURE 6 | Identifying the stable prognostic INcCRNAs via bootstrapping univariate Cox regression analysis. (A) A multi-step pipeline to determine the regular
prognostic PALs (SPPALs). (B) The bootstrapping univariate Cox regression analysis was repeated 1000 times, and 31 IncRNAs incorporated in 80% of resampling runs
(o < 0.05) were kept for subsequent analysis. (C) The prognostic significance of 31 INcRNAs in four cohorts.

characterized by FGL1 and TMIGD2 overexpression, while S2  quite similar in four cohorts (Figures 4A-D). We further
enriched CD276, CTLA4, ENTPDI1, HHLA2, ICOS, ICOSLG,  evaluated the prognostic significance of the two subtypes. In
and TNFRSF18  line with the previous results, S2 displayed significantly adverse
(Figure 3C and Supplementary Figure S4B). These results ~ OS and RFS relative to S1 in four cohorts (log-rank p < 0.05,
indicated that S2 might have more potential to benefit from  Figures 4E-H). Taken together, the two proliferation-related
immunotherapy.

IDO1, PDCDI,

TNFRSF4, TNFRSF9,

subtypes were reproducible and stable in HCC.

Validation of Proliferation-Related Subtypes o

To further validate the stability and robustness of proliferation- ProLnc: Recognizing the Latent LncRNA
related subtypes in different datasets derived from distinct ~IModulators of Proliferation Pathways
platforms, we performed NTP analysis in four cohorts,  To further determine the potential IncRNA modulators of
including GSE76427, GSE116174, GSE144269, and E-TABM-  proliferation pathways, we constructed a compositive pipeline
36. This algorithm could quantify the prediction confidence of  that relied on the previous reports (Li et al., 2020; Liu et al., 2021f)
a single patient based on gene expression data (Hoshida, 2010).  (Figure 5A). We first calculated its first-order partial correlation
Consistent with previous reports (Isella et al., 2017; Wang et al,,  coefficients (PCCs) with all nRNAs adjusted for tumor purity for
2021), we excluded samples with the BH corrected FDR >0.2. The each IncRNA. Based on PCC and degree of freedom (DOF), we
predictive results showed high reproducibility of two subtypesin  calculated the T statistic and further measured the p-value.
four cohorts. Moreover, the proportions of the two subtypes were ~ Subsequently, mRNA’s ordered index (OI) was calculated from
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p-value and PCC. According to the descending order of all OIs, all
mRNAs were sorted into a gene rank list. The specific IncRNA
gene rank list was subjected to the GSEA algorithm to test the
correlations between this IncRNA and seven proliferation
pathways. Ultimately, the enrichment score (ES) and FDR of a
specific IncRNA were generated from the GSEA pipeline and then
converted into a final significance index (FSI), as follows:

FSI = (1 -2 x FDR) x sign(ES)

sign function was utilized to extract the plus and minus of ES. The
IncRNAs with the |FSI| and FDR <0.001 were regarded as the
proliferation-derived IncRNAs. In total, we identified 474
IncRNA  modulators of seven proliferation pathways
(Figure 5B and Supplementary Table S1). For instance,
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LINC02058 was dramatically associated with MYC targets V2
(Figure 5C).

Identifying the Stable Prognostic LncRNAs

via Bootstrapping

Based on the DElncs and the IncRNAs from the ProLnc
framework, we determined a total of 230 proliferation-
associated IncRNAs (PALs) (Figure 6A). We developed a
multi-step pipeline to identify further the stable prognostic
PALs (SPPALs) (Figure 6A). First of all, preliminary
screening was performed to include prognosis-related
IncRNA in TCGA-LIHC cohort wvia wunivariate Cox
regression analysis, where IncRNAs with p-value < 0.01
selected for further research. Next, use
bootstrapping to test the IncRNAs which passed initial
filtering for robustness. We extracted 70% samples
randomly and performed univariate Cox regression on
these samples to assess the correlation between the IncRNA
expression and prognosis. After 1000 times calculations of
this procedure, and the IncRNAs incorporated in 80% of
resampling runs (achieved p < 0.05 in robustness testing)
were kept for subsequent analysis. 31 PALs were determined
(Figure 6B and Supplementary Table S2). To further test the
prognostic compatibility of these PALs on different platforms,
we explored their prognostic significance in four cohorts,
including TCGA-LIHC, GSE76427, GSE116174, and
GSE144269 (Figure 6C), E-TABM-36 was discarded due to
its lack of IncRNAs. As displayed in Figure 6C, PALs that
were significant in three or four cohorts were considered
SPPALs. Notably, IncRNAs were excluded if they showed
opposite effects in different cohorts (e.g.,
ENSG00000197182). Therefore, we identified 10 SPPALs
that stably correlated with prognosis, seven were risk
factors, and three were protective factors (Figure 6C).

were we

Development of Prognostic Signature

Subsequently, LASSO regression was further utilized to
construct the model based on the expression profiles of 10
SPPALs. The LASSO algorithm is a popular approach for
regression with high-dimensional predictors. It introduces a
penalty parameter lambda to shrink regression coefficients,
enhancing the generalization ability of the model and
preventing overfitting (Liu et al, 2021g; Liu et al., 2021h).
The penalty parameter lambda controlled the degree of
shrinkage: the larger the lambda, the smaller the
coefficients, even some regression coefficients were shrunk
to exactly zero (Figure 7A). The 10-fold cross-validation
was applied to determine the optimal lambda, and the
partial likelihood deviance was calculated to evaluate the
efficacy variation between the training and validation
subsamples. In this way, we choose the optimal lambda =
0.016 when the partial likelihood deviance achieves the lowest
value (Figure 7A). Thus, we obtained the optimal model
(termed “ProLncS”) composed of nine SPPALs and
calculated the risk score for each patient (Figure 7A and
Supplementary Table S3). Compared with the low-risk

Proliferative LncRNA Signatures of HCC

group, patients in the high-risk group displayed worse OS
(log-rank p < 0.05, Figures 7B-E).

Moreover, the ProLncS model remained statistically
significant after controlling for available clinical traits,
including AJCC stage, histological grade, body mass index,
alcohol, smoking, HBV, HCV, and HDV (Supplementary
Figures S5A-D). This indicated that ProLncS was an
independent factor for OS. To further assess the correlations
between ProLncS and relapse, we explored the significance of
ProLncS for RFS in TCGA-LIHC and GSE76427 datasets with
relapse information. As shown in Figures 7F,G, RFS was also
more dismal in the high-risk group than the low-risk group (log-
rank p < 0.05). Likewise, ProLncS also independently predict the
RFS in TCGA-LIHC and GSE76427 datasets (Supplementary
Figures S6A,B).

Evaluation and Comparison of ProLncS

In this study, the time-dependent ROC and C-index were
utilized to assess the predictive performance of the ProLncS
model. The 1-, 2-, 3-, 4-, and 5-years AUCs were 0.837, 0.750,
0.740, 0.771, and 0.738 in TCGA-LIHC, 0.743, 0.840, 0.792,
0.851, and 0.716 in GSE76427, and 0.762, 0.777, 0.713, 0.720,
and 0.708 in GSE116174 (Figures 8 A-C). Since the follow-up
time of GSE144269 did not exceed 5 years, we only calculated
AUC:s of 1-4 years, which were 0.748, 0.793, 0.750, and 0.954,
respectively (Figure 8D). Additionally, the C-index of four
cohorts were 0.741, 0.735, 0.687, and 0.649, respectively.
Overall, the ProLncS model displayed stable and accurate
performance for predicting the prognosis. To compare the
performance of ProLncS with traditional clinical traits, the
compareC package was used to determine the significance
between two variables according to the C-index estimation.
Encouragingly, ProLncS presented significantly superior
accuracy than these traditional clinical traits, including age,
gender, histological grade, AJCC stage, body mass index,
alcohol, smoking, HBV, HCV, and HDV (Figures 8E-H).
In addition, we collected previously published models of HCC
(Supplementary Table S4) to compare the prediction
prognosis ability of ProLncS and these models. As shown
in Supplementary Figure S7, ProLncS presented significantly
superior accuracy than these models.

Genomics Landscape of ProLncS

Furthermore, we explored the genomics landscape of ProLncS
as previously reported (Liu et al., 2021le). As displayed in
Figures 9A-C, there were no significant differences in
Single-nucleotide polymorphism (SNP), tumor mutation
burden (TMB), and deletion or insertion (Indel), between
the high- and low-risk groups. To get deep insights, we
carved the portrait of 20 frequently mutated genes (FMGs)
between the two groups (Figure 9D). Intriguingly, the two
groups displayed significantly mutational differences in these
FMGs (Figure 9E). The high-risk group patients possessed
more mutations of TP53, MUC4, OBSCN, CSMD3, ARIDIA,
FAT3, and DNAH7 than the low-risk group patients
(Figure 9E). Subsequently, we characterized the copy

number variation (CNV) status of 30 frequently
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amplification genes (FAGs)/frequently homozygous deletion
genes (FHGs) between the two groups (Figure 9F). Overall, the
high-risk group also displayed superior variations in CNV,
especially the cytobands 8p23-8p24 (Supplementary Table
S5). For example, compared with the low-risk group patients,
the high-risk group patients showed more amplification of
ATAD2, C8ORF76, FAM83A-AS1, FBX032, LINC00964,

MTSS1, NTAQ1, TBC1D31, ZHX1, ZHX1-C8ORF76, and
ZHX2, as well as more deletions of CLDN23, ERII,
FAMB86B3P, MFHAS1, PPP1R3B, and CSMD1 (Figure 9F
and Supplementary Table S5). Of note, there were no
significant differences in FGG, arm gain, and focal gain
(Figures 9G,H). For another, the high-risk group
demonstrated superior burdens of copy number deletion at
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processes. (E) Distribution of 28 immune cells with ProLncS. (F) Correlations between ProlLncS with 28 immune cells. (G) Correlations between ProLncS with 27
immune checkpoint molecules. Red and blue bars mean p < 0.05, and grey bar means p > 0.05.
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the level of chromosome arms, fragments, and bases (Figures
9G,H). Collectively, the high-risk group patients conveyed a
significantly genomic instability and displayed abundant
molecular alterations.

Exploring the Potential Mechanisms of
ProLncS

To further reveal the underlying mechanisms of ProLncS, we
intended to identify the critical modulators of ProLncS. We
calculated the Pearson correlation coefficients between ProLncS
and all genes. Genes with |r | >0.4 and FDR <0.001 were
considered to be significantly associated with ProLncS
(Supplementary Figures S8A,B). Subsequently, KEGG and
GO analyses were performed on these genes. As shown in
Figures 10A,B, genes that positively correlated with ProLncS
enriched many pathways related to proliferation, whereas genes
that negatively correlated with ProLncS were significantly
associated with metabolism-related pathways. The GO
analysis further validated these results from KEGG (Figures
10C,D). In addition, we delineated the immune landscape of
ProLncS (Figure 10E). As displayed in Figure 10F, ProLncS
positively correlated with activated CD4" T cell, natural killer
T cell, activated dendritic cell, T follicular helper cell, and
effector memory CD4 T cell, while negatively correlated with
CD56 bright natural killer cell, effector memory CD8" T cell,
type 17 T helper cell, CD56dim natural killer cell, neutrophil,
and eosinophil. This suggested that patients with high ProLncS
stored more abundance of immune cells. We further
characterized the immune checkpoint profiles (Liu et al,
20211) of ProLncS, and the results also revealed predominant
correlations (Supplementary Figure S9 and Figure 10G).
ProLncS was positively related to CD276, HHLA2, VTCNI,
ENTPDI1, CTLA4, TNFRSF4, TNFRSF9, ICOS, TNFRSF18,
NT5E, PDCDI1, LAG3, CD70, CD27, BTLA, and CD40LG,
and negatively correlated with FGL1 (Figure 10G and
Supplementary Figure S9). Overall, these results suggested
that immunotherapy was more suitable for patients with high
ProLncS score.

DISCUSSION

Hallmark gene sets decrease the variation and redundancy,
systematically pool key information of the initial founder sets,
and provide more concise and refined inputs for gene set analysis
(Liberzon et al., 2015). Based on the pathway activities assessment
from the GSVA algorithm, the gene expression matrix was
transformed to a gene-set activity matrix. The proliferation
pathways, including unfolded protein response, G2M
checkpoint, mitotic spindle, and DNA repair, were
significantly upregulated and associated with worse prognosis
in HCC, which indicated these pathways might play essential
roles in the occurrence and progression of HCC. Therefore, in our
opinion, these seven proliferation pathways were more
predominant than other pathways from Hallmark in
evaluating the progression and prognosis of HCC.

Proliferative LncRNA Signatures of HCC

Thus, according to the pathway activities of these seven
proliferation pathways, we decoded two heterogeneous
proliferation-related subtypes using consensus clustering. S2
displayed enhanced proliferative activities and a worse
prognosis, whereas S1 was defined as hypoproliferative HCC
and possessed a favorable prognosis. Further multivariate Cox
regression analysis demonstrated that the two subtypes could
independently predict the prognosis of HCC, which thus served
as a promising tool for clinical management in clinical settings.
We also revealed the underlying biological processes of the two
subtypes. S2 enriched proliferative pathways, and S1 was
significantly associated with metabolism-related pathways.
Taken together, our results suggested S1 might serve as a
hypoproliferative ~and  high-metabolic  (especially  lipid
metabolism) subtype, while S2 was deemed as the malignant
phenotype associated with the hyperproliferative HCC.

Our study also delineated the immune microenvironment of
two subtypes but did not observe significantly different cell
populations. In contrast, the two subtypes presented striking
differences in the immune checkpoint profiles. S1 was
characterized by FGL1 overexpression, while S2 enriched
CD276, CTLA4, ENTPD1, HHLA2, ICOS, ICOSLG, IDOI,
PDCDI1, TMIGD2, TNFRSF4, TNFRSF9, and TNFRSF18. For
example, CD276 belongs to B7-CD28 superfamilies and
profoundly impacts the suppression of T-cell function (Picarda
et al, 2016). With a preferential expression on cancer cells,
CD276 could be considered an attractive target for cancer
immunotherapy (Picarda et al, 2016). Also, HHLA2 was
another potential target for immunotherapy due to its
coinhibitory role, overexpression across solid cancers, and
correlation with adverse prognosis (Wei et al, 2021). Thus,
our findings suggested that S2 might have more potential to
benefit from immunotherapy.

Additionally, the NTP algorithm was applied to validate
further the stability and robustness of proliferation-related
subtypes in different datasets derived from distinct platforms,
including GSE76427, GSE116174, GSE144269, and E-TABM-36.
The predictions exhibited high reproducibility of two subtypes in
four cohorts. Moreover, the proportions of the two subtypes were
quite similar in four cohorts. These results proved the robustness
of the two subtypes and laid a foundation for identifying
proliferation-related IncRNAs.

Elegant studies demonstrate that IncRNAs are significantly
implicated in tumor proliferation (Klingenberg et al, 2017;
DiStefano and Gerhard, 2021). In our research, we used two
approaches to identify proliferation-related IncRNAs to assess the
prognosis further and improve the clinical outcomes. Firstly, we
screened out IncRNAs from the differential analysis between two
robust subtypes. Next, we developed a second pipeline to
recognize the latent IncRNA modulators of proliferation
pathways. Combining two methods, we determined a total of
230 PALs. Subsequently, based on the bootstrapping univariate
Cox regression analysis and the verification of multiple cohorts,
we further identify 10 SPPALs that stably correlated with
prognosis (three protective factors and seven risk factors).
Overall, these IncRNAs might be latent biomarkers for
evaluating the development and prognosis of HCC.
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Importantly, subsequent work was focused on the accurate
prognostic assessment via the LASSO machine learning
algorithm. Our ProLncS signature could independently predict
the prognosis of HCC. Patients with high ProLncS score
displayed unfavorable OS and RES relative to those with low
ProLncS score. The assessment results of time-dependent ROC
and C-index demonstrated that ProLncS afforded great accuracy
in predicting the prognosis of HCC. These results appeared in
four different cohorts, showing stable and robust performance. In
addition, we also compared the efficiency of ProLncS with
traditional clinical traits, and encouragingly, ProLncS displayed
superior accuracy than these traditional clinical traits, including
age, gender, histological grade, AJCC stage body mass index,
alcohol, smoking, HBV, HCV, and HDV. The clinical
convertibility of our ProLncS model indicated its promising
potential in the clinical management of HCC.

Furthermore, we delineated the genomic landscape of
ProLncS. Whether tumor progression and molecular
variation occur successively or dynamically interact with
each other remains to be further demonstrated
(Dhanasekaran et al., 2019; Ding et al., 2019). From a
global perspective, there were no significant differences in
SNP, Indel, and TMB between the high- and low-risk
groups. However, some driver genes of HCC were an
increased expression in the high-risk group. For example,
TP53, a genome keeper, regulates the cell cycle and
promotes cell apoptosis or cell senescence, and its
mutations could promote cell proliferation and inhibit cell
apoptosis (Calderaro et al., 2019).

Additionally, the high-risk group patients also displayed
higher variation in CNV, especially the cytobands 8p23-8p24.
Collectively, the high-risk group patients conveyed a significantly
genomic instability and showed abundant molecular alterations.
Subsequently, we explored the potential mechanisms of ProLncS.
KEGG and GO analyses were performed on genes significantly
associated with ProLncS. The positively related genes enriched
plenty of proliferation-related pathways, whereas negatively
associated genes were significantly related to metabolism-
related pathways. Moreover, we also found ProLncS positively
correlated with multiple immune cells and abundant immune
checkpoint molecules. Taken together, these results suggested
that immunotherapy was more suitable for patients with high
ProLncS score, which might further improve clinical outcomes in
high-risk patients.

As far as we know, this is the first study to date identifying
the proliferation-related IncRNAs based on Hallmark
pathways. Despite the ProLncS model being promising,
some limitations should be acknowledged. First, all HCC
tissues included in our study were retrospective, and future
research should be carried out to verify the results. Second, our
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