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Auditory noise is a sound, a random variation in air pressure. More generally, random “noise” can
be introduced into any stimulus, including a visual display. Noise added to the stimulus can probe
the computations underlying perception of the stimulus. With power and precision, the noise, by
restricting the information available, places fundamental constraints on attainable performance and
processing strategy. WWII research on radar led to mathematical theorems about detectability
of signals in noise, i.e., Signal Detection Theory (Peterson et al., 1954), which allow human
performance to be expressed on an absolute scale of efficiency, 0–100% (Tanner and Birdsall, 1958;
Pelli and Farell, 1999). Auditory noise revealed the channels of hearing in studies at Bell Labs
that characterized how telephone line noise limits perception of speech (Fletcher, 1953). Studies
of visual effects of photographic, x-ray, and video noise (reviewed in Pelli, 1981) led to pioneering
work with artificially injected noise by Rose (1957), Stromeyer and Julesz (1972), and Solomon and
Pelli (1994). Added visual noise has been widely used to characterize the computations underlying
various visual tasks (e.g., detection, discrimination, letter and face recognition, search, averaging,
selective attention, perceptual learning) in various populations (e.g., older adults, amblyopes,
migrainers, dyslexic children). Different kinds of noise probe different aspects of the computation.
For instance, spectrally filtered noise is used to determine the frequencies relevant to a given visual
task (e.g., letter identification, Solomon and Pelli, 1994). Noise masking of one attribute (e.g., in
luminance, color, or texture) can reveal whether another attribute is processed separately (e.g.,
Gegenfurtner and Kiper, 1992; Allard and Faubert, 2007, 2008). Noise image classification can
reveal the visual features the observer uses to perform a visual task (e.g., Eckstein and Ahumada,
2002). Noise is also often used to characterize what limits sensitivity, such as internal noise (Pelli,
1981; Pelli and Farell, 1999; Lu andDosher, 2008). This Research Topic issue explores effective ways
to use noise to probe visual function.

“Noise” in perception experiments generally means unpredictable variation in some aspect of
the stimulus. Typically, the stimulus consists of a luminance signal plus an unpredictable noise.
Less often, another parameter of the signal, e.g., orientation, varies unpredictably (e.g., Dakin,
1999; Solomon, 2010; Allard and Cavanagh, 2012). Added noise is often white: A random sample,
independent and identically distributed, is added to each pixel’s luminance. The extent of the
noise is restricted, or “localized,” by a window in space and time. The spatiotemporal spectrum
of the noise can be restricted by bandpass filtering to a range of orientation and frequency.
Added noise that varies across space is sometimes called “pixel noise.” Most of the studies in this
Research Topic issue added noise to the signal; two studies randomly jittered parameters of the
signal.

In this Research Topic issue, Jeon et al. (2014) added localized white noise to investigate
developmental changes in orientation discrimination through childhood. Interpreting their data
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using the Perceptual Template Model (Lu and Dosher, 2008), to
see how the model parameters change with age, they find that
increasing age reduces internal additive noise, reduces internal
multiplicative noise, and improves external noise exclusion.
Using a similar noise paradigm, Chou et al. (2014) find
that localized attention facilitated contrast detection due to
signal enhancement, whereas object-based attention facilitated
detection due to external noise exclusion. Letter identification is
mediated by an octave-wide spatial frequency channel (Solomon
and Pelli, 1994). Young and Smithson (2014) use spatially
bandpass noise to reveal the letter identification channel in the
presence of optical distortions, and find changes in the central
spatial frequency of the letter-identification channel. Hall et al.
(2014) find that adding white noise increased the center spatial
frequency of the letter-identification channel for large but not
small letters. Using pixel noises with different spectral profiles,
Abbey and Eckstein (2014) find that performance approaches
that of the mathematical ideal in a free-localization task (i.e.,
high spatial uncertainty), but is much lower in a fixed-location
task (i.e., low spatial uncertainty), indicating that the human
detection strategy is well-adapted to free-localization tasks. Gold
(2014) use pixel noise to investigate the visual information used
by the observer during a size-contrast illusion. By correlating
the observers’ classification decision with each pixel of the noise
stimuli, they find that the spatial region used to estimate the size
of the target is influenced by the size of surrounding irrelevant
elements. Taylor et al. (2014) use pixel noise both as a target and
a mask. The target noise is bandpass-filtered in orientation and
spatial frequency, whereas the mask is white noise. They find
that information used to detect the target is more optimal in the
orientation domain than in the frequency domain, suggesting
that observers can adjust the bandwidth of their channels in
orientation, but not in spatial frequency.

Several studies examine how visual processing is affected
by the extent and bandwidth of applied noise. Baker and
Vilidaite (2014) provide EEG evidence that white noise masks
have a suppressive gain control effect on neural responses
to grating stimuli. Happily, Allard and Faubert (2014b) note
that suppressive gain control would not affect threshold

measurements in white noise. Studying motion perception,
Allard and Faubert (2014a) find similar orientation and direction
thresholds with and without temporally extended noise, but
greater direction thresholds in temporally localized noise. This
shows that the processing strategy underlying motion perception
depends on the noise duration. Consistent with previous studies
on contrast sensitivity (Allard and Cavanagh, 2011; Allard et al.,
2013), they conclude that to measure equivalent input noise of
motion processing, noise should be temporally extended (e.g.,
displayed continually).

Two studies randomly jittered a signal parameter. In an
electrophysiological study, Németh et al. (2014) use phase
noise, produced by randomizing phases in the Fourier domain,
making the stimulus unrecognizable without affecting its spectral
energy. Thus, sensitivity to phase noise suggests involvement in
recognition. They find that phase-noise amplifies the P1 response
to cars in the right hemisphere, but not in the left hemisphere,
and that, conversely, phase-noise amplifies the P1 response to

faces in the left hemisphere, but not in the right hemisphere.
Lidestam et al. (2014) evaluate the effect of informational and
energetic auditory noise on visual speechreading. They found
that only informational auditory noise (i.e., four-talker babble)
interfered with speechreading, which suggests that phonological
processing is also involved in speechreading.

In sum, this Research Topic issue shows several ways to use
diverse kinds of noise to probe visual processing.
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