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Solution-printed organic semiconductor blends
exhibiting transport properties on par with single
crystals
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Solution-printed organic semiconductors have emerged in recent years as promising

contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The

stringent performance requirements for organic thin-film transistors (OTFTs) in terms of

carrier mobility, switching speed, turn-on voltage and uniformity over large areas require

performance currently achieved by organic single-crystal devices, but these suffer from

scale-up challenges. Here we present a new method based on blade coating of a blend

of conjugated small molecules and amorphous insulating polymers to produce OTFTs

with consistently excellent performance characteristics (carrier mobility as high as

6.7 cm2 V� 1 s� 1, low threshold voltages ofo1 V and low subthreshold swings

o0.5 Vdec� 1). Our findings demonstrate that careful control over phase separation and

crystallization can yield solution-printed polycrystalline organic semiconductor films with

transport properties and other figures of merit on par with their single-crystal counterparts.
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O
rganic thin-film transistors (OTFTs) have attracted
tremendous attention for their potential use in flexible
flat panel displays, sensors, storage devices, radio

frequency tags and logic circuits1–6. Organic semiconductors
(OSCs) are especially interesting owing to their compatibility with
solution-based coating techniques, which promise low-cost
manufacturing by high-throughput continuous roll-to-roll
printing methods on flexible substrates7. Efforts in the past
decade to carefully engineer the molecular structure of soluble
OSCs and control their microstructure and morphology have led
to carrier mobilities now far surpassing those of amorphous
silicon—the current industrial standard TFT material8-10,
and have been shown to achieve mobilities even in excess
of 10 cm2 V� 1 s� 1 (refs 11,12). As such, state-of-the-art
solution-processed OSCs significantly surpass other p-type
solution-processed semiconductors, such as metal oxides and
pseudohalides13–16, making OSCs excellent candidates to
complement high-performance n-type oxide semiconductors in
future solution-processed complementary metal-oxide-
semiconductor (CMOS) circuits17.

These applications call for a range of performance pre-
requisites, including high-current on–off ratio, low turn-on and
threshold voltages as well as low subthreshold swing18. They
also require excellent performance yield, reproducibility and
uniformity over large areas, which puts significant stress on the
solution-manufacturing process of OSCs. Transport in small-
molecule OSCs has been shown to be strongly coupled with the
crystalline quality and texture purity of lamellar stacks exhibiting
two-dimensional in-plane p-stacking, and requires excellent
continuity of the OSC thin film with closed domain and grain
boundaries19–22. We have recently demonstrated a two-order
magnitude modulation in mobility by altering the drying kinetics,
which influenced the nucleation and growth of the small-
molecule OSC19,23. Similar performance improvements have
been realized in the case of 6,13-bis(triisopropylsilylethynyl)
(TIPS) pentacene films by controlling the crystallization with the
use of high-boiling solvent additives24,25. Rapid crystallization of
OSCs in processes such as spin coating can lead to extreme
sensitivity to drying kinetics and to a lack of the control over
nucleation and growth of crystals26,27. Single crystals of small-
molecule OSCs have been therefore found favour in this area and
have typically yielded the highest carrier mobility owing to their
low-defect nature28. Recently, a large-area compatible inkjet
process has yielded single crystals of OSC with average hole
mobility of 16 cm2 V� 1 s� 1 and maximum reaching to
31 cm2 V� 1 s� 1 (ref. 29). However, high throughput and
controlled growth of single-crystal OSCs over large-area flexible
substrates remain a significant challenge30,31. Therefore, the
device performance reproducibility and uniformity over large
substrate areas have been limited by current challenges in
solution processing32,33.

Blending small-molecule OSCs with amorphous semiconduct-
ing or insulating polymers has recently been demonstrated as a
successful route for manufacturing high-performance OTFTs
with high-reproducibility and low-performance spread34,35. The
polymer acts as a binder and helps to overcome the common
dewetting challenges associated with small-molecule OSC
processing and achieve good uniformity of device performance
over large areas36,37. Vertical stratification in polymer:OSC blends
is mainly affected by surface energies of the OSC, polymer,
substrate and solvent, by the solubility and miscibility of each
component, as well as by the evaporation rate of the solvent38.
Efforts have therefore been made to optimize morphology,
lamellar quality and thin-film crystallinity from insulating
polymer:OSC blends using polymers such as polystyrene (PS)

and poly(alpha-methyl styrene) (PaMS) under a wide range
of processing conditions, including different blend ratios,
concentrations, solvents and solvent mixtures, post-thermal
treatments, as well as molecular weight (Mw) of the polymer
binder35,39–48. These attempts have focused exclusively on spin
coating and drop casting and yielded performance up to
1.5 cm2 V� 1s� 1 (ref. 41). While both methods can be scaled
to reasonably large substrate sizes, they are incompatible with
continuous roll-to-roll processing. In the case of spin-cast
OSC: semiconducting polymer blends, top-gate bottom-contact
OFETs with mobilities as high as 2.4 and 5.6 cm2 V� 1 s� 1 have
been achieved by blending 2,8-difluoro-5, 11-bis(triethylsilylethynyl)
anthradithiophene (diF-TES-ADT) with poly(dimethyl-
triarylamine) (PTAA) or poly(dialkyl-fluorene-co-dimethyl-
triarylamine) (PFTAA), respectively49. Cross-sectional energy
filtered transmission electron microscopy (EFTEM) revealed the
blend stratifies into a bilayer with the diF-TES-ADT forming a
crystalline layer at the air interface. This makes the top-gate
device architecture a viable option owing to the low intrinsic
mobilities of the PTAA and PFTAA. This performance is close to
the single-crystal mobility of the diF-TES-ADT OSC of
6 cm2 V� 1 s� 1, highlighting the method’s remarkable success
at bridging the performance gap between thin film and single-
crystal devices50. The common problem with existing
OSC:polymer blend OTFTs is that processing typically occurs
via spin coating, a process which is highly wasteful of expensive
semiconductor and is not compatible with continuous high-
throughput roll-to-roll manufacturing.

Blade-coating and related methods, such as zone casting, knife
coating, wire bar coating, and doctor blading have recently
demonstrated high-performance OTFTs with minimal material
wastage and are compatible with high throughput and continuous
roll-to-roll manufacturing11,33,51–57. These methods have been
shown to induce large-scale directional crystallization as well as to
induce polymorphism during OSC crystallization, making them
potentially significant methods for large-scale manufacturing of
organic electronic devices11,51,58–62. We take the position that
blade coating of OSC:polymer blends can yield remarkable
performance while mitigating many of the challenges associated
to solution processing of small-molecule OSCs.

In this article, we demonstrate high-performance bottom-
contact bottom-gate (BCBG) OTFTs prepared via blade coating
of a OSC:polymer blend. The amorphous insulating polymer
(PS or PaMS) was blended with the small-molecule OSC
diF-TES-ADT. We begin by systematically investigating the roles
of Mw of the insulating polymer, solution concentration and
blading speed on the microstructure, morphology and phase
separation of the blends as well as on transport properties. In
doing so, we demonstrate OTFTs with carrier mobility as high as
4.5 cm2 V� 1 s� 1, with on–off ratio exceeding 106, low threshold
voltage (o1 V) and low subthreshold swing (o0.5 V dec� 1), and
in many ways surpassing the previous performance records set for
this material by spin coating the OSC with a semiconducting
polymer in a more complicated top-gate device configuration49.
The presence of even small amounts of insulating polymer is
shown to greatly impact the figures of merit of OTFTs. We then
introduce a mixture of solvents with different polarities and
achieve a further substantial increase of the carrier mobility up to
6.7 cm2 V� 1 s� 1 by improving the film quality, surpassing all
mobility reports for this material either neat, in a blend or as
single crystal41,49,50. We show that this methodology can be used
to fabricate high-performance OTFTs with small performance
variability and consistently high mobility over a wide range of
processing conditions, making this strategy potentially suitable
for large-area manufacturing of electronic circuits.
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Results
Blade-coated polymer-molecule-blend organic thin-film transistors.
The blading speed is known to be a critical parameter for
controlling film formation, with low speed yielding ribbon for-
mation while high blading speed leading to spherulite
formation14,19. We fabricated BCBG devices based on neat
diF-TES-ADT and 1:1 blends of diF-TES-ADT with PS (123 kDa)
and PaMS (100 kDa) for blade-coating speeds ranging between
0.5 and 2 mm s� 1. Polarized optical micrographs (POMs) of the
films in conditions of low (0.5 mm s� 1) and high (1.5 mm s� 1)
blading speeds are shown in Supplementary Fig. 1, confirming the
ribbon formation at low speed and more of a spherulitic
microstructure in conditions of high blading speed. In Fig. 1a,
we show the BCBG architecture consisting of Si as gate, SiO2 as
gate dielectric and thermally evaporated Au used as source and
drain contacts. The schematic in Fig. 1b illustrates the blade-
coating process, wherein a blade placed at a shallow angle over
the substrate placed on a hot plate entrains the solution in its
path, leading to crystalline thin-film formation as the solvent
dries. In Fig. 1d, we show the output characteristics of the best
performing OTFTs based on diF-TES-ADT:PS (123 kDa) with
hole mobility as high as 3.8 cm2 V� 1 s� 1. As a reference, we have
plotted in Supplementary Fig. 2, the gate voltage dependence of
hole mobility for devices fabricated on ultraviolet ozone- and O2

plasma-treated BCBG substrates. It can be seen that devices
prepared by O2 plasma treatment show ideal transfer
characteristics and reliable mobility extraction18. In contrast, for
ultraviolet ozone-treated devices, we observe non-ideal transfer
characteristics with strong gate voltage-dependent mobility.
In Fig. 1c, we depict the transfer characteristics of neat
diF-TES-ADT (black), as well as diF-TES-ADT:PaMS (red) and
diF-TES-ADT:PS (blue) blends prepared in identical conditions
(1.5 mm s� 1) while gate leakage current is highlighted in
Supplementary Fig. 3. The data highlight major differences in
hole mobility, threshold voltage, on/off current ratio and
subthreshold swing.

These differences call for further exploration of the coating
speed window (0.5–2.0 mm s� 1). In Fig. 2a, we have plotted
the carrier mobility as a function of blading speed for neat
diF-TES-ADT, as well as its blends with PaMS (100 kDa) and PS
(123 kDa). In the low-speed regime (0.5 mm s� 1) blends achieve
B3–4 times higher mobility than neat samples. In the high-speed
regime (1.5 mm s� 1), the difference is even greater, surpassing an
order of magnitude, while the device performance spread is
substantially reduced by the use of the blending approach, as
indicated by smaller error bars. The threshold voltage (Vth)
(Fig. 2b) for neat devices is positive for all speeds, ranging from
10 V at low speed to 70 V at higher speeds. Similarly, the
subthreshold swing (SS) increases from 7 V dec� 1 at low speed to
50 V dec� 1 at high speed. Blending with the insulating polymer
substantially reduces both Vth and SS to the range of 0.1–4 V and
0.35–1 V dec� 1, respectively, over the entire blading speed range.
This highlights the remarkable benefits of blending the OSC with
an insulating polymer and its apparent ability to reduce the
interfacial trap state density typically responsible for elevated
SS and Vth values in neat devices. As shown in Table 1, the
interfacial trap state density, Nit, where Nit ¼ Ci

q2 ð Sq
kBTlnð10Þ � 1Þ,

with Ci the capacitance per unit area of the dielectric, q the
elementary charge, S the subthreshold slope, kB the Boltzmann
constant and T the temperature, decreases by one to two orders of
magnitude from B1013 eV� 1 cm2 to B5� 1011 eV� 1 cm2 by
the virtue of blending an insulating polymer with the OSC. In the
high-speed regime, we also systematically observe PS-based
blends outperforming PaMS-based blends in terms of all figures
of merit (Fig. 2a–d), a trend we later confirm to hold for a wide
range of Mws of the polymer as well. Both polymers are equally
soluble in toluene and exhibit very similar Flory–Huggins
parameters (B0.4) (ref. 63), we therefore expect the thermo-
dynamic driving forces for phase separation to be nearly identical.
However, the performance of PaMS-based devices produced
at a blade speed 41 mm s� 1 suffers with respect to PS-based
devices. Looking more closely at the atomic force micrograph
(AFM) of blends produced at 2 mm s� 1 (Supplementary Fig. 4),
we find the topography of diF-TES-ADT: PaMS blends to be less
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continuous and more defective as compared with the PS-based
blend. This is probably the key reason for the lower performance
from PaMS devices. Furthermore as the temperature dependence
of viscosity of the polymer solution follows the Williams–Landel–
Ferry model, the viscosity of polymer solutions is dependent on
the glass transition temperature64. PS has lower glass transition
temperature of (ca. 100 oC) than PaMS (ca. 170 oC), which is
likely to yield higher viscosity of PS blend solutions at a coating
stage temperature of 70 oC. This may factor into the well
connected, smooth and defect-free morphology of diF-TES-ADT
films produced by blending with PS.

AFM micrographs taken of the surface of neat diF-TES-ADT
and polymer blends are shown in Supplementary Fig. 5. For lower
blading speed (0.5 mm s� 1), the micrographs reveal significant
crevices between adjacent ribbon-like crystals, whereas at higher
speed (1.5mm s� 1) all films show spherulite-like crystals
connected by tall domain boundaries and exhibit significant
topographic defects, such as gaps and cracks within the
spherulites. Blending with PaMS or PS in the low-speed regime
results in well-connected ribbons with topographically smoother
boundaries. Blending with PaMS in the high-speed regime results
in topographically smooth boundaries between spherulites as
well, suggesting they are well connected, but still reveals
significant topographic features and defects within the spherulites
themselves. Blending with PS on the other hand leads to well-
connected smooth spherulites with apparently smooth and
continuous boundaries with fewer tomographic defects, hinting
at the presence of morphological reasons for the better
performance observed in PS-based blends over PaMS-based
blends at higher blading speeds.

These results are remarkable considering that lamellar texture
purity, a common challenge for spin-cast diF-TES-ADT, is crucial
to achieving high carrier mobility26,65. In fact, spin-cast neat and
blend solutions lead to diF-TES-ADT crystallization with a
mixture of o0014 and o1114 textures exhibiting typical
mobility of 10� 3–10� 2 cm2 V� 1 s� 1, unless special care is
taken to chemically treat the bottom contacts36. Halogenated self-
assembled monolayers are used to treat the surface of the gold
electrodes to induce preferential growth of the o0014 textured
crystals during spin coating26,65,66. We show here that neither the
neat OSC nor the OSC:polymer blend crystallize in any texture
other than the o0014 orientation whether PFBT treatment is
used or not. This is proven by static grazing incidence wide-angle
X-ray scattering (GIWAXS) images (Supplementary Fig. 6). We
can see from this data taken in different processing conditions
that only the o0014 texture is formed by blade coating,
irrespective of blending or not. This suggests a different
nucleation and growth process may be operant in blade coating
as opposed to spin coating. The reason behind this remarkable
result is unknown and is beyond the scope of this study, but we
speculate that this may be related to the blade-coating methods
demonstrated confinement effect during crystallization of the
OSC67. We also show in Supplementary Fig. 7 the mGIWAXS
mapping data of neat diF-TES-ADT at 0.5 and 1.5 mm s� 1 and
diF-TES-ADT: PaMS (100 kDa) blend at 0.5 mm s� 1 in
Supplementary Fig. 7. We used two different X-ray beam
incidence orientations of 0–90o (0o being defined as parallel to
blade’s moving direction). We can see that for the neat sample at

0.5 mm s� 1, the (21L) peaks are present at 90o, while they
disappear at 0o. The peaks are present in both orientations at
1.5 mm s� 1. This indicates that the crystal growth is highly
anisotropic at low speed, while at higher speed it is more
isotropic. A similar observation is made for diF-TES-ADT: PaMS
(100 kDa) at 0.5 mm s� 1. This highlights the remarkable
microstructure achievable using the blade-coating method and
is likely to be at least partly responsible for achieving the typically
higher carrier mobility even in neat films.

As we coat films by blade coating, it calls for an assessment of
whether there are any shear stresses induced by the coating
process, including in the presence of the binder polymers in the
solution. PaMS and PS have different glass transition tempera-
tures of 170 and 100 oC, respectively, which calls for a closer
evaluation of the difference in solution viscosities. We have
performed rheological measurements on the starting solutions to
investigate these effects. As all the coating experiments are
performed in the speed range of 0.25–2 mm s� 1 with a 100-mm
gap between the substrate and the blade, the corresponding shear
rate values of interest lie in the range from 2.5 to 20 s� 1. In
Supplementary Fig. 8a,b, we plot the shear stress and viscosity
versus shear rate at room temperature for the blank solvent
(toluene), diF-TES-ADT in toluene, and diF-TES-ADT blended
with PS (Mw¼ 123 kDa) and PaMS (Mw¼ 100 kDa) using initial
concentrations of the formulation. From these measurements, it is
evident that there is no obvious difference between the shear
stress and viscosity dependencies of the initial solutions on
adding diF-TES-ADT and even after adding the binder polymers.
Here a significant and uncontrolled evaporation of the solvent
during the experiment can induce artefacts and makes it
necessary to perform experiments in an enclosed set-up, which
can be heated to the actual processing temperature of 70 oC.
However, we could not obtain any reliable data below a shear rate
of 350 s� 1. Nevertheless, the key takeaway from the rheological
data obtained at higher temperature is that there is no apparent
difference between the solution viscosities of the neat diF-TES-
ADT solution and the blend solutions with PaMS and PS. This
suggests that different glass transition temperatures of PS and
PaMS are not affecting the initial solution viscosities at 70 oC. We
observe a shear thickening effect in the high shear rate regime of
all three samples at elevated temperature, which is equivalent to
blade-coating speeds nearly two orders of magnitude faster than
the range of relevance to this study and may be interesting to
investigate in the future. While our rheological analysis of the
initial solutions does not reveal any meaningful differences in the
shear stress and viscosity responses of the starting formulations,
we do not discount the possibility that these parameters may be
changing differently for the different formulations as the solution
dries on the way to solid state thin-film formation. However, this
is outside the scope of the current study.

Influence of molecular weight of the insulating polymer. The
Mw of the polymer binder is known to influence the viscosity
of the solution, as well as its solubility and miscibility66,68.
It is consequently an important parameter to investigate and
understand. In Fig. 3a, we have plotted the mobility as a function
of the Mw of PS for diF-TES-ADT:PS (1:1) blends. In the
low-speed regime, blending the OSC with low-Mw PS markedly

Table 1 | Interfacial trap state density for neat and blended OTFTs.

Trap density (eV� 1 cm2) Neat diF-TES-ADT diF-TES-ADT:PaMS diF-TES-ADT:PS

Nit 8.2� 1012�4.6� 1013 4.5� 1012� 1� 1012 3.2� 1011�6.5� 1011

diF-TES-ADT, 2,8-difluoro-5, 11-bis(triethylsilylethynyl) anthradithiophene; OTFT, organic thin-film transistor; PS, polystyrene; PaMS, poly(alpha-methyl styrene).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9598

4 NATURE COMMUNICATIONS | 6:8598 | DOI: 10.1038/ncomms9598 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


reduces the mobility, whereas increasing the Mw beyond 100 kDa
yields mobility as high as B4.5 cm2 V� 1 s� 1, far superior
to the neat sample. POM images of the low-speed samples
(Supplementary Fig. 9) indicate the ribbon formation is disrupted
by blending with low-Mw PS, whereas it is not disrupted by high
Mw. This is also confirmed by AFM analysis (Supplementary
Fig. 3). In Fig. 3b, we have plotted the lamellar (001) X-ray
diffraction peak for diF-TES-ADT for the low- and high-Mw
blends, normalized to film thickness estimated by ellipsometry.
It is clear that lamellar crystallinity is substantially improved by
OSC blending with the high-Mw polymer. We have also plotted
in Fig. 3c the atomic ratio of carbon and fluorine extracted from
X-ray photoelectron spectroscopy (XPS) analysis of the top
surface of blends prepared using low- and high-Mw PS at low
blading speed. The ratio is expected to be 19.6 for the pure OSC.
However, the analysis reveals lower fluorine/higher carbon
content in the low-Mw case, indicating the presence of some
PS near the exposed surface of the blend. By contrast, the high-
Mw blend seems to have an OSC-rich surface, consistent with the
formation of a bilayer with the OSC near the top. These results
clearly indicate the Mw of PS strongly influences the vertical
stratification of the blend components, which is believed to
promote or disrupt long-range lateral crystallization of the OSC.
This may be related at its origin to differences in phase separation
behaviour in the presence of low- and high-Mw blends, which
can exhibit Mw-dependent solubility and miscibility38,39,69,70.

We achieve a remarkable boost in performance when casting
the blend in conditions of higher blading speed (Fig. 3a). The

carrier mobility increases steadily with increasing Mw, rising to as
high as 4.5 cm2 V� 1 s� 1. The device figures of merit include
on/off 4106 and threshold voltage of � 0.1 V. The remarkable
mobility can be understood by examining and comparing POM
and AFM images of the neat film (Fig. 3e) to the low-Mw (Fig. 3f)
and high-Mw (Fig. 3g) blends. The micrographs reveal the
formation of substantially larger domains in the high-Mw case
than in neat OSC or low-Mw blends. The best films appear to be
topographically smoother, are crack-free and appear to have
sharp domains and grain boundaries, as indicated by AFM.
Statistical distributions of the surface height were calculated from
the entire AFM scan area (10� 10 mm) and summarized in
Fig. 3h. The distributions have been centred at an arbitrary height
of zero since the AFM tip does not sense the substrate in either
case. From the shape and width of the distribution, it is quite clear
that the neat film is the roughest sample (sr.m.s. B5 nm; r.m.s,
root mean squared) with features both tall and deep. The low-Mw
blend (sr.m.s. B1.8 nm) has a significant hump on the deep side,
indicating that the film contains pin holes, cracks or deep valleys
at grain boundaries. By contrast, the high-Mw blend appears to
show a very narrow and symmetric distribution (sr.m.s. B1.1 nm),
consistent with a very smooth OSC surface free of pin holes,
cracks and exhibiting closed grain/domain boundaries. Polymer
solution viscosity is strongly dependent on Mw of polymers and
increases with increasing Mw of polymer. The significant
differences observed from the morphological investigations
suggest that higher solution viscosities of high-Mw PS blend
solutions are possibly factoring into the formation of crack-free
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cross-sectional EFTEM micrograph of the bilayer stratification of the blend with PS at the bottom and diF-TES-ADT on top. Scale bar, 20 nm (in EFTEM

image). Polarized optical micrographs (POM) and atomic force micrographs (AFM) of e neat diF-TES-ADT, (f) low-Mw blend and (g) high-Mw blend and

white arrow shows the direction of blade coating. Scale bars, 250 mm (in POM images) and 4mm (AFM images). (h) Statistical distribution of surface

height obtained from AFM analysis of neat diF-TES-ADT, low-Mw blend and high-Mw blend.
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and topographically smooth domains of tightly connected OSC
domains.

We have imaged the vertical phase separation of the optimal
high-Mw blend film prepared at 1.5 mm s� 1 using cross-
sectional EFTEM (Fig. 3d, inset). The micrograph clearly shows
a bilayer phase separation with the OSC on top and the PS layer
sandwiched between the OSC and the SiO2 dielectric. The total
thickness of the bilayer is found to be B21 nm with sublayer
thicknesses of B11 and B10 nm for the OSC and PS,
respectively. We also performed similar analysis for samples
prepared at 0.5 and 1.0 m ms� 1 (Supplementary Fig. 10) to
confirm that vertical phase stratification is similar at different
speeds. These observations are in agreement with the recent
report of BCBG OTFTs of diF-TES-ADT:PS in which the
blend film has been shown to undergo bilayer vertical phase
stratification as characterized by TEM41.

In the case of low-Mw PS, we observe a mixed phase of OSC
and polymer on top as seen from XPS results in Fig. 3b. By
contrast, the high-Mw PS case yields a PS-free surface as
confirmed by cross-sectional EFTEM analysis as well (Fig. 3d).
The above results clearly highlight the critical role the Mw of the
insulating polymer plays in promoting long-range lamellar order
via effective phase separation and vertical stratification. They
also marginalize the low-Mw polymer as a poor candidate for
high-performance blend OTFTs35,44.

Our investigation of blading speed and polymer Mw has been
restricted thus far to a 1:1 w/w blend ratio of the OSC and
polymer. In Fig. 3d, we plot the mobility with respect to the blend
ratio of OSC:PS for a fixed Mw of 900 k to assess the
compositional window over which the blending scheme is
effective at promoting vertical stratification for a fixed overall
solute concentration. The plot reveals three distinct regions:
a PS-deficient device regime for [PS]o20%, a stable high-
performance regime for a composition 20%o[PS]o60% and an
OSC-deficient regime for [PS]460%. Approaching either extreme
appears to disrupt the uniform surface morphology or crystalline
domains as revealed by POM and AFM (Supplementary Fig. 11a).
Both extremes lead to smaller and distinctive crystallites of the
OSC with high density of grain boundaries and cracks, whereas the
stable performance regime, including 50% PS, is characterized by
very large and well-connected domains with few gaps, cracks and
surface morphological features visible to either AFM or POM.
It seems that even a small amount of PS can have significant
benefits with respect to device operation. If we look at the transfer
curves and figures of merits such as Vth and SS (Supplementary
Fig. 11b) for devices with very low PS content (10% PS), we find
that Vth decreases substantially from 40 V (neat) to 15 V.
Continuing to add PS, Vth decreases to 2.5 V for [PS]¼ 20%
and 0.4 V when [PS]¼ 50%. Meanwhile, SS improves from 7
(neat) to 2.5 (10% PS), 0.55 (20% PS) and 0.3 V dec� 1 (50% PS).
We have calculated Nit for these cases and summarized it in
Table 2. Nit decreases gradually from B1013 eV� 1 cm2 in the
neat OSC case to 2.7� 1012 eV� 1 cm2 with 10% PS and 2.65�
1011 eV� 1 cm2 with 50% PS. These remarkable improvements
suggest that addition of PS to the diF-TES-ADT solution leads to

significant improvements to the OSC–dielectric interface and
may possibly affect the OSC–contact interface as well.

Influence of solvent mixtures. Blending diF-TES-ADT with the
high-Mw PS has led to a remarkable B50� improvement in
carrier mobility and marked improvements of other OTFT figures
of merit. However, the carrier mobility of the films is still inferior
to what has been achieved by spin coating of semiconducting
polymer:OSC blends (5.4 cm2 V� 1 s� 1) or by single crystals of
the OSC (6 cm2 V� 1 s� 1) (refs 49,50). Close inspection of POM
images of the PS:OSC blends in actual devices reveals that the
domain size is smaller than the area of a single device (Fig. 3g),
hinting that better results might be achieved if more could be
done to extend the domain and grain sizes. We recall a previous
study in which a dual-solvent approach was used consisting of a
mixture of polar and non-polar solvents to increase the size of
OSC domains in neat films48. We take the view that the
appropriate solvent mixture can enhance polymer solubilization,
for example, in the main solvent, and lead to enhanced phase
separation, which might further promote the in-plane growth of
lamellar OSC sheets. We have selected anisole and mesitylene as
the polar and non-polar (main) solvents, respectively, and varied
their mixing ratio. To explain the rationale for this choice, we
consider the Hansen solubility parameters for anisole, mesitylene,
toluene and PS (Table 3; dd, dp and dh represent the energy
associated with dispersion, dipolar and hydrogen-bonding forces,
respectively). On the basis of these parameters, anisole is a better
solvent for PS, while mesitylene is a poor solvent. Furthermore,
we confirm the differences in solubility of diF-TES-ADT in both
solvents and in mixtures thereof by performing ultraviolet–visible
(ultraviolet–vis) absorption measurements of dilute diF-TES-
ADT:PS blend solutions (ca. 0.5 mg ml� 1) as shown in
Supplementary Fig. 12. The addition of anisole in the blend
solution causes a red shift, which indicates an increase in the
aggregation of diF-TES-ADT. This shift also suggests that anisole
is a poorer solvent for diF-TES-ADT than mesitylene71,72.
Possibly, these two solvents can also form an azeotropic binary
solvent mixture (different solubility of the solute in binary solvent
mixture), which has been proven to be beneficial to grow single
crystals of TIPS:pentacene73. In the solid state, we observed a
clear transition from ribbon-like crystallites (mesitylene) to sheet-
like crystallites (mesitylene:anisole). This transition is consistent
with what has been reported for Tips-pentacene using the binary
azeotropic mixture of toluene/isopropanol (ref. 73). In Fig. 4a, we
plot the hole mobility of OSC:PS blends prepared in different
solvent mixtures using both low- and high-Mw PS as binder. All
films were blade coated at a lower speed of 0.5 mm s� 1 using a
base temperature of 100 �C. Similar trends can be seen with
respect to Mw as with single-solvent devices. High-Mw blends
consistently outperform low-Mw ones by nearly an order of
magnitude. This trend appears to hold across solvent mixtures.
Importantly, we find that devices behave rather poorly in the case
of pure solvents, whereas solvent mixtures, especially those rich in
mesitylene (poor in anisole), behave particularly well. Pure
anisole and mesitylene yield mobilities on the order of B0.1 and

Table 2 | Interfacial trap state density for diF-TES-ADT:PS
blend OTFTs as a function of PS concentration.

Trap density
(eV� 1 cm2)

0% PS 10% PS 20% PS 50% PS

Nit 3� 1013 2.69� 1012 5.4� 1011 2.65� 1011

diF-TES-ADT, 2,8-difluoro-5, 11-bis(triethylsilylethynyl) anthradithiophene; OTFT, organic
thin-film transistor; PS, polystyrene.

Table 3 | Hansen solubility parameters for the various
solvents and polystyrene.

Materials dd (MPa)1/2 dp (MPa)1/2 dh (MPa)1/2

Polystyrene 18.5 4.5 2.5
Mesitylene 18 0.6 0.6
Anisole 17.8 4.4 6.9
Toluene 18.1 1.4 2.0
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B1 cm2 V� 1 s� 1, respectively. We achieve the highest hole
mobility of 6.7 cm2 V� 1 s� 1 when the solvent mixture is 20%
anisole/80% mesitylene.

The solvent mixture appears to form higher quality films than
the single-solvent (anisole or mesitylene) cases. The solvent
mixture leads to significantly higher lamellar crystallinity as
indicated by X-ray diffraction measurement shown in the inset of
Fig. 4a. However, the higher-order Bragg peaks of these very thin
films (Supplementary Fig. 13) are extremely weak and do not
show up in the X-ray diffraction analysis. We have highlighted
the blade movement direction on all POM images with an arrow.
The POM taken in situ during blade coating (Supplementary
Fig. 14) shows the lines forming in the direction perpendicular to
the blade movement. These lines are believed to be due to fluid
dynamic instabilities commonly observed during blade coating74.
We also observe by POM remarkably large domains spanning the
millimetre scale (Fig. 4d). Closer examination by AFM reveals few
if any topographic defects and boundaries (Fig. 4d). In the pure
mesitylene case (0% anisole), ribbon-like crystalline features with
significant cracking are observed by POM and AFM in Fig. 4c,
whereas films cast from pure anisole result in the formation of
very small grains (Fig. 4e). The statistical distribution of surface
height extracted from the full AFM scan (50� 50 mm) reported in
Fig. 4b which is quite revealing in that it shows once more the
remarkable flatness of the blend prepared by using a solvent
mixture (sr.m.s. B4.57 nm) as opposed to the single-solvent cases.
We observe significant height variations (sr.m.s. B15.71 nm)
associated with grain and domain boundary features between
ribbons in the case of pure mesitylene and smaller but still
significant height variations (sr.m.s. B6.24 nm) due to the
formation of fine crystallites in the pure anisole case.
Comparison between the (001) lamellar Bragg peak intensities
of the best dual-solvent blend and the best single-solvent blend
based on toluene (Supplementary Fig. 15) suggests a further
improvement in the lamellar stacking quality obtained by the use
of the solvent mixture. We therefore find mounting evidence
suggesting that an improvement in lamellar crystalline quality
and texture coupled with a flat, pinhole and crack-free OSC film
with few topographically visible domain boundaries have the
potential to yield carrier mobilities approaching and even on par
with those of single-crystal devices of the same OSC.

a b10

1

0.1

0.01

400 kDa

2.2 kDa

20%/80% A/M

20%/80% A/M

Mesitylene

Mesitylene

Anisole

Anisole

In
te

ns
ity

4.5 5.0 5.5 6.0
2� (deg)

M
ob

ili
ty

 (
cm

2  V
–1

 s–1
)

0 50 100
% Anisole

–50 –25 0 25 50
Height (nm)

D
is

tr
ib

ut
io

n 
(a

.u
.)

c d eMesitylene

r.m.s.=15.7 nm r.m.s.=4.2 nm r.m.s.=6.2 nm

80%/20% M/A Anisole

Figure 4 | Impact of solvent mixtures on OTFT performance and

morphology. (a) Mobility with respect to the volume fraction of anisole in

the anisole/mesitylene solvent mixture for diF-TES-ADT:PS blend OTFTs

using low- (2.2 kDa) and high (400 kDa)-Mw PS. The inset shows X-ray

diffraction data around the (001) lamellar diffraction peal of diF-TES-ADT

comparing pure anisole, pure mesitylene and 20%/80% anisole/

mesitylene mixtures. Error bars in a represent s.d. from average values.

(b) Statistical distributions of surface height extracted from AFM data of

mesitylene, anisole and 20%/80% anisole/mesitylene solvent mixture.

POM and AFM images of blends based on diF-TES-ADT:PS

(Mw¼400 kDa) using (c) mesitylene, (d) 20%/80% anisole/mesitylene

mixture and (e) anisole and white arrow shows the direction of blade

coating. Scale bars, 500mm (in POM); 20mm (AFM images).

6

10

8

4

In
te

ns
ity

5 6

2� (deg)

7

Blend

6

S
S

 (
V

 d
ec

–1
)

0.8

0.4

0.0

Nea
t

Blen
d

Blend

Blend
4 cm2 V–1 s–1

DS b
len

d

DS blend DS blend
6.7 cm2 V–1 s–1 DS blend

3

0

0

VG (V)

20 40

10
a b c

1

Neat OSC

Neat OSC
0.4 cm2 V–1 s–1

3 cm2 V–1s–1

M
ob

ili
ty

 (
cm

2  V
–1

 s–1
)

0.1

0.5 1.0

Blade speed (mm s–1)

1.5 2.0

I1/
2  (

10
–3

 A
1/

2 )
D

Figure 5 | Single and dual-solvent blend OTFTs. (a) Mobility with respect to blade-coating speed for neat diF-TES-ADT as well as blends of

diF-TES-ADT:PS (Mw¼400 kDa) prepared using toluene (blend) and dual-solvent (DS blend) approaches. (b) Id–Vg curves showing transfer

characteristics of the best performing BCBG devices prepared using the three approaches. We employed Vds¼ � 10 V for blends and Vds¼ � 20 V for

neat OSC. (c) Subthreshold swing obtained using the three approaches. The inset shows X-ray diffraction data around the (001) lamellar diffraction

peak of diF-TES-ADT in blends prepared using toluene and the dual-solvent mixture. Error bars in a and c represent s.d. from average values.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9598 ARTICLE

NATURE COMMUNICATIONS | 6:8598 | DOI: 10.1038/ncomms9598 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


The record-breaking dual-solvent blend was cast at a lower
blading speed (0.5 mm s� 1) than the optimal speed for the single-
solvent (toluene) case, suggesting that changes in formulation can
help to maintain high performance across a broad window of
coating conditions. We have summarized in Fig. 5a, the
blade-coating speed dependence of device performance for neat
OSC as well as blends based on the single-solvent (toluene) and
dual-solvent (anisole/mesitylene) approaches. This comparison
shows that a broad processing window exists within which
consistently high carrier mobility (43 cm2 V� 1 s� 1) can be
achieved simply by adjusting the formulation. By contrast,
neat films prepared using toluene typically yield mobility
o0.1 cm2 V� 1 s� 1.

We compare in Supplementary Fig. 16 the morphological
features of the neat OSC and blends prepared using toluene and
dual-solvent approach obtained in conditions yielding the best
OTFT devices for each approach. Neat diF-TES-ADT forms
ribbon-like-oriented crystals with large crevices between adjacent
ribbons, while the blends yield much smoother films with largely
isotropic domains. The single-solvent blend approach yields
polycrystalline OSC films with several large domains visible under
POM and well connected as evidenced by AFM. The dual-solvent
blend approach shows no distinctive domains under POM and
yields films with little if any boundaries on the scale of the OTFT
device. This absence of any microstructurally distinct domains
in the dual-solvent case yields ultrathin films, which appear
single-crystal-like in many ways and certainly yield performance
on par or even surpassing state-of-the-art single-crystal FET
devices made from the same OSC.

In summary, we demonstrate remarkable OTFTs using a
blade-coating method potentially compatible with continuous
roll-to-roll manufacturing. We blended the OSC with high-Mw
amorphous insulating polymers to achieve this result and further
explored solvent mixtures to ultimately fabricate devices with
performance on par with or even surpassing single-crystal FETs
based on the same OSC. Using a combination of polarized optical
microscopy, atomic force microscopy, X-ray diffraction and
cross-sectional EFTEM, we demonstrated that the keys to the
remarkable OTFT performance are the formation of a bilayer
stratification with an ultrathin B10-nm-thick single-crystal-like
OSC layer on top and the polymer at the bottom, formation of
millimetre scale large coherent domains with few boundaries and
with very smooth, pinhole- and crack-free topography of the OSC
surface both within the domains and at their boundaries. The
devices featured herein achieve consistently high carrier mobility
even over a broad range of processing conditions and exhibit
exceptional figures of merit, such as on–off ratio exceeding 106,
low threshold voltage (0.1 V) and low subthreshold swing
(0.3 V dec� 1), making them suitable for implementation in
high-performance flexible displays and circuits.

Methods
Device fabrication and characterization. BCBG organic OTFTs were fabricated
on Si/SiO2 substrate having 300 nm SiO2 as dielctric and gold electrodes of 50-nm
thickness. Devices had channel lengths and widths of 80 mm and 1 mm, respec-
tively. diF-TES-ADT, PS and PaMS were dissolved in toluene with a concentration
of 10 mg ml� 1. The OSC and polymer solutions were stirred for 1 h before mixing
them together in 1:1 w/w ratio. The resulting neat diF-TES-ADT and blend
solutions were blade coated using a set-up described in detail elsewhere11,20,65.
The blading speeds explored range between 0.5 and 2 mm s� 1, by 0.25 mm s� 1

steps at a fixed stage temperature of 70 oC for the single-solvent approach using
toluene. For the dual-solvent approach, blend solutions were made using 1:1 w/w of
diF-TES-ADT and PS in mesitylene and anisole and then these two solutions were
mixed together in V/V ratios. The films were removed quickly from the hot plate to
prevent any loss of initial phase separation or dewetting. Electrical measurements
were performed in a nitrogen atmosphere using a semiconductor parameter
analyser (Kiethley 4200 SCS). Field-effect mobilities were calculated using
the standard thin-film model in saturation regime of the device using

msat ¼ 2L
WC � ð

@Idsqrt

@Vg
Þ2, where L, W and C are the channel length, channel width and

geometric capacitance of the dielectric, respectively. We used � 10 V¼Vds for all
blend devices and � 20 V¼Vds for neat devices. We used the effective geometric
capacitance of the dielectric by incorporating the insulating polymer layer thickness
and dielectric constant in the calculation (Supplementary Fig. 17).

Electron microscopy. A transmission electron microscope operating at 300 kV
(Titan Cryo Twin, FEI Company, Hillsboro, OR) was used to acquire cross-
sectional microscopy images using a 4� 4k charged-couple device camera model
US4000 and an energy filter model GIF Tridiem from Gatan, Inc. (Gatan Inc.,
Pleasanton, CA). EFTEM images show carbon maps that are generated using the
so-called ‘jump-ratio’ method. First, we acquired the post-carbon-edge (C-K edge)
image by shifting the electron energy to 292 eV and using energy slit width of
20 eV. In a second step, the pre-carbon edge image was acquired by shifting the
electron energy to 272 eV and using the same slit width of 20 eV. The resultant
carbon jump-ratio map was obtained by dividing the post-edge image with the
pre-edge image. Samples (size 12� 4 mm) were prepared using a focused ion beam
(Helios 400s, FEI) equipped with a nanomanipulator (Omniprobe, AutoProbe300)
with lift-out method. The sample was sputter coated with a 22-nm-thick Au layer
to prevent charging effects. E-beam and ion beam-assisted Pt deposition were
subsequently deposited to protect the surface of the sample against Ga ion damage
during ion beam milling. GA ion beam milling was first used to cut the sample
from the bulk (30 kV, 9 nA), after which it was attached to a Cu grid using a lift-out
method. The sample was subsequently thinned down (30 kV, 0.98 nA) and cleaned
(2 kV, 28 pA) to get rid of areas of the sample damaged during the thinning
process.

X-ray diffraction experiments. X-ray diffraction measurements in the y� 2y
mode with 2y ranging from 4� to 20� on a Bruker X-pert diffractometer. The beam
slits were set to 1� 1 mm.

High-speed polarized optical microscopy and atomic force microscopy.
High-speed POM was performed on Nikon LV-100 microscope and recorded using
a Photron SA-3 CMOS camera. The surface topography was evaluated using the
Agilent 5400 SPM operating in tapping mode. Image planarization and statistical
analyses were performed using Gwyddion V2.25.

Ultraviolet–vis absorption experiments. The ultraviolet–vis absorption
measurements were performed using a F20-UVX spectrometer (Filmetrics, Inc.)
equipped with tungsten halogen and deuterium light sources (Filmetrics, Inc.)
over the wavelength range of interest, from 400 to 800 nm.

Rheological measurements. Rheological measurements were performed using an
Anton Paar MCR-501 rheometer with a cone plate system (CP25-1) for testing at
25 �C and a double-gap module (DG35.12/pr) for testing at 70 �C. As the CP25-1
system is open, it cannot prevent solvent loss during measurements at 70 �C due to
solvent (toluene) evaporation. For that reason, we have used the closed system
(double-gap module DG35.12/pr) at 70 �C to prevent solvent loss during
measurements. A shear rate from 2 to 5,000 s� 1 was applied for all tests and
the slope was set as 20 points per decade.
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molecular weight of polystyrene on the viscosity of concentrated solutions.
Polym. Mech. 6, 795–800 (1970).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9598 ARTICLE

NATURE COMMUNICATIONS | 6:8598 | DOI: 10.1038/ncomms9598 | www.nature.com/naturecommunications 9

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


69. Michels, J. J. Surface-directed spinodal decomposition of solvent-quenched
organic transistor blends. Chemphyschem. 12, 342 (2011).

70. Scaccabarozzi, A. D. & Stingelin, N. Semiconducting:insulating polymer blends
for optoelectronic applications-a review of recent advances. J. Mater. Chem. A
2, 10818–10824 (2014).

71. Bartelt, J. A. et al. Controlling solution-phase polymer aggregation with
molecular weight and solvent additives to optimize polymer-fullerene bulk
heterojunction solar cells. Adv. Energy Mater. 4, 1301733 (2014).

72. Abdelsamie, M., Zhao, K., Niazi, M. R., Chou, K. W. & Amassian, A. In situ
UV-visible absorption during spin-coating of organic semiconductors: a new
probe for organic electronics and photovoltaics. J. Mater. Chem. C 2, 3373 (2014).

73. Li, X. et al. Organic single crystals: azeotropic binary solvent mixtures for
preparation of organic single crystals. Adv. Funct. Mater. 19, 3610–3617 (2009).

74. Lin, Z. Self-Assembly of Ordered Complex Structures 299 (World Scientific
Publishing Co. Pte. Ltd, 2012).

Acknowledgements
We are grateful to Professor Zhenan Bao and Dr Gaurav Giri for the help with setting up
the blade-coating instrument and for the helpful discussions. This work was supported
by the Office of Competitive Research Funds under the Competitive Research Grant
(round 1) and Academic Excellence Alliance (round 3). CHESS was supported by the
NSF & NIH/NIGMS via NSF award DMR-1332208. A.A. is grateful to SABIC for the
Career Development SABIC Chair.

Author contributions
M.R.N. and A.A. conceived the project and designed all experiments. M.R.N. performed
all AFM, X-ray diffraction and device work. M.R.N., E.Q.L. and S.T.T. collected POM

measurements. D.-M.S. and R.L. designed and built the blade-coating set-ups at CHESS
and KAUST. A.R.K. collected XPS spectra and analysed the data. R.L., M.A. and A.R.K.
collected and M.R.N. analysed GIWAXS data. M.A. and M.R.N. collected and analysed
ultraviolet–vis absorption data. Q.X. prepared samples and collected the cross-sectional
EF-TEM results. W.P. and E.P.G. performed rheological measurements. M.R.N., W.P.
and E.P.G. analysed rheological data. M.R.N. and A.A. interpreted the device and
microstructural data. M.R.N. and A.A. wrote the manuscript, and all authors provided
their input. A.A. directed the project.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Niazi, M. R. et al. Solution-printed organic semiconductor
blends exhibiting transport properties on par with single crystals. Nat. Commun. 6:8598
doi: 10.1038/ncomms9598 (2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9598

10 NATURE COMMUNICATIONS | 6:8598 | DOI: 10.1038/ncomms9598 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Blade-coated polymer-molecule-blend organic thin-film transistors

	Figure™1Bottom contact bottom gate (BCBG) OTFTs solution-printed by the blade coating method.(a) BCBG device architecture and (b) blade-coating set-up. (c) Transfer characteristics of OTFTs prepared using neat diF-TES-ADT, diF-TES-ADT: PagrMS (100thinspkD
	Figure™2Figures of merit for neat OSC and OSC:polymer blend OTFTs.(a) Saturation hole mobility, mgr, (box and whisker plot) (b) threshold voltage, Vth, (c) subthreshold swing, SS, and (d) IonsolIoff. Error bars in b,c and d represent s.d. from average val
	Influence of molecular weight of the insulating polymer

	Table 1 
	Figure™3Molecular weight dependence of morphology and vertical phase separation.(a) Hole mobility of OTFTs fabricated by blade-coating diF-TES-ADT:PS blends using different Mw of PS both in the low-speed (0.5thinspmmthinsps-1) and high-speed (1.7thinspmmt
	Influence of solvent mixtures

	Table 2 
	Table 3 
	Figure™4Impact of solvent mixtures on OTFT performance and morphology.(a) Mobility with respect to the volume fraction of anisole in the anisolesolmesitylene solvent mixture for diF-TES-ADT:PS blend OTFTs using low- (2.2thinspkDa) and high (400thinspkDa)-
	Figure™5Single and dual-solvent blend OTFTs.(a) Mobility with respect to blade-coating speed for neat diF-TES-ADT as well as blends of diF-TES-ADT:PS (Mw=400thinspkDa) prepared using toluene (blend) and dual-solvent (DS blend) approaches. (b) Id-Vg curves
	Methods
	Device fabrication and characterization
	Electron microscopy
	X-ray diffraction experiments
	High-speed polarized optical microscopy and atomic force microscopy
	Ultraviolet-vis absorption experiments
	Rheological measurements

	SirringhausH.Reliability of organic field-effect transistorsAdv. Mater.21385938732009GelinckG.HeremansP.NomotoK.AnthopoulosT. D.Organic transistors in optical displays and microelectronic applicationsAdv. Mater.22377837982010BragaD.HorowitzG.High-performa
	We are grateful to Professor Zhenan Bao and Dr Gaurav Giri for the help with setting up the blade-coating instrument and for the helpful discussions. This work was supported by the Office of Competitive Research Funds under the Competitive Research Grant 
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




