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Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air
pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially
fine (PM2.5, PM< 2.5 μm) and ultrafine (PM0.1, PM< 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent
oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to
different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target
organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known
to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative
characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact.

1. Introduction

Numerous epidemiological studies have shown an increased
morbidity and mortality due to environmental air pollution
[1, 2]. Environmental air does contain a complex mixture of
toxics, including particulate matter (PM), irritant gases, and
benzene. The chemical composition of particles does vary
greatly and depends on numerous geographical, meteorolog-
ical, and source-specific variables. Generally, environmental
particles include inorganic components (sulfates, nitrates,
ammonium, chloride, and trace metals), elemental and
organic carbon, biological components (bacteria, spores,
and pollens), and adsorbed volatile and semivolatile organic
compounds [3]. In addition, environmental particles, when
mixed with atmospheric gases (ozone, sulfur nitric oxides,
and carbon monoxide) can generate environmental aerosols.
Particles are usually defined as PM10 and PM2.5 with diam-
eter less than 10 and 2.5 μm, respectively. Any fraction may
have different effects; that is, PM with aerodynamic diameter
less than 10 to 2.5 μm does generate a bigger amount of
hydroxyl radical due to the heavy metals adsorbed on the
pores and surfaces of the particles, whereas particles of larger
size (PM10) deposit mainly in the upper airways and can be
cleared by the mucociliary system [4, 5]. Recently, however,
interest has also focused on the ultrafine particles (UFPs)

with a diameter less than 100 nm; UFPs are considered
important with respect to health effects because of their very
high alveolar deposition fraction, large surface area, chemical
composition, and ability to enter into the circulation and
induce inflammation. Vehicle emissions, in particular related
to diesel engines, diesel exhaust particles (DEPs), are a major
source of environmental UFPs, which in the presence of poor
ventilation may penetrate indoor, where additional sources
including environmental tobacco smoke, cooking, burning
of candles, and chemical reactions are present [6–10]. Long-
term exposure to high levels of such particles can increase
risk of cancer, respiratory diseases, and arteriosclerosis,
whereas short-term exposure peaks can cause exacerbation
of bronchitis, asthma, and other respiratory diseases as
well as changes in heart-rate variability [2, 11–13]. The
general consensus does indicate that the mechanism of air
pollution-induced health effects involves an inflammation-
related cascade and oxidation stress both in lung, vascular,
and heart tissue [14–19]. Inflammation is initially a pro-
tective mechanism which removes the injurious stimuli and
produces reactive oxygen species (ROS) able to induce cell
killing. In the early phase of inflammation, oxidant stress
does not directly cause cell damage and can induce the tran-
scription of stress defense genes including antioxidant genes.
This preconditioning effect of ROS enhances the resistance
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against future inflammatory oxidant stress and promotes the
initiation of tissue repair processes. The additional release of
cell contents amplifies the inflammatory process and conse-
quently can induce tissue injury [20]. Oxidation damage has
been implicated in many degenerative and nondegenerative
diseases, including cardiovascular and pulmonary diseases,
diabetes, and Alzheimer disease. Oxidation stress derived
from an unbalance between ROS formation and individual
antioxidant activity potentially does lead to damage of lipids,
proteins, and macromolecules such as DNA and RNA [21].
This paper will focus on the mechanisms of oxidative stress
induction and cellular damage by air pollution exposure on
pulmonary and cardiovascular systems.

2. Possible Mechanisms of Oxidative Stress
Induced by Air Pollution Exposure

In the last decades, great attention has been paid to air pollu-
tion exposure due to vehicular traffic and other combustion
processes. PM and gas pollutants are considered to be the
most important factors in urban areas, and several mecha-
nisms have been hypothesized to explain the adverse health
effects in humans, especially in the cardiopulmonary system
[22]. Although each air pollutant can exert its own specific
toxicity in the respiratory and cardiovascular systems, ozone,
oxides of nitrogen, and suspended particulates all share a
common property of being potent oxidants, either through
direct effects on lipids and proteins or indirectly through the
activation of intracellular oxidant pathways [23–25].

ROS can be generated from the surface of particles where
polycyclic aromatic hydrocarbons (PAH) and nitro-PAH
are adsorbed, other than transition metals (iron, copper,
chromium, and vanadium) that catalyzing Fenton’s reaction
(Fe2+ + H2O2 + H+ → Fe3++ OH• + H2O) generate the
highly reactive hydroxyl radical able to induce oxidative
DNA damage [26, 27]. Several studies have shown that
iron and other transition metals leaching from particles
or by their presence on particle surfaces play a role in
the generation of ROS in biological systems [28]. Particles
bound benzo(a)pyrene has been shown to be bioavailable
and can induce oxidative DNA damage in systemic target
organs, including lung and kidney [29, 30]. Moreover,
it should be noted that ozone and nitrogen dioxide are
usually present together with particles in environmental air.
They are also oxidants with potential effects in terms of
oxidative DNA damage. Similarly, volatile compounds, such
as benzene, in urban air pollution can induce DNA oxidation
[31, 32]. In addition, photochemical oxidants (ozone and
peroxyacetyl nitrate), secondary pollutants formed by the
action of sunlight on an atmosphere that does contain
reactive hydrocarbons and NOx, contribute to increase
oxidation stress [33]. Then, in the presence of high ROS for-
mation, mitochondrial damage with induction of NADPH-
oxidase isoform 4 (NOX4) does occur, together with an
activation of inflammatory cells (neutrophils, eosinophils,
and monocytes) and increased numbers of macrophages
capable of ROS and reactive nitrogen species generation
[34–36]. Initially, when oxidative stress is relatively low,
various transcription factors, such as the nuclear factor

erythroid-2 (Nrf2), induce a series of antioxidant and detox-
ification enzymes (e.g., catalase, superoxide dismutase, and
glutathione S-transferase) that counteract ROS formation
protecting from adverse biological outcomes [37, 38]. In
the second phase, if the protective antioxidant response fails
or is inadequate to deal with increasing ROS production,
the result is a proinflammatory situation with various
cytotoxic effects [39]. These effects are mediated by the
redox-sensitive mitogen-activated protein kinase (MAPK)
and NF-κB cascades that are responsible for the expression
of cytokines, chemokines, and adhesion molecules, which are
involved in inflammatory processes [39].

3. Atmospheric Gases

Gaseous pollutants contribute to a great extent in compo-
sition variations of the atmosphere and are mainly due to
combustion of fossil fuels and to emission of motor vehicles
[40].

Ozone is a strong oxidizing agent formed in the tropo-
sphere through a complex series of reactions involving the
action of sunlight in nitrogen dioxide and hydrocarbons.
Ozone initiate intracellular oxidative stress through ozonide
and hydroperoxide formation. This mechanism of oxidative
damage involves the activation of Nrf2, heat shock protein
70, NF-κB, increased expression of a range of proinflamma-
tory cytokines (TNFα and interleukin 1β), chemokines (e.g.,
interleukin 8), and adhesion genes; ozone is also an activator
of protein-1 fos and c-jun onco genes [41, 42]. The major
source of anthropogenic emissions of nitrogen oxides into
the atmosphere is the combustion of fossil fuels deriving
from stationary sources (heating, power generation) and
motor vehicles. In environmental conditions, nitric oxide is
rapidly transformed into nitrogen dioxide by atmospheric
oxidants such as ozone [43].

Various antioxidants, like ascorbic acid, uric acid, and
thiols, act as powerful scavengers of O3 and NO•

2 radical
in body fluids, likely protecting lung lining fluids against
inhaled oxidizing air pollutants [44]. When such defense
mechanisms are overwhelmed, O3 may injure the underlying
cells by inducing lipid peroxidation and activating inflam-
matory gene expression [45]. In vitro and in vivo studies,
both in animals and human beings, confirm the capacity
of nitrogen dioxide to activate oxidant pathways although
less potently than ozone [46]. Volatile organic compounds
are a class of compounds which includes chemical species
of organic nature such as benzene, but the majority of
gaseous pollutants are inhaled and, therefore. mainly affect
the respiratory and cardiovascular systems. Among gaseous
pollutants, carbon monoxide (CO) has been described as one
of the main pollutants responsible for the development of
cardiovascular diseases [47], while benzene can also induce
haematological problems and cancer [48].

Benzene is a commonly used industrial chemical and a
constituent of gasoline [31]. Inhalation is the most important
route of absorption during occupation-related exposure.
Benzene toxicity is attributed to its metabolism, which
does lead to the formation of reactive metabolites such as
hydroquinone and its oxidized form benzoquinone which
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are highly reactive molecules and, by means of redox cycling,
produce ROS [49]. Furthermore, the addition of antioxidant
enzymes has been shown to block oxidative damage induced
by the above-mentioned metabolites confirming the role
of ROS production and oxidative stress in hydroquinone
and benzoquinone cytotoxicity [50]. Uzma et al. [31]
demonstrated that occupation-related exposure to benzene
causes oxidative stress, immune suppression, and inducing
the expression of tumour-suppressing gene p53 in gasoline
filling workers. These authors hypothesized that the increase
in the p53 expression may block the cell cycle at G1 phase
and go on to repair DNA damage, which is the initial step in
tumour suppression.

4. Oxidative Stress from Organic Fraction

Ambient PM, does consist of complex and various mixtures
of particles suspended in the breathing air [50]. Major
sources of PM are factories, power plants, refuse inciner-
ators, motor vehicles, building activity, fires, and natural
windblown dust. The size of the particles vary, and there is
strong evidence supporting that ultrafine and fine particles
are more hazardous than larger ones in terms of mortality
and cardiovascular and respiratory effects [51].

Results from various surveys have demonstrated that
oxidative potential of fine and ultrafine particles is the
result of significant amounts of organic carbon compounds,
such as quinones and PAHs. In the organic fraction orig-
inating in the air from incomplete combustion processes,
the major reactive and toxic compounds are substituted
(e.g., methyl naphthalene) and unsubstituted PAH, nitro-
PAH (1-nitropyrene and 3-nitro-fluoranthene), dinitro-PAH
(dinitro pyrene) and peroxyacetyl nitrate [52, 53]. Moreover,
reactive intermediates in the oxidation of mixtures of volatile
organic compounds (VOCs), oxides of nitrogen (NOx),
hydroxy radical, and ozone are shown to play a central role
in the formation and fate of airborne toxic chemicals, PAH,
and fine particles [52]. The main pathways of metabolic
activation of PAHs are generation of diol epoxides catalyzed
by cytochrome P450 (CYP450), leading to DNA adduct
formation, formation of radical cations catalyzed by CYP450
peroxidases, and formation of redox-active quinones [54].
Valavanidis et al. [55] demonstrated that redox-active transi-
tion metals, redox cycling quinoids and PAH act synergically
to produce ROS. J. Y. C. Ma and J. K. H. Ma [56] reported
that organic fraction of DEP, mainly constituent of PAH and
quinones, does undergo to metabolic activation in the lung
and liver of exposed animals, is able to induce CYP4501A1
isoform expression that generates ROS and reactive PAH-
quinones. In addition, PM initiates inflammatory damage
upregulating proinflammatory cytokines and chemokines;
in vitro observations have shown that PM exposure may
cause expression of nuclear factor NF-κB-related genes and
oxidant-dependent NF-κB activation [57, 58]. To defend
against oxidative damage, cells increase the production of
antioxidant enzymes through the activation of the Nrf2,
[37] and PM appears to inhibit protective enzymes involved
in oxidative stress responses leading to the activation of
additional intracellular signaling cascades that regulate the

expression of cytokine and chemokine genes [59]. Many
recent observations have shown that DEPs, because of their
fine and ultrafine composition, play an important role on
oxidative cellular damage through ROS generation causing
lipid peroxidation and oxidative DNA damage. Some DEPs
consist of a carbon core or organic droplets with adsorbed
organic compounds, such as PAH, quinines, and redox-active
metals. The capacity of DEPs to induce oxidative stress is
largely related to these adsorbed components [60, 61].

5. Oxidative Stress Induced by Transition Metals

Transition metals such as iron, lead, mercury, cadmium,
silver, nickel, vanadium, chromium, manganese, and copper
are detectable in PM2.5 and UFPs adsorbed on their surface
and are capable of ROS formation by Fenton’s reaction [35].
As critical constituents of PM, transition metals were postu-
lated to be involved in a number of pathological processes of
the respiratory system through free radical-mediated damage
[62]. They are natural components of the earth’s crust and
enter into the environment through a wide variety of sources,
including combustion, waste water discharges, and manufac-
turing facilities. Iron is a well-known soot suppressant that
might be emitted into the atmosphere in the form of ultrafine
particles [63]. Zinc is a major metal element detected in
traffic derived PM2.5, deriving from waste oil samples [64].
Copper is a component of car brake pads, however, ceramic
brake pads contain 10%–20% copper by mass, while the
metallic brake pads contained about 70% iron with very
little copper. This metal in PM has also been linked to
road traffic sources associated to PM2.5 [64]. Soluble metals
in inhaled particles, such as Fe, Ni, V, Co, Cu, and Cr,
were associated with increased ROS production, followed by
cellular oxidative stress in airway epithelial cells [65].

6. Air Pollution Induced-Oxidative
Damage in Target Organs: Cardiovascular
and Pulmonary Systems

6.1. Cardiovascular System. Diesel and gasoline vehicle
emissions in the urban areas have dominant contributions
to environmental particles, especially those located in the
ultrafine range. Because of their small size and large surface
area, UFPs have demonstrated unique biochemical charac-
teristics, such as enhanced ability to adsorb or absorb organic
molecules and to penetrate into cellular targets in the human
pulmonary and cardiovascular systems [66, 67]. UFPs may
be directly transported to the cardiac vasculature, where
they can induce arrhythmias, reduce myocyte contractility,
and decrease coronary blood flow [10, 68]. Studies by
Brook et al. [69] demonstrated that fine particulate air
pollution and ozone cause acute arterial vasoconstriction in
healthy humans, while Urch et al. [70] reported that fine
particles exposure pollution raise blood pressure and impair
vascular function. In addition, UFP exposure depresses
myocardial contractile response and coronary flow in both
spontaneously hypertensive and wild-type rats [71], the same
observation was found by Simkhovich et al. [72] in young
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and old rat hearts. Long-term exposure to low concentra-
tions of PM2.5 has been shown to alter vasomotor tone,
lead to vascular inflammation, and potentiate atherosclerosis
induced by highly fat-containing chow in susceptible mice
[73]. In addition, Suwa et al. [74] reported that exposure
to PM10 cause progression of atherosclerotic lesions towards
a more advanced phenotype hyperlipidemic rabbits. More-
over, atherosclerotic lesions of thoracic aorta were reported
to be significantly increased with pronounced macrophage
infiltration and lipid deposition in Apolipoprotein E (−/−)
ApoE (−/−) mice exposed to PM2.5 through NADPH oxidase
dependent pathways [75]. ApoE (−/−) mice exposed to
ozone showed increased oxidative stress and mitochondrial
DNA damage, decreased vascular endothelial nitric oxide
synthase, and significantly increased atherogenesis compared
to filtered air exposed controls [76]. Recently, Cherng et al.
[77] reported that DEP exposure enhances vasoconstriction
and diminishes acetylcholine-induced dilatation in coronary
arteries of animals in a nitric oxide synthase-dependent
manner. Baccarelli et al. [78] showed that air pollution is
associated with changes in the global coagulation function,
after short-term exposure to air pollution in normal subjects
resident in Lombardia Region, Italy. Road traffic-related
pollutants may increase a heart-rate-corrected QT interval
among people with diabetes, obesity and nonsmoking elderly
individuals and the number of genetic variants related
to oxidative stress does increase this effect [79]. On the
contrary, Mordukhovich et al. [80], despite the positive
associations between blood pressure and black carbon,
found no effects on gene variants related to antioxidative
defense. Increases in black carbon and PM2.5 were associated
with increases in blood pressure, heart-rate, endothelin-
1, vascular endothelial growth factor, and oxidative stress
markers and with a decrease in brachial artery diameter
in nonsmoking seniors [81]. More recently, Kooter et al.
[82] showed that diesel engine exhaust exposure induces a
pulmonary antioxidant response, with an increased activity
of the anti-oxidant enzymes glutathione peroxidase, super-
oxide dismutase, heme oxygenase-1 protein, heme oxygenase
activity, and uric acid which precedes the inflammatory
response (an increase in IL-6 and TNF-α) in rats. In
addition, since the authors found that increased plasma
thrombogenicity and antioxidant defense gene expression
in aorta tissue shortly after the exposure does occur, they
hypothesized a direct translocation of diesel engine exhaust
components to the vasculature even if the mediation by other
pathways cannot be excluded [82].

6.2. Pulmonary. A strong correlation has been found
between PM concentration of redox-active compounds and
damage in macrophages and bronchial epithelial cells [83–
85]. Moreover, in human airway epithelial cells, organic
compounds adsorbed on particle surfaces does promote
inflammation through CYP1A1-mediated ROS generation
and release of cytokines after activation of transduction
pathways involving MAPK and the transcription factor NF-
kappaB [86]. Recently, Andersson et al. [26] reported that 1-
nitropyrene, one of the most abundant nitro-PAHs in diesel
exhausts, induces DNA damage by ROS formation in human

endothelial cells, and this effect was mainly mediated by
metabolites mainly generating by reduction of nitro group,
as it has been previously reported by Topinka et al. [87] in rat
hepatocytes. Increased production of ROS after PM exposure
is suggested by the finding that many of the proinflammatory
genes (TNF-α and IL-8, among others) induced upon
exposure to PM are regulated by redox sensitive transcription
factors such as NF-κB, activator protein 1 (AP-1) and
CAATT/enhancer binding protein (C/EBP). Activation of
these transcription factors and increased transcription of
downstream genes has been reported in human alveolar and
bronchial epithelial cells in response to PM exposure [88–
92]. Several studies have demonstrated that air pollution
particles induce inflammatory mediator release and oxidative
stress in lung epithelial cells and alveolar macrophages. When
reaching the bone marrow [93], cytokines and chemokines
released from the lung stimulate migration of neutrophils
and their precursors into the circulation. In the short-
term, there is acute tissue damage with activation of the
epidermal-growth-factor receptor pathway, and evidence for
organ-repair responses [94]. Vanadium pentoxide (V2O5)
is a component of PM derived from fuel combustion
as well as a source of occupation-related exposure in
humans [95]. Sørensen et al. [95] indicate that vanadium
and chromium (VI) detectable in PM(2.5) have an effect
on oxidative DNA damage in human lymphocytes, after
reduction to chromium (III) in the cells. Since, outdoor
PM and urinary 1-hydroxypyrene (PAH exposure marker)
were synergistically associated with urinary MDA levels of
schoolchildren, Bae et al. [96] concluded that exposure to
PM air pollution and PAH can induce oxidative stress in
schoolchildren. In addition, these authors found that urinary
MDA levels are also associated with some metals bound
to PM10 and PM2.5 suggesting that metals bound to PM
are responsible, at least in part, for the oxidative stress
[96]. The oxidized species arising from the reaction between
ozone and lining fluid are involved in the signaling cascade
of inflammatory cells into the lung and contribute to the
acute bronchoconstrictor response and hyperresponsiveness
observed in asthma on exposure to this pollutant [97, 98].
Furthermore, has been reported that ozone is able to induce
apoptosis, DNA damage, and cytotoxicity on human alveolar
epithelial type I-like cells and in mice exposed to ozone
for 6 weeks [99, 100]. While, Ferecatu et al. [84] reported
an antiapoptotic effect of PAH adsorbed on PM2.5 that in
addition to the well-documented inflammatory response
may explain the persistence of a prolonged inflammation
state induced after pollution exposure and might delay repair
processes of injured tissues in primary cultures of human
bronchial epithelial cells. Chirino et al. [101] found ROS
generation and decreased glutathione and the activity of
the antioxidant enzymes, such as superoxide dismutase and
glutathione reductase, in a human lung epithelial cell line
exposed to PM10. Recently, it has been found that bus drivers
exposed to PAH and volatile compounds displayed a higher
level of DNA instability and oxidative damage than the
controls and the incidence of oxidized lesions in lymphocyte
DNA correlated with exposure to benzene. Moreover, those
of the drivers with at least one variant of 8-oxoguanine
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glycosylate 1 (hOGG1) (Cys/Cys or Ser/Cys) allele tended
to have higher oxidative DNA damage in lymphocyte than
those with the wild genotype [102]. In addition, in the same
year Delfino et al. [103] reported that PM (ranged from 0.25
to 2.5 μm) and O3 were positively associated with exhaled
nitrogen monoxide and that PM0.25, CO, and NO were
positively associated with IL-6, while ROS were associated
with both outcomes in elderly subjects enrolled.

7. Defense Mechanisms against ROS Formation

Antioxidants in the lung are the first line of defense against
ROS [104]. The composition and quantity of antioxidants
in respiratory tract lining fluids may represent an important
determinant of individual responsiveness to air pollutants,
but it should be thought of as a dynamic equilibrium
with the antioxidant defenses within the epithelium and a
more remote plasma pool [105]. Interestingly, the results
obtained by Osburn and Kensler [106] demonstrated that
the activation of transcriptional factor Nrf2 determines
an upregulation of antioxidant enzymes that represents
an adaptive response to face the exposure to oxidant
pollutants providing a pivotal defense mechanism against
environmental hazards, including various air pollutants.
Successively, Rubio et al. [107] observed that Nrf2 does
protect against benzene metabolites in human lung cells,
and knockdown of Nrf2 greatly does enhance cytotoxicity
and cell death associated with reduced glutathione levels and
loss of inducibility of antioxidant response elements (ARE-
driven) genes.

Although the interrelation among antioxidant levels in
the respiratory tract, cellular and plasma levels are not well
understood, it appears that the susceptibility of the lung to
oxidative injury depends largely on its ability to upregulate
protective scavenging systems. A recent review by Rubio
et al. [108] indicates that air pollutants are Nrf2 pathway
inductors which regulate the expression of cytoprotective
and detoxifying enzymes as well as antioxidants having an
important role in the defense against atmospheric pollutant-
induced toxicity.

8. Conclusions

In conclusion, several experimental and epidemiological
studies have proved exposure to air pollution to be an impor-
tant determinant of overall pulmonary and cardiovascular
risk damage and possibly have an influence on traditional
risk factors. Although each environmental pollutant has its
own mechanism of toxicity, most pollutants, like UFP, PM2.5,
ozone, nitrogen oxides, and transition metals, are potent
oxidants or capable of ROS production. Consequently, the
promotion of oxidative stress has been identified as one
of the most important mechanisms responsible for toxic
air pollutant effects. Oxidative stress can trigger redox-
sensitive pathways that lead to different biological processes
like inflammation and cell death. Recently, Environmental
Pollution Agency (EPA) revised the level of the 24-h PM2.5

standard to 35 μg/m3, moved the 24-h PM10 standard from

75 at 150 μg/m3, and revoked the annual standard, because
available evidence generally did not suggest a link between
long-term exposure to current ambient levels of coarse
particles and health or welfare effects [109]. However, a
vast number of data indicate that in general, smaller size
fraction, containing higher concentration of PAH, transition
metal, and semiquinones, has a higher ROS capacity and
consequently should be capable to induce severe toxico-
logical effects. Thus, change in the composition of this
PM are likely to modify its health impact. Road traffic is
known to vastly contribute to PM exposure. Traffic intensity
and quality should then be important determinants of the
qualitative characteristics of PM spread in the atmosphere.
In addition, although the interrelation between antioxidant
levels in respiratory and cardiovascular systems, cellular and
plasma levels is not yet well understood; it appears that
the susceptibility of target organs to oxidative injury largely
depends on cell ability to upregulate protective scavenging
systems such as Nrf2. This transcription factor does regulate
the expression of numerous cytoprotective genes that detox-
ify reactive species playing an important role in the defense
against atmospheric pollutant-induced toxicity.

However, many questions remain unanswered, but in
the future, rapid developments in molecular biology, pro-
teomics, and genomics will help to completely clarify the
biological mechanisms involved in pulmonary and cardio-
vascular injuries caused by air pollution.
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