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abstract

 

Electrical activity in nerve, skeletal muscle, and heart requires finely tuned activity of voltage-gated
Na

 

�

 

 channels that open and then enter a nonconducting inactivated state upon depolarization. Inactivation oc-
curs when the gate, the cytoplasmic loop linking domains III and IV of the 

 

�

 

 subunit, occludes the open pore.
Subtle destabilization of inactivation by mutation is causally associated with diverse human disease. Here we show
for the first time that the inactivation gate is a molecular complex consisting of the III-IV loop and the COOH ter-
minus (C-T), which is necessary to stabilize the closed gate and minimize channel reopening. When this interac-
tion is disrupted by mutation, inactivation is destabilized allowing a small, but important, fraction of channels to
reopen, conduct inward current, and delay cellular repolarization. Thus, our results demonstrate for the first time
that physiologically crucial stabilization of inactivation of the Na

 

�

 

 channel requires complex interactions of intra-

 

cellular structures and indicate a novel structural role of the C-T domain in this process

 

.
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I N T R O D U C T I O N

 

Na

 

�

 

 channels open in response to membrane depolar-
ization, allowing a rapid selective influx of Na

 

�

 

 that
serves to further depolarize excitable cells and initiate
multiple cellular signals (Catterall, 2000). Within milli-
seconds of opening, Na

 

�

 

 channels enter a nonconduct-
ing inactivated state as the inactivation gate, the cyto-
plasmic loop linking domains III and IV of the a sub-
unit, occludes the open pore (Stuhmer et al., 1989;
Patton et al., 1992; West et al., 1992b; McPhee et al.,
1994, 1995, 1998; Kellenberger et al., 1996; Catterall,
2000). Channel inactivation is necessary to limit the du-
ration of excitable cell depolarization, and disruption
of inactivation by inherited mutations, which delays cel-
lular repolarization, is associated with a diverse range
of human diseases including myotonias (Yang et al.,
1994), epilepsy and seizure disorders (Lossin et al.,
2002; Kearney et al., 2001), autism (Weiss et al., 2003),
and sudden cardiac death (Keating and Sanguinetti,
2001).

Extensive mutational, functional, and biochemical
analysis of the III-IV loop has provided evidence for a
key role of this cytoplasmic linker in inactivation and
identified the hydrophobic cluster (IFM) in the linker
as a key motif that coordinates hydrophobic interac-
tions between the inactivation gate and its docking sites

both on transmembrane segment 6 (S6) of domain IV
as well as the intracellular loop linking segments S4
and S5 of domain IV (Stuhmer et al., 1989; Patton et
al., 1992; West et al., 1992b; Eaholtz et al., 1998, 1999).
(McPhee et al., 1994, 1995, 1998; Kellenberger et al.,
1996.)

Disease-associated mutations that disrupt inactivation
may result in an increase in experimentally detectable
sustained tetrodotoxin (TTX)-sensitive current (I

 

sus

 

)
(Clancy and Kass, 2002; Clancy et al., 2002), which,
though only a fraction (

 

�

 

1%) of the peak current elic-
ited in response to depolarization, is sufficient to ac-
count for disease phenotype: delay in repolarization
(Clancy and Rudy, 1999; Nuyens et al., 2001; Clancy et
al., 2002). The disruption of inactivation by mutation
of the IFM motif resembles, to a certain extent, the ef-
fects of some disease-associated mutations on Na

 

�

 

channel inactivation. Some mutations, such as the

 

�

 

KPQ deletion mutation (Bennett et al., 1995) occur
in the III-IV linker region and promote inactivation-
free gating modes (Bennett et al., 1995). Unexpectedly,
however, mutations in other regions of the channel, no-
tably the C-T domain, can also destabilize inactivation
and promote an inactivation-deficient gating mode
(Wei et al., 1999a; Baroudi and Chahine, 2000; Veld-
kamp et al., 2000; Clancy et al., 2002; Rivolta et al.,
2002).

The fact that a large number of disease-associated
mutations that alter inactivation have been found in
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the Na

 

�

 

 channel COOH-terminal domain has led us to
question whether or not the COOH terminus may have
a more direct structural role in the control of channel
inactivation, and to ask how the C-T domain affects sta-
bilization of the inactivated Na

 

�

 

 channel. In a previous
theoretical and experimental study, we investigated the
secondary structure of the C-T domain and found evi-
dence that it is highly structured (Cormier et al., 2002).
The NH

 

2

 

-terminal (proximal) half (

 

�

 

100 residues) of
the C-T domain was predicted to form six helices,
whereas the distal half (

 

�

 

100 residues) is unstructured,
and circular dichroism measurements were consistent
with this prediction. Truncation of the unstructured
distal half did not affect channel gating, but truncation
of one of the predicted six helices in addition to the
unstructured region greatly destabilized inactivation
(Cormier et al., 2002). Here we provide evidence for di-
rect physical interaction between the C-T domain and
the III-IV linker inactivation gate. We find that the full
length C-T domain, as well as a truncated construct in
which the distal unstructured region is deleted, bind to

the III-IV linker, but that truncation of the predicted
sixth helix uncouples the COOH terminus from the III-
IV linker. These biochemical data are remarkably con-
sistent with a role of the COOH-terminal/III-IV linker
in stabilization of the inactivated state. Our data show
for the first time that the inactivation gate of the volt-
age-dependent Na

 

�

 

 channel is a molecular complex
that consists of the III-IV linker and the COOH-termi-
nal domain of the channel. Uncoupling of this com-
plex destabilizes inactivation and increases the likeli-
hood of channel reopening during prolonged depolar-
ization.

 

M A T E R I A L S  A N D  M E T H O D S

 

Expression of Recombinant Na

 

�

 

 Channels
and Electrophysiology

 

Na

 

�

 

 channels were expressed in human embryonic kidney
(HEK) 293 cells at 22

 

�

 

C as previously described (Abriel et al.,
2001). CD8-positive cells were identified using Dynabeads (Dy-
nal, M-450) and were patch clamped 48 h after transfection.
Membrane currents were measured using whole-cell patch-clamp

Figure 1. Mutation of the Na� chan-
nel C-T domain and III-IV loop syner-
gistically disrupts inactivation and in-
creases Isus. (A) Membrane-spanning
model of the SCN5A sodium channel
indicating the COOH domain and IFM
motif in the III-IV loop. (B) Expanded
view indicates the six predicted � heli-
ces within the C-T and sites of the dele-
tion mutants 1885stop and 1921stop.
(C) Whole-cell currents are shown at
low and high gain (insets, peak currents
are off-scale) recorded in HEK 293 cells
expressing SCN5A constructs. Shown
are normalized and averaged TTX-sen-
sitive current traces (materials and
methods) in response to voltage steps
(�10 mV, 150 ms) (left to right, wild-
type (WT), (n � 4); �KPQ (n � 4);
1885stop (n � 6); and K1885 (n � 5);
arrow indicates ISUS). Bars: 20 ms high
and 50 ms low gain traces; 1% peak cur-
rent, high gain traces. (D) Mean 	
SEM Isus (calculated as the percentage
of peak current) measured at 150 ms
during depolarization. ** and ##, P �
0.001 vs. WT; *, NS vs. WT. Summarized
are data for the following channels:
wild-type (WT); 1921stop; �KPQ;
1885stop; K1921; K1885.
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procedures, with Axopatch 200B amplifiers (Axon Instruments,
Inc.). Protocols and solutions for measurement of Na

 

�

 

 channel
currents TTX-sensitive I

 

sus

 

 are described in detail in a previous
publication (Clancy et al., 2003).

 

Engineering of Fusion Proteins

 

The GST- and His-tagged SCN5A constructs were engineered us-
ing conventional PCR protocols. The PCR products were sub-
cloned into the EcoRV site of the vector pBKS (Invitrogen) and
after restriction digestion subcloned into either the pGEX (Am-
ersham Biosciences) or pET 28 expression vectors (Novagen).
The His-tagged COOH-terminal constructs of SCN5A were made
as previously described (Cormier et al., 2002). The full-length
C-T extends from residues 1773 through 2016. The mutants
1885Stop and 1921Stop refer to the site where a stop codon was
placed in order to express a truncated C-T. All fusion constructs
were verified by sequence analysis.

Mutations were introduced using the Quik Change Mutagene-
sis kit (Stratagene). Mutant clones for fusion proteins were se-
lected by expression screening of small (2 ml) cultures inocu-
lated with 0.1 ml of over grown culture. Proteins were visualized
by Coomassie-stained gels using PAGE. Plasmid DNA of those
clones that expressed protein of correct mass was purified
(Promega), and the mutations verified by sequence analysis. Fi-
nal constructs were transformed into DE3 cells (Stratagene).

 

Large-scale Fusion Protein Cultures

 

Fusion proteins were grown to large scale by first inoculating two
10-ml cultures of 2xyt media overnight for each 500-ml culture.
These cultures were used to spike the large scale cultures and
grown for 3–4 h at 37

 

�

 

C. IPTG was added (1-mM final concentra-
tion) once the culture reached an OD of 0.6 at 600 

 




 

. The tem-
perature was decreased to 32

 

�

 

C and the induction continued for

 

3–4 h. Some of the larger fusion proteins were similarly grown
but induced at 16

 

�

 

C for 70 h. After induction the cultures were
pelleted by centrifugation for 10 min at 3,000 rpm in a JA-10
(Beckman Coulter) rotor. The resultant pellets were resus-
pended in cold PBS (10 ml per 500 ml culture) supplemented
with EDTA-free protease inhibitor tablets (Roche). The cul-
ture was divided into two 15-ml tubes and solubilized with Tri-
ton X-100 (1% final concentration). The samples were soni-
cated sequentially three times for 20 s and rocked overnight at
4

 

�

 

C. The bacterial lysate was obtained by centrifugation for 20
min at 10,000 RPM in a JA-13.1 swinging bucker rotor (Beck-
man Coulter). The supernatant was aliquoted and stored at

 

�

 

80

 

�

 

C.

 

GST Pull-down Assays

 

GST fusion protein lysates (500 

 

�

 

l) were incubated for 2 h with
50 

 

�

 

l of PBS-washed glutathione sepharose beads (Amersham
Biosciences). Bound GST fusion proteins were washed with PBS
and quantified by PAGE and titered by dilution with unbound
glutathione sepharose beads accordingly. For each pull-down as-
say 5–25 

 

�

 

l of bound GST fusion protein was balanced with un-
bound glutathione sepharose to a final volume of 50 

 

�

 

l. His-
tagged constructs were diluted fourfold to bring the Triton X-100
to 0.25% final concentration with a modified RIPA buffer (in
mM: Tris-HCl, 50; NaCl, 150; EDTA, 1) made in the absence of
Triton X-100. 250–500 

 

�

 

l of the diluted His-tagged construct was
incubated with each GST fusion protein pull down. The reaction
mix was balanced to 500 

 

�

 

l with RIPA buffer containing 0.25%
Triton X-100 and incubated overnight at 4

 

�

 

C.
GST fusion proteins were washed 4–5 times with cold RIPA

buffer, solubilized with 15 

 

�

 

l 5

 

�

 

 sample buffer and electropho-
resed on 4–20% gradient gels (Biorad). Proteins were transferred
to nitrocellulose and detected using Penta-His monoclonal anti-

Figure 2. The Na� channel
III-IV loop and C-T domain
interact. Bacteria expressing
His-tagged full-length (WT
C-T) and truncated (1921stop,
1885stop) C-T variants (sche-
matics in A, left) and GST-
tagged III-IV loop variants
(WT, �KPQ, IFM/QQQ)
were lysed and used in pull-
down assays to test for III-IV
loop/C-T interactions. Preter-
mination translation products
for the WT C-T and 1921stop
construct were observed as
smaller bands and detected
by the His Western blot. (A)
Shown is a representative ex-
periment in which His-tagged
C-T constructs (WT, 1921stop,
and 1885stop, respectively;
see materials and methods) are illustrated in the top, middle, and bottom panels were immobilized using GST-tagged III-IV loop vari-
ants (WT, IFM/QQQ, and �KPQ in the first second and third lanes, respectively) and detected using an anti-His monoclonal antibody.
The extent of the III-IV linker used in this study ranged from D1471 through D1523. The mutations IFM and �KPQ refer to changes at resi-
dues 1485–1487 and 1505–1507, respectively. The control lane (GST alone, fourth lane) indicates specificity of the reactions. The last lane
is a Western blot detecting the His-tagged C-T in the bacterial lysates. Note that the pretermination translation products for the WT C-T
and 1921 smaller than 1885stop were also not pulled down by the III-IV linker. (B) Histogram of scanned pull downs (	SEM) normalized
to total protein and corrected for background and total GST loaded (materials and methods). The number of experiments is indicated
in the figure. Open bars correspond to interactions between His-tagged full length C-T construct and labeled III-IV linker variants. Filled
bars correspond to wild-type III-IV loop interacting with 1921stop and 1885stop C-T constructs. **, NS vs. WT; *, P � 0.007 vs. WT.
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body (QIAGEN) and developed with the reagents supplied with
the Immuno-Star HRP (Bio-Rad Laboratories) kit.

Pull-down assays were quantified by scanning the developed
bands from the Western blots as an estimate of III-IV–C-T interac-
tion and the Ponceau-stained bands as a measure for total loaded
GST protein using the densitometric functions of the Gel Doc
2000 (Bio-Rad Laboratories). Pull-down assays were corrected for
total loaded protein, normalized to the wild-type construct, and
background subtracted (GST values) to determine the relative af-
finity of the constructs.

 

Theoretical Analysis of III-IV Loop Structure

 

We used local structure prediction methods that are useful in
predicting local structure conformations from local sequence
segments (Yang and Wang, 2002, 2003), and analyzed the se-
quence profile for SCN5A homologues that is found in the NCBI
nr sequence database (Fig. 3 A). The sequences were selected
with five PSI-BLAST iterations (default parameters) (Altschul et
al., 1997) with e-value cutoff 

 

�

 

10

 

�

 

2

 

 using the SCN5A 1471–1523
as the seed (first row of the sequence profile in Fig. 3 A). Only
representative sequences are shown in the figure; no sequence
pair in the profile has 

 




 

90% sequence identity. The multiple
alignment was generated with the CLUSTALW program with de-
fault parameters (Thompson et al., 1994).

 

Analysis of Experimental Data

 

Analysis for all experiments was in Excel (Microsoft) and Origin
6.1 (Microcal Software). Data are represented as mean 

 

	

 

 SEM.
Statistical significance was determined using unpaired Student’s 

 

t

 

test; P 

 

�

 

 0.05 was considered statistically significant.

 

R E S U L T S

 

We previously provided evidence that the cardiac Na

 

�

 

channel (Fig. 1, A and B) C-T domain consists of helical
(proximal half) and nonstructured (distal half) regions
(Fig. 1 B) (Cormier et al., 2002) and that the structured

region plays a role in stabilizing inactivation. Fig. 1 C il-
lustrates the functional effects of a three amino acid de-
letion mutation of the III-IV loop (

 

�

 

KPQ, left trace) as-
sociated with cardiac arrhythmia (Bennett et al., 1995),
a C-T truncation that results in loss of the sixth helix
and the unstructured region (1885stop, middle trace),
and the combination of both mutations (

 

�

 

KPQ 

 

�

 

1885stop (K1885), right trace) on I

 

Na

 

 in response to de-
polarization (

 

�

 

10 mV) at low and high gain. Wild-type
channel activity is shown in the figure for comparison.
At low resolution (gain), each trace shows a large in-
ward current (as Na

 

�

 

 channels activate) followed by
rapid decay as channels inactivate. Closer examination
(high gain, insets) reveals sustained current (I

 

sus

 

, ar-
row) that is affected both by mutation of the III-IV loop
(

 

�

 

KPQ) and by 1885stop. The 1885stop C-T truncation
(Cormier et al., 2002) results in a similar I

 

sus

 

 amplitude
as the 

 

�

 

KPQ (Bennett et al., 1995) mutation, whereas
truncation of the C-T distal to the structured region
(1921stop) does not destabilize inactivation nor in-
crease I

 

sus

 

 (Cormier et al., 2002) (Fig. 1 D, bar graph).
In addition, unlike the 

 

�

 

KPQ 

 

�

 

 1885stop combined
mutation, which results in a 15–20-fold increase of I

 

sus

 

compared with wild type channels (K1885, Fig. 1 C,
right, and D, bar graph), the 1921stop truncation muta-
tion in combination with 

 

�

 

KPQ does not further in-
crease I

 

sus

 

 (K1921, bar graph). These results demon-
strate a synergistic effect on I

 

sus

 

, of the combined dis-
ruption of the sixth helix of the C-T and the deletion
mutation in the III-IV linker. These data thus raise the
possibility of a direct interaction between the III-IV
linker and the C-T domain, which we then investigated.

Figure 3. Sequence profile and molecular model of the Na�

channel III-IV loop. (A) Sequence profile for the SCN5A homo-
logues found in the NCBI nt sequence database. The sequences
are selected with five PSI-BLAST iterations (default parameters)
with e-value cutoff equal to 10�2 using the SCN5A 1471–1523 as
the seed (first row of the sequence profile). Only representative se-
quences are shown in the figure; no sequence pair in the profile
has 
90% sequence identity. (B) Hypothetical molecular model
of the Na� channel III-IV loop (residues 1471–1523) generated by
local structural predictions. Shown in the figure are structures pre-
dicted by modeling based on the III-IV loop linear sequence.
Shown is the predicted helix-turn-helix structure illustrating the

predicted locations of the IFM motif (highlighted in red), KPQ (highlighted in green), and a P-rich region (highlighted in orange) dis-
cussed in the text and linked to functional and structural integrity of the channel. Underlined residues in the linear sequence correspond
to predicted � helices in the model.
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We tested for direct interactions between the full
length, 1921stop (structural domain preserved) and
1885stop (truncation of the sixth helix of the struc-
tured domain) C-T domains (Fig. 2 A, schematics on
left) and the III-IV linker using GST–pull-down assays
(

 

materials and methods

 

) and found that the full-
length C-T domain interacts with the wild-type III-IV
loop (Fig. 2 A, top row, first lane). This interaction is
not disrupted by truncation of the distal unstructured
C-T domain (1921stop, Fig. 2 A, middle row, first lane),
but is abolished if the last helical region is deleted
(1885stop, Fig. 2 A, bottom row, first lane). Importantly,
neither mutation of the inactivation latch (IFM/QQQ,
Fig. 2 A, second lane from left), which has been shown
by others to interrupt the interaction between the III-IV
linker and its docking sites on DIV-S6 (McPhee et al.,
1995, 1998), nor the 

 

�

 

KPQ deletion mutation of the
III-IV loop (Fig. 2 A, third lane from left) affects the in-
teraction with the full-length or 1921stop C-T domain
(Fig. 2 A, top and middle rows, respectively). The
1885stop truncation, however, completely abolished the
interaction with any of the IIII-V linker constructs (Fig.

2 A, bottom row). Consistent with these results is the
observation that the smallest pretermination transla-
tion products for the full-length and 1921 His–tagged
C-T that are smaller in mass than 1885 are also not
pulled down by the III-IV loop. These data (summa-
rized in Fig. 2 B) confirm the electrophysiological re-
sults that suggest independence between previously de-
termined docking sites for the inactivation gate (IFM
motif) and its interaction with the C-T domain.

We next used a theoretical analysis of the putative
structure of the III-IV loop region to help identify possi-
ble sites that might interact with the C-T domain. Fig. 3
A shows the sequence profile for the SCN5A III-IV loop
homologues found in the NCBI nr sequence database.
Local structure predictive analysis (

 

materials and
methods

 

) of the III-IV loop showed that two regions
flanking the IFM motif (residues 1471–1480 and 1487–
1501) are likely to form helical structures (Fig. 3 B).
The predicted helix downstream of the IFM motif is
consistent with the experimental observation that the
residues between T1488 and K1499 form a stable heli-
cal structure in the isolated peptide chain (Rohl et al.,
1999). The sequence region up-stream from the IFM
motif has been predicted to form helical structures
(Sirota et al., 2002), but the relative orientation be-
tween the two predicted helices has not been eluci-
dated. Local structure predictions indicate that the two
predicted helices are likely to pack to form a helix-turn-
helix structure with the IFM motif situated at the turn
region (Fig. 3 B, residues marked in red) (Yang and
Wang, 2002).

Analysis of the sequence profile for SCN5A homo-
logues found in the NCBI nr sequence database reveals
two invariant residues in the sequence profile: T1488
and P1513 (

 

materials and methods

 

, and boxed areas
in the sequences). T1488 is part of the conserved IFMT
motif (Rohl et al., 1999), but the role of the invariant
P1513 has not been identified previously. The local
structure predictions suggest that the sequence near
this proline-rich (P-rich) region (residues 1502–1523)
is not likely to form regular secondary structure, sug-
gesting that the prolines in this region are not likely to
have roles as helix breakers. Nevertheless, the sequence
profile analysis indicates that the known III-IV loop ho-
mologues have no tolerance for insertions or deletion
in this region. These sequence-structure features and
the propensity for a P-rich region to form a potential
protein–protein interaction site (Kini and Evans, 1995)
suggest that this region near the P-rich motif (KPQK-
PIPRP) might prove important in mediating interac-
tions with the C-T domain.

To investigate this possibility, residues in the III-IV
loop were mutated in groups of four to glutamates in
order to map a putative interacting interface between
the III-IV linker and the C-T domain (Fig. 4 A). This

Figure 4. Mutation of a P-rich region of the Na� channel III-IV
loop disrupts interactions with the C-T domain and destabilizes in-
activation. (A) III-IV loop linear sequence. (B) Pull down of His-
tagged full-length C-T fusion proteins and glutamic acid scan of
the GST-tagged III-IV linker constructs in which groups of four res-
idues were systematically mutated to glutamic acid and detected
using anti-His. (C) Histogram (	SEM) of C-T pull downs by the
mutant III-IV GST fusion proteins normalized as described in ma-
terials and methods. The number of experiments for each con-
struct is indicated in parentheses. *, P � .001 vs. PIPR; #, NS vs.
PIPR.
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approach disrupts hydrophobic interactions while main-
taining helical integrity because four consecutive
charged residues on a helical structure will abolish hy-
drophobic interactions in close contact from any direc-
tion to the helix surface. These constructs eliminate
the possibility that a helix could “roll” to bind to its
partner to avoid burying a charged residue. Glutamic
acid, instead of aspartate, is used to introduce real
charges on the structure because the aspartic acid side
chain is known to be a helix breaker, whereas the
glutamic acid side chain has little effect on the intrinsic
stability of an �-helix. Arginine and lysine have long ali-
phatic side chains and are thus less precise in placing
real charges on the helix surface. Each mutant III-IV
linker construct was expressed as a GST fusion protein,
and assayed by the ability to interact with the His
tagged full length C-T (materials and methods).

Most of the mutant linker constructs pulled down the
C-T, confirming the physical interaction between the
C-T and III-IV loop (Fig. 4 B). However, as the muta-
tions approach the putatively unstructured and P-rich
region, the intensities of the pull-down interactions de-
crease, suggesting that mutation of this region might
be important in disruption of the interaction of the III-
IV–C-T interaction. The pull-down data suggest that
the P-rich region, identified by theoretical analysis as a
region likely to have structural and/or functional im-

portance (see above), may be particularly sensitive to
disruption by mutation. To test if the biochemical re-
sults of the quadruple glutamate mutations in the pull-
down assays also translated to functional sodium chan-
nels, we expressed similar mutations in the full length
Na� channel. Fig. 5 compares effects of the quadruple
glutamate mutation of the PIPR residues with that of
residues KLGG, which in pull-down assays were less dis-
ruptive than mutation of PIPR. Here TTX-sensitive sus-
tained whole-cell current was measured in cells express-
ing wild-type (WT), PIPR/EEEE mutated, and KLGG/
EEEE mutated channels. We find, in fact, that the
PIPR/EEEE mutation, which ablates the physical inter-
action between the III-IV loop and the C-T domain, de-
stabilizes inactivation and causes a significant increase
in Isus (0.43 	 0.05, n � 6 vs. 0.07 	 0.001, P � 0.001,
units in percentage of peak current) (Fig. 5 A). Re-
placement of KLGG residues (which are upstream of
PIPR) by EEEE causes a significantly smaller change in
sustained channel activity (0.166 	 0.002, P � 0.001 vs.
PIPR/EEEE channels), providing further evidence for
a role of III-IV linker–CT domain interactions in stabi-
lizing inactivation and suggesting that the region near
the PIPR motif may be important to this interaction. Al-
though the PIPR/EEEE mutation enhances sustained
channel activity (Fig. 5), it affects neither the voltage
dependence (Fig. 6 A) nor onset kinetics (Fig. 6 A) of

Figure 5. Preferential destabilization
of inactivation by mutation of a P-rich
region of the Na� channel III-IV loop.
(A) Whole-cell recordings of TTX-sensi-
tive current in HEK 293 cells expressing
wild-type (WT)-, PIPR/EEEE-, and
KLGG/EEEE-mutated channels shown
at low and high (insets, peak current off
scale) gain. Shown are normalized (to
peak current) and averaged (WT, n � 7;
PIPR/EEEE, n � 6; KLGG/EEEE, n �
4) traces for each construct. Bars: 20 ms
high and 50 ms low gain traces; 1%
peak current, high gain traces. (B) The
bar graph summarizes normalized
mean (	SEM) Isus measured at 150 ms
during voltage pulses to �10 mV and
calculated as a percentage of peak cur-
rent. *, P � 0.01 vs. WT and KLGG/
EEEE.



161 Motoike

channel inactivation; and flecainide block, which de-
pends both on channels opening and inactivating (Liu
et al., 2002, 2003), of PIPR/EEEE channels is use and
frequency dependent (Fig. 6 B). In fact, flecainide use–
dependent block of PIPR/EEEE channels is slightly
greater than for wild-type channels, which may be due
to mutation-induced repetitive channel openings dur-
ing the test pulses.

The inactivation properties of PIPR/EEEE channels
compared with wild-type channels suggest that the mu-
tation does not cause marked structural changes in the
III-IV linker that underlies voltage-dependent inactiva-
tion. Thus, we next focused more on the PIPR region
in control of sustained current. As illustrated in Fig. 7,
mutation of the P-rich region of the III-IV loop by
glutamate substitution increases Isus, much as the C-T

truncation (1885stop) or �KPQ mutation (compare
data in Figs. 1 and 5). However, if we replace the PIPR
residues by alanine or glutamine residues, the III-IV
loop–C-T physical interactions are not disrupted (Fig. 7
A), and there is no significant effect on Isus, a marker of
stabilization of inactivation (Fig. 7 B). These data sug-
gest that the characteristics of the PIPR region, some-
what basic and predicted to be lacking in regular sec-
ondary structural elements, might be important in co-
ordinating III-IV linker–C-T domain interactions and
the stabilization of inactivation, but also raise the possi-
bility that these effects are due to indirect effects of the
quadruple glutamate mutation. To test for this, we com-
pared the effects of single and double glutamate muta-
tions of the PIPR region on both III-IV linker–C-T do-
main interactions (Fig. 8 A) and sustained channel ac-

Figure 6. Kinetics, voltage
dependence, and flecainide
block of PIPR/EEEE chan-
nels. (A) The PIPR/EEEE
mutation does not affect the
kinetics of the onset of inacti-
vation (left) or the voltage
dependence of inactivation.
Plotted in the left-hand graph
are onset kinetics measured
as the time to decay to half
peak current (T1/2) vs. test
pulse voltage for wild-type
(WT) channels (n � 5) and
PIPR/EEEE mutant chan-
nels (n � 4). There is no sig-
nificant difference between
these parameters at any volt-
age tested. Plotted in the
right-hand graph are steady-
state inactivation curves mea-
sured by preceding test pulses
to �10 mV by a series of 500-
ms conditioning pulses and
normalizing measured test
pulse current to that mea-
sured after the most negative
(�140 mV) conditioning
pulse. Normalized current is
plotted against conditioning
pulse voltage for WT (n � 6)
and PIPR/EEEE channels
(n � 8). Traces shown are
normalized and averaged re-
cordings of currents evoked
by test pulses to �10 mV for
WT (n � 5) and PIPR/EEEE
(n � 4) channels. (B) Use-
dependent block (UDB) of
WT and PIPR/EEEE channels
by flecainide (10 mM). Cells

were held at �100 mV and trains of 50-test pulses (20 ms; �10 mV) were applied at pulse frequencies of 1 and 10 Hz. In each panel cur-
rent traces are shown after the first (P1) and fiftieth (P50) pulse of the conditioning train in the presence of 10 mM flecainide. The bar
graphs in the lower panel plot the percentage block ((P1 � P50)/P1)*100) recorded after applying trains at 1 Hz and 10 Hz for WT (n � 4)
and PIPR/EEEE (n � 3) channels. *, P � 0.01.
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tivity (Fig. 8, B and C). We again found correlation
between disruption of the protein–protein interaction
as assayed by the pull-down experiments and disrup-
tion of inactivation as measured by sustained channel
activity.

D I S C U S S I O N

A Novel Structural Role of the Na� Channel C-T Domain

Our results indicate that the inactivation gate of the
cardiac voltage-gated Na� channel is a molecular com-
plex consisting of the III-IV linker and the C-T domain
of the channel. Using computational and experimental
analysis, we have identified a novel P-rich motif of the
III-IV linker, distinct from the previously defined IFM
motif (West et al., 1992a) that appears to be in a region
important in coordinating this interaction. Local struc-
ture analysis suggests that the P-rich motif is in an un-
structured region of the III-IV loop (Yang and Wang,
2003); and replacement of the residues PIPR by
glutamates disrupts the interaction between the C-T
domain and the III-IV loop, increases sustained Na�

channel current, but does not affect the voltage depen-

dence or kinetics of channel inactivation. These data
suggest that the PIPR/EEEE mutation does not signifi-
cantly alter the structure of the III-IV loop in a manner
that would be reflected in altered inactivation proper-
ties, a suggestion that must be confirmed by direct
structural measurements. Instead, because the PIPR/
AAAA and PIPR/QQQQ mutations neither ablated
physical interactions between the C-T domain and the
III-IV loop nor increased Isus in functional recordings,
our experimental data suggest that it is not the pres-
ence of these prolines that is crucial to the protein–pro-
tein interactions of these two intracellular segments of
the channel, but perhaps the rather generally basic na-
ture of this region, and the prediction that there are no
predicted secondary structural elements. Consistent
with this is the fact that the PIPR/AAAA mutation does
not ablate the interaction between the III-IV loop and
the C-T domain or destabilize inactivation because ala-
nine residues, while stable in � helices and � sheets,
would not likely confer structure on this region due to
prolines both upstream and downstream of their loca-
tion. Introduction of alanines would also not substan-
tially change the generally basic nature of this region.
The mutation of PIPR to glutamine residues also does

Figure 7. Disruption of interactions in a P-rich
region destabilizes inactivation. (A, top) Pull
down of His-tagged full-length C-T fusion by GST-
tagged III-IV constructs in which the PIPR region
was mutated either to alanine, glutamic acid, or
glutamine and detected using anti-His. The West-
ern blot lane demonstrates the migration of the
His tagged C-T. The Ponceau red stain of the
identical membrane used in the pull-down assay is
shown in the lower row. (B) Mutation of PIPR mo-
tif (PIPR/EEEE) increases Isus. Whole-cell record-
ings of TTX-sensitive current in HEK 293 cells ex-
pressing wild-type (WT)-, PIPR/EEEE-, PIPR/
AAAA-, and PIPR/QQQQ-mutated channels
shown at low and high (insets, peak current off
scale) gain. Shown are normalized (to peak cur-
rent) and averaged (WT, n � 7; PIPR/EEEE, n �
6; PIPR/AAAA, n � 4; PIPR/QQQQ, n � 4)
traces for each construct. Bars: 20 ms high and 50
ms low gain traces; 1% peak current, high gain
traces. The bar graph summarizes normalized
mean (	SEM) Isus measured at 150 ms during
voltage pulses to �10 mV and calculated as a per-
centage of peak current. *, P �0.01, vs. WT.
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not disrupt the III-IV–C-T interaction or inactivation.
This result suggests that the effectiveness of the disrup-
tion of the putative interaction depends in part on the
(chemical) nature of the residues substituted, as the
major difference between glutamate and glutamine,
which are both hydrophilic and polar, is the very acidic
nature of glutamate. The effects of the single and dou-
ble glutamate mutations of this region illustrated in
Fig. 8 suggest that this is, in fact, the case. However,
confirmation of these suggestions must await structural
measurements of the complete III-IV loop. Finally, our
data also indicate that the last predicted helical region
of the C-T domain is critical to this interaction.

Interactions between the III-IV Linker and the C-T Domain 
Stabilize Inactivation

Because disruption of the III-IV linker–C-T interaction
does not abolish inactivation, but instead increases the
fraction of channels that can reopen during sustained
depolarization, our results suggest that the role of the
C-T in this complex is to stabilize the inactivation gate–
occluded channel. The role of the C-T domain thus re-
sembles a latch that is necessary to ensure that the inac-
tivation gate, once docked via the IFM motif, remains
closed. Disruption of the complex by mutation thus re-
moves this physiologically key structural component of

the channel and allows for “leakage” of Na� into cells
under conditions that normally exclusively prevent Na�

entry. This Na� leak, though only a fraction of total
Na� entry during an action potential, can have severe
physiological consequences.

The results of this study thus provide a new structural
framework to begin asking how multiple disease-associ-
ated mutations of the heart Na� channel C-T domain
may act to destabilize inactivation and promote physio-
logical dysfunction and how sequence differences in
C-T regions of Na� channel variants may contribute to
differences in gating differences of the variants (Mante-
gazza et al., 2001). A review of the literature reveals
multiple mutations reported in the cardiac C-T domain
that destabilize inactivation. Disease associated muta-
tions that have been reported to destabilize the inacti-
vated state include those in the acid-rich region of the
proximal half of the C-T (Bezzina et al., 1999; Wei et
al., 1999b; Baroudi and Chahine, 2000; Veldkamp et
al., 2000), as well as unstructured loops that are pro-
posed to link putative helical structures in this region
of the C-T domain (R1826H, Ackerman et al., 2001;
L1825P, Makita et al., 2002). Our previous theoretical
analysis suggested that the proximal half of the SCN5A
C-T domain consists of four helical segments joined by
unstructured regions that are likely to fold into two E-F

Figure 8. Disruption of III-IV loop–C-T interac-
tions and sustained current is sensitive to the
number of glutamate mutations in the PIPR re-
gion. (A) Pull down of His-C-T by WT, PIPR/
EEEE, PIPR/PEPE, and PIPR/PIPE by III-IV GST
fusion proteins. The His–C-T lane is a Western
blot reflecting the C-T detected with a monoclo-
nal His antibody. The Ponceau red stain of the
identical membrane used in the pull-down assay is
shown in the lower row. (B) Mutation of PIPR mo-
tif (PIPR/EEEE) increases Isus. Whole-cell record-
ings of TTX-sensitive current in cells expressing
wild-type (WT)-, PIPR/EEEE-, PIPR/PEPE-, and
PIPR/PIPE-mutated channels shown at low and
high (insets, peak current off scale) gain. Shown
are normalized (to peak current) and averaged
(WT, n � 7; PIPR/EEEE, n � 6; PIPR/PEPE, n �
4; PIPR/PIPE, n � 7) traces for each construct.
Bars: 20 ms high and 50 ms low gain traces; 1%
peak current, high gain traces. (C) The bar graph
summarizes normalized mean (	SEM) Isus mea-
sured at 150 ms during voltage pulses to �10 mV
and calculated as percentage peak current. *, P �
0.01 vs. WT.
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hand pairs (Cormier et al., 2002). It is interesting to
speculate whether or not these putative structures par-
ticipate in and/or underlie interactions between the
C-T domain and the III-IV linker either directly, or as
our data suggest, via the distal half of the COOH termi-
nus. Answers to these questions must await more de-
tailed structural information for the C-T domain.
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