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Purpose: We aimed to investigate the predictive models based on O-[2-(18F)fluoroethyl]-
l-tyrosine positron emission tomography/computed tomography (18F-FET PET/CT)
radiomics features for the isocitrate dehydrogenase (IDH) genotype identification in
adult gliomas.

Methods: Fifty-eight consecutive pathologically confirmed adult glioma patients with
pretreatment 18F-FET PET/CT were retrospectively enrolled. One hundred and five
radiomics features were extracted for analysis in each modality. Three independent
radiomics models (PET-Rad Model, CT-Rad Model and PET/CT-Rad Model) predicting
IDH mutation status were generated using the least absolute shrinkage and selection
operator (LASSO) regression analysis based on machine learning algorithms. All-subsets
regression and cross validation were applied for the filter and calibration of the predictive
radiomics models. Besides, semi-quantitative parameters including maximum, peak and
mean tumor to background ratio (TBRmax, TBRpeak, TBRmean), standard deviation of
glioma lesion standardized uptake value (SUVSD), metabolic tumor volume (MTV) and total
lesion tracer uptake (TLU) were obtained and filtered for the simple model construction with
clinical feature of brain midline involvement status. The area under the receiver operating
characteristic curve (AUC) was applied for the evaluation of the predictive models.

Results: The AUC of the simple predictive model consists of semi-quantitative parameter
SUVSD and dichotomized brain midline involvement status was 0.786 (95% CI 0.659-
0.883). The AUC of PET-Rad Model building with three 18F-FET PET radiomics
parameters was 0.812 (95% CI 0.688-0.902). The AUC of CT-Rad Model building with
three co-registered CT radiomics parameters was 0.883 (95% CI 0.771-0.952). While the
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AUC of the combined 18F-FET PET/CT-Rad Model building with three CT and one PET
radiomics features was 0.912 (95% CI 0.808-0.970). DeLong test results indicated the
PET/CT-Rad Model outperformed the PET-Rad Model (p = 0.048) and simple predictive
model (p = 0.034). Further combination of the PET/CT-Rad Model with the clinical feature
of dichotomized tumor location status could slightly enhance the AUC to 0.917 (95% CI
0.814-0.973).

Conclusion: The predictive model combining 18F-FET PET and integrated CT radiomics
features could significantly enhance and well balance the non-invasive IDH genotype
prediction in untreated gliomas, which is important in clinical decision making for
personalized treatment.
Keywords: (18F)fluoroethyltyrosine, glioma, isocitrate dehydrogenase (IDH), radiomics, positron emission
tomography (PET)
INTRODUCTION

Glioma is the most frequently-occurred primary malignant
tumor in the brain. The 2016 WHO classification of the
central nervous system tumor introduced a new integrated
classification mode of glioma (1). Isocitrate dehydrogenase
(IDH) mutation is considered to be an early event in the
occurrence and development of glioma (2). IDH mutations
were identified with a high percentage in low-grade gliomas
and secondary glioblastoma multiforme (GBM) but with a much
lower percentage in primary GBM (3).

IDH mutation altered the metabolism and microstructure of
gliomas, thus affecting the biological characteristics and
prognosis (4). Evidence supports that astrocytoma with IDH
wildtype and other GBM-like molecular features has similar
behavior as WHO grade IV glioma (5). At present, the
identification of IDH mutation status was mainly based on
surgical resection or biopsy specimens. However, additional
surgical risks related to patient’s comorbidities, advanced age,
deep-seated tumors are the barriers to accurately detect the IDH
mutation status. Therefore, reliable methods which could non-
invasively detect IDH mutation status are needed.

O-[2-(18F)fluoroethyl]-l-tyrosine (18F-FET) is an amino acid
tracer of positron emission tomography (PET) imaging which
could generallywell outline the lesion out of the brain background,
and could be applied as an effective complementary diagnostic
modality besides magnetic resonance imaging (MRI) (6). The
characteristic of 18F-FET PET imaging has led to wide clinical
application (7–9), and gained the recommendation in all the
phases of glioma management (10, 11).

Although these above-mentioned modalities could benefit
the imaging diagnosis and evaluation, the intratumoral
heterogeneity of glioma still challenge the precise imaging
diagnosis and prediction. Our previous experience indicated
conventional semi-quantitative parameters of static 18F-FET
PET imaging could contribute to glioma non-invasive
prediction in some degree (12). However, multiple dimensional
and more detailed description of the imaging heterogeneity of
glioma are crucial in improving the predictive efficacy. Radiomics
2

technology could further extract imaging features among voxels for
quantitative analysis based on the imaging heterogeneity, which
could provide valuable information about tumor spatial and
microenvironment (13). MRI radiomics has shown promising
results in glioma imaging research (14). Limited research has
shown the potential of amino acid PET imaging based radiomics
analysis in glioma noninvasive grading, prognostication,
pseudoprogression differentiation and molecular markers
prediction such as IDH mutation (15–21). Computed
tomography (CT) radiomics features, which has shown
encouraging findings in lung, breast, gastrointestinal tract,
pancreas and renal neoplasms, et al. (22–26), have rarely been
applied for glioma radiomics analysis. Whether radiomics features
of the amino acid tracer PET and co-registered CT images could
contribute to glioma noninvasive prediction is of interest.

The purpose of this research was to investigate the efficacy of
predictive radiomics models originating from PET modality, CT
modality and combined PET/CT modalities generated with
machine learning algorithms based on static 18F-FET PET/CT
imaging in noninvasive IDH prediction, and to compare with the
conventional semi-quantitative parameter analysis.
MATERIALS AND METHODS

Patient Selection
We retrospectively analyzed the patients who received
consecutive 18F-FET PET/CT brain imaging at the PET Center
of Huashan Hospital, Fudan University from November 2017
to February 2019. A total of 58 untreated adult glioma patients
were identified based on inclusion and exclusion criteria
Supplementary S1. Baseline clinical and demographic
characteristics including age, gender, tumor location, WHO
grade, and IDH mutation status, were derived from medical
file system of Huashan Hospital, Fudan University.

18F-FET PET/CT Imaging Protocol
All patients had fasted for at least 4 hours before imaging. 20
minutes after an intravenous bonus injection of 18F-FET (370 ±
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30 MBq), a static PET scan was collected for 20 minutes with a
Siemens Biograph 64 HD PET/CT (Siemens, Erlangen,
Germany) in 3-dimensional (3D) mode for 50 patients in this
cohort. 8 patients underwent dynamic 18F-FET PET scanning
lasted longer than 40 minutes after the tracer injection; 20–40
minutes images were reconstructed for diagnosis and analysis.
Attenuation correction was performed using a low-dose CT
(tube current 150mAs, voltage 120kV, Acq. 64*0.6mm,
convolution kernel H30s, slice thickness 5mm, interslice gap
1.5mm) before the emission scan. After acquisition, the PET
images were reconstructed by filtered back projection algorithm
with Gaussian filter and full-width-at-half-maximum at the
center of the field of view of 3.5mm). The reconstructed brain
PET image matrix size was 168*168 with voxel size of
2.04*2.04mm. And the reconstructed brain CT image matrix
size was 512*512 with voxel size of 0.59*0.59 mm.

Histological Evaluation and IDH Genotype
Analysis
Histological specimens were obtained by surgical resection or
stereotactic brain biopsy. H&E staining and immuno-
histochemical analysis were performed by experienced
neuropathologists according to the 2016 WHO classification.
IDH genotype status was identified with an antibody to the IDH1
(R132H) mutation by immunohistochemical staining. For 31 out
of the 58 patients, IDH mutational status from the immuno-
histochemical staining was further confirmed by sequencing.

Conventional Threshold-Based 18F-FET
PET Imaging Analysis
PET/CT imaging was first analyzed using a dedicated
workstation (Siemens Syngo.via) to obtain semi-quantitative
parameters in 3D volumes. Background mean standardized
uptake value (SUV) was measured initially in a crescent-shape
area, including both gray and white matter on the contralateral
hemisphere as mentioned (27). The brain structural MRI of
patients were reviewed initially to locate the tumor region. A
predefined threshold of 1.6-times of the background mean SUV
was applied for tumor volume of interest (VOI) delineation to
derive lesion maximal SUV (SUVmax), peak SUV (SUVpeak),
mean SUV (SUVmean), the standard deviation of lesion
standardized uptake value (SUVSD), metabolic tumor volume
(MTV) and total lesion tracer uptake (TLU) (28). Maximal
tumor to background ratio (TBRmax), peak tumor to
background ratio (TBRpeak), and mean tumor to background
ratio (TBRmean) were calculated by the division of tumor VOI
SUVmax, SUVpeak and SUVmean with background SUVmean.
TLU was defined as the MTV multiplied by the tumor lesion
SUVmean. For those multifocal glioma patients in our group, the
specific surgical resected or biopsied lesion for pathological
examination were included in our research to avoid bias.

Two experienced nuclear medicine physicians (WY Zhou: 5
years’ experience, T Hua: 10 years’ experience) performed lesion
delineation and obtained two sets of semi-quantitative
parameters separately. Brain midline involvement status were
judged respectively by the two physicians after lesion delineation
Frontiers in Oncology | www.frontiersin.org 3
based on 18F-FET PET imaging. The brain midline structures
included corpus callosum, cingulate gyrus, bilateral thalamus,
third ventricle, brain stem and cerebellar vermis. The inter-
observer agreement indices were evaluated for those obtained
semi-quantitative parameters and glioma location status.

Semi-Quantitative Parameters Filter and
Simple Predictive Model Building
Univariate logistic regression was applied to filter the
conventional semi-quantitative parameters for further model
construction. The best-performance semi-quantitative
parameter was combined with dichotomous brain midline
involvement status for simple predictive model building.

Segmentation and Radiomics Features
Extraction
The original 18F-FET PET/CT data in digital imaging and
communications in medicine (DICOM) format were converted
into NIFTI format using SPM12 (Welcome Trust Centre for
Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/
spm).Then the tumor lesions were manually delineated on 18F-
FET PET images using the ITK-SNAP software (http://www.
itksnap.org/pmwiki/pmwiki.php) with the reference to patients’
structural MRI by the above-mentioned two physicians
separately. If the divergence of a patient’s segmentation by the
two physicians was less than 5%, the final segmentation of this
specific patient was determined as the overlapping region of the
two separate VOIs, and if the divergence was more than 5%, a
senior nuclear medicine physician with over 25 years’ experience
(YH Guan) made the final decision. After that the masks of those
final tumor VOIs delineation on the 18F-FET PET images were
applied to the co-registered CT images for the CT lesion
delineation obtaining.

The registered 18F-FET PET/CT images and the VOIs were
used to extract features. Prior to feature extraction, image
standardization was implemented as follows: sitkBSpline
interpolation resampling techniques were used to standardize
the image scale in the slice, resulting in a pixel size of
2.5mm×2.5mm×2.5mm for PET and 1.5mm×1.5mm×1.5mm
for CT, respectively. Two sets (105*2) of radiomics features
from VOI lesions of the original PET and CT images were
extracted with no further transformation or filtering using
PyRadiomics (https://github.com/Radiomics/pyradiomics) (29),
including 13 shape and size features, 18 first-order features and
74 texture features. The shape and size features included
descriptors of the 3D size and shape of the VOI, which are
independent from the gray level intensity distribution in the
VOI. First-order features included the maximum, mean, and
average absolute deviation of the gray-level intensity values in the
VOIs. The texture features consisted of second-order features
and are used to express heterogeneity in the tumor, from
common matrices such as gray-level co-occurrence matrix
(GLCM), gray-level size zone matrix (GLSZM), gray-level run
length matrix (GLRLM), gray level dependence matrix (GLDM)
and neighboring gray tone difference matrix (NGTDM). The
feature extraction algorithms were standardized by referring to
November 2021 | Volume 11 | Article 772703
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the Image Biomarker Standardization Initiative (IBSI) (30).
Considering the relative low-resolution nature of PET images,
radiomics feature extraction was conducted only on the original
PET images with no further transformation or filtering. The
details of extracted radiomics features were presented in
Supplementary S2.

Radiomics Features Filter and Predictive
Model Establishment
Owing to the relatively small number of glioma patients in our
cohort, less than five radiomics features were filtered for
predictive model construction to minimize overfitting or
selection bias in our radiomics models (13, 31). Least absolute
shrinkage and selection operator (LASSO) and all-subsets
regression were performed to filter the most significant
radiomics features combinations for IDH genotyping. The
LASSO algorithm adds a L1 regularization term to a least
square algorithm to avoid overfitting, which is suitable for the
regression of high dimensional data (32). Logistic regression
analysis was then utilized to integrate the filtered features after
further all-subsets regression selection. Calculated-score of three
predictive models originating from radiomics features of PET,
CT and their combined modalities were obtained by the linear
fusion of the selected discriminating radiomics features weighted
by their respective coefficients.

Prediction Performance, Model Validation,
and Calibration
The performance of the predictive models was evaluated by the
receiver-operating characteristic (ROC) analysis and compared
by the DeLong test. Additionally, the area under the ROC curve
(AUC) with 95% confidence interval (CI), sensitivity, specificity,
accuracy, positive predictive value and negative predictive value
were calculated for each predictive model.

The four models for IDH genotype prediction were evaluated
with k (k=3,5,10) fold cross-validation. The clinical application
value of the predictive models was determined and compared
through the decision curve analysis (DCA) by quantifying the net
benefit to the patient under different threshold probabilities in the
cohort (33).

Statistical Analyses
Descriptive statistics were presented as mean ± standard deviation
or median and range. Categorical variables were expressed as
percentages. An independent sample t-test was used to compare
two groups, while the chi-square test was applied to calculate
p values for categorical variables. The Mann-Whitney rank sum
test was used when variables were not normally distributed. Inter-
observer agreements on 18F-FET PET metrics and dichotomized
location results were assessedwith interclass correlation coefficients
(ICC) and Cohen’s kappa coefficient analysis respectively, defined
as poor (less than 0.2), fair (0.21-0.4), moderate (0.41-0.6), good
(0.61-0.8), and very good (0.8-1.0). Univariate and multivariate
logistic regressions were used to identify the predictive factors for
IDHmutation. The package “glmnet” was used to perform LASSO
binary logistic regression analysis, and the “leaps” package to
achieve all-subset regression algorithms, and the “bootstrap”
Frontiers in Oncology | www.frontiersin.org 4
package, to perform cross-validations by the R software, version
4.0.4 (http://www.r-project.org/). The ROC analyses and the
DeLong test were performed by MedCalc for windows
(version11.3.3.0, MedCalc software, Mariakierke, Belgium). All
other statistical analysis was performed with Prism Software
version 8.0 (GraphPad, San Diego. CA). In all analyses, p < 0.05
was considered to indicate statistical significance.
RESULTS

Clinical Characteristics of Patients
Demographic and clinical data of the 58 enrolled glioma patients
were summarized in Table 1. The patient recruit process is
presented in Figure 1. The time interval between PET imaging
and subsequent tumor resection or biopsy was no more than 90
days for grade II or III patients and not exceeding 30 days for
grade IV glioblastomas. A detailed chronologically enrolled
patients’ clinical data was provided in Supplementary S3.

Inter-Reader Agreement for the Semi-
Quantitative Parameters
The dichotomized brain midline involvement status of the
interested tumor lesion yielded unified results for two separate
readers, and the inter-observer kappa was satisfactory (k=1.0,
p<0.0001). The ICC also showed very good agreement for the
18F-FET PET volume-based semi-quantitative parameters
(ICC>0.95, p<0.0001). Therefore, the results of reader one
(WY Zhou) was applied for further analysis. The absolute
values for all 18F-FET PET metrics based on different IDH-
genotype were also provided in Table 1.

Simple Predictive Model Building
Significant difference of SUVSD (0.2145 ± 0.1577 vs. 0.3782 ±
0.3158, p = 0.034) and TLU [12.23(2.82-25.33) vs. 26.57(11.97-
66.08), p = 0.046] could be observed in the two groups with
different IDH genotype. While MTV of 18F-FET PET uptake was
insignificant (p=0.239), the P values of TBRmax, TBRmean and
TBRpeak were around the borderline (p=0.060, 0.053, 0.067,
respectively). Further univariate logistic analysis results indicated
that SUVSD and the brain midline involvement status were
significant independent predictors for IDH mutation. SUVSD

[≤0.23 vs. >0.23, odd ratio (OR): 3.208, 95%CI (1.013-10.163),
p = 0.048] and brain midline involvement [no vs. yes incidence,
OR: 9.714, 95%CI (2.412-39.125), p = 0.001] were associated with
a higher of IDHmutation. Considering the collinearity of SUVSD

and TBRs (variance inflation factor threshold <5), SUVSD and
dichotomized tumor location status were selected to build the
simple generalized linear model with reasonable IDH genotype
predictive performance [AUC (95%CI) = 0.786 (0.659-0.883),
sensitivity = 85.0%, specificity = 71.1%, accuracy = 75.9%]. The
predictive scores of simple model for each patient were
calculated using the following formula: 0.7836-2.1718*location
(midline structure involved: 1, uninvolved: 0)-2.1462*SUVSD.

IDH-mutants had higher calculated-scores than IDH-wildtypes
in the simple model (-0.0025 ± 0.9398 vs. -1.3997 ± 1.2489,
p < 0.001).
November 2021 | Volume 11 | Article 772703

http://www.r-project.org/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhou et al. FET-PET/CT Radiomics for IDH Prediction
Radiomics Models Performance and
Calculated-Score Analyses
Three radiomics predictive models were developed by machine-
learning based algorithms. Three PET radiomics features were
selected for the building of the PET-Rad Model. Three CT
radiomics features were selected for the building of the CT-
Rad Model. Three CT radiomics features and one PET radiomics
feature were filtered for the building of the PET/CT-Rad Model
(shown in Figure 2). The relative importance analysis of the
PET/CT-Rad Model indicated one of the three CT radiomics
features (CT_glcm_InverseVariance) had the most important
weight with 30.25% and the PET radiomics feature
(PET_glcm_JointEnergy) had the third weight out of the four
features (26.41%) in the PET/CT-Rad Model (shown in
Figure 3). The calculated-scores of the three radiomics models
for each patient were obtained using related formulas and shown
as follows:

Calculated − score (CT − Rad Model) = −3:55667 − 0:03504

∗CT _Maximum2DDiameterSlice − 41:59021

∗CT _ glcm _ InverseVariance + 0:18756

∗CT _ gldm _DependenceVariance

Calculated − score ðPET − Rad ModelÞ = 101:7289 − 0:3486

∗ PET _ firstorder _Maximum + 0:8448

∗ PET _ gldm _DependenceEntropy − 75:1484

∗ PET _ gldm _ LargeDependenceLowGrayLevelEmphasis
Frontiers in Oncology | www.frontiersin.org 5
Calculated − score ðPET=CT − Rad ModelÞ = −5:5892 − 30:1241

∗CT _ glcm _ InverseVariance + 2:7319

∗CT _ glrlm _ LowGrayLevelRunEmphasis + 0:1643

∗CT _ gldm _DependenceVariance − 7:3066 ∗PET _ glcm _ JointEnergy

Results showed IDH-mutants had higher calculated-scores
than IDH-wildtypes in the PET-Rad, CT-Rad and combined
PET/CT-Rad models (1.1262 ± 1.8048 vs. -2.6648 ± 2.1637,
p < 0.001; 1.0008 ± .2.0396 vs. -2.5214 ± 2.5610, p < 0.001;
0.1536 ± 1.2660vs. -1.6186 ± 1.6268, p < 0.001; respectively)
(Figures 4A, B).
Distinction of IDH-Mutants From
IDH-Wildtypes Using Different
Predictive Models
ROC analysis results indicated the AUC of the PET-Rad Model
was 0.812 (95% CI 0.688-0.902), with a sensitivity of 80.0%, a
specificity of 73.7% and an accuracy of 75.9%. The AUC of the
CT-RadModel was 0.883 (95% CI 0.771-0.952), with a sensitivity
of 85.0%, a specificity of 76.3% and an accuracy of 79.3%. The
PET/CT-Rad Model achieved the highest AUC (0.912, 95%CI
0.808-0.970), with a sensitivity of 85.0%, a specificity of 86.8%
and an accuracy of 86.2% (Details were provided in Table 2).
DeLong test results indicated that PET/CT-Rad Model
outperformed the PET-Rad Model and the simple model in
IDH genotype prediction (p = 0.048 and p = 0.034, respectively)
(Figure 5). No statistically significant difference could be
observed among the PET-Rad Model, CT-Rad Model and
simple model.
TABLE 1 | Clinical features and 18F-FET PET semi-quantitative parameters based on IDH genotype.

Characteristics IDH-mutant (n = 20) IDH-wildtype (n = 38) P Values

Age (median and range) 43 (24-68) 39.5 (17-70) 0.648
Gender 0.739
male 13 (65.00%) 23 (60.53%)
female 7 (35.00%) 15 (39.47%)

WHO Grade 0.000
II 18 (90.00%) 13 (34.21%)
III 2 (10.00%) 12 (31.58%)
IV 0 (00.00%) 13 (34.21%)

Operation Type 0.011
total resection 13 (65.00%) 11 (28.95%)
Subtotal resection 5 (25.00%) 10 (26.32%)
Stereotactic biopsy 2 (10.00%) 17 (44.73%)

Midline Involvement 0.001
yes 3 (15.00%) 24(63.16%)
no 17(85.00%) 14 (36.84%)

18F-FET Metrics
TBRmax 2.5773 ± 0.8558* 3.1696 ± 1.2315* 0.069
TBRpeak 2.2451 ± 0.7071* 2.7435 ± 1.0729* 0.076
TBRmean 1.8488 ± 0.2912* 2.0331 ± 0.3592* 0.063
MTV 6.68 (2.47, 14.49)# 9.96 (4.69, 32.51)# 0.657
TLU 12.23 (2.82, 25.33)# 26.57 (11.97, 66.08)# 0.343
SUVSD 0.2145 ± 0.1577* 0.3782 ± 0.3158* 0.045
November 2021 | Volume 11 | Artic
18F-FET,O-[2-(18F)-fluoroethyl]-l-tyrosine; TBR, tumor to background ratio; MTV, metabolic tumor volume; TLU, total lesion tracer uptake; SUV, standardized uptake value. *Values refer to
mean ± standard deviation. #Values refer to median (interquartile range). P values were the results of univariate analysis of ecah characteristic except that bold ones indicated the results of
chi-square tests.
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The decision curve analysis results revealed that the PET/CT-
Rad Model was the most satisfactory predictive model in
differentiating IDH mutation status in these four models
(shown in Figure 6). Representative glioma patients of
different IDH genotypes were provided in Figure 7.

Predictive Efficacy of the Combination of
PET/CT-Rad Model With Dichotomized
Brain Midline Involvement Status
We further explored the combination of the dichotomized tumor
location status and PET/CT-Rad Model for IDHmutation status
prediction, and results indicated the predictive efficacy slightly
enhanced in terms of AUC and accuracy (from 0.912 to 0.917
Frontiers in Oncology | www.frontiersin.org 6
and 86.2% to 87.9%, respectively), although the enhancement
was statistically insignificant.
DISCUSSION

Intratumoral heterogeneity is a significant feature of malignant
tumors. Radiomics techniques have provided the quantification
possibility to further investigate the imaging heterogeneity in
internal space geometry, texture, gray distribution and shape
(34). In our research we investigated the feasibility for PET, CT
and PET/CT radiomics models for IDH mutation status
prediction using LASSO regression based on static 18F-FET
FIGURE 1 | Flow chart showing the selection criteria of enrolled patients.
November 2021 | Volume 11 | Article 772703
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PET/CT imaging in glioma patients. After the combination of
CT radiomics features, the PET/CT-Rad Model significantly
outperformed 18F-FET PET-Rad Model and simple model in
noninvasive IDH status prediction. Our investigation results
could contribute to the further understanding of the
relationship between the intratumoral heterogeneity (e.g.,
tumor cellularity, chaotic vascularization or necrosis, and
tumor-related macrophage infiltration) with CT radiomics
Frontiers in Oncology | www.frontiersin.org 7
features beyond visual perception and amino acid tracer
metabolism patterns in glioma lesions.

Reconstruction algorithms are crucial in PET/CT imaging
analysis. The semi-quantitative parameters and radiomics
features of 18F-FET PET imaging are affected by the
reconstruction algorithms. Iterative and filtered back projection
reconstructions are the two recommended methods in amino
acid tracer PET imaging (6). Owing to the relatively low
A B

FIGURE 2 | Features selection for PET/CT-Rad Model. (A) LASSO regression coefficient of the selected features could change with log (lambda). (B) further all-
subsets regression based on seven features filtered by LASSO. adjr2, adjusted R square; f1, CT_glcm_InverseVariance; f2, CT_glrlm_LowGrayLevelRunEmphasis; f3,
CT_gldm_DependenceVariance; f4, PET_glcm_JointEnergy; f5, CT_glszm_LargeAreaEmphasis; f6, PET_firstorder_Maximum; f7, PET_gldm_LargeDependence
LowGrayLevelEmphasis.
A B

FIGURE 3 | Selected features in the PET/CT-Rad model predicting IDH mutation. (A) Feature importance of selected features; (B) correlation heatmap of selected
features. f1, CT_glcm_InverseVariance; f2, CT_glrlm_LowGrayLevelRunEmphasis; f3, CT_gldm_DependenceVariance; f4, PET_glcm_JointEnergy.
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resolution of PET imaging, the efficacy of PET radiomics features
needs to be enhanced and stabilized with the combination of
structural radiomics features. One major obstacle for CT
radiomics application in glioma was the VOI delineation
process, which amino acid tracer PET imaging could well
complement. With the duplication of the 18F-FET PET lesion
VOI delineation to the co-registered CT imaging, we could
evaluate the efficacy of CT radiomics features. The CT
radiomics predictive model comprises both shape and textural
features from the glcm, and gldm matrixes. An intuitive
interpretation of the signature might be that relatively
homogeneous tumors with less aggressive growth pattern is in
concordance with relatively favorable IDH genotype. Results in
our research showed that after the combination of the co-
registered CT imaging radiomics features, the predictive
accuracy, sensitivity, specificity and AUC of the 18F-FET PET/
CT radiomics model could be enhanced and stabilized in
noninvasive IDH genotype prediction.

Different weighted images in MRI could benefit significantly
in brain imaging. A recent study by Bangalore et al. evaluated the
usefulness of T2-weighted MRI-based deep learning method for
the determination of IDH mutation status (35). The results are
inspiring since T2-weighted MRI is widely available and
routinely performed in the assessment of gliomas. Owing to
the incomplete structural MRI DICOM data of our patient
cohort, we investigated the radiomics features of integrated CT
images in our research. Results showed CT radiomics features
have promising potentials in the IDH genotyping of
glioma patients.

SUVSD is a semi-quantitative parameter based on static 18F-
FET PET images which could reflect the metabolic heterogeneity
in some degree. We have confirmed the efficacy of this semi-
quantitative parameter in 11C-MET and 18F-FET PET imaging in
glioma patients for IDH mutation status prediction (12, 36).
However, cautions should be noticed in interpreting this specific
semi-quantitative parameter because the reproducible lesion
Frontiers in Oncology | www.frontiersin.org 8
delineation procedures are the prerequisite for the application
of SUVSD. In this patient cohort, the most frequently used semi-
quantitative parameters including TBRmax and TBRmean were
found to have borderline significance in differentiating IDH
mutation status. With the enrollment number increases,
further investigation could be applied to observe the efficacy of
these classical semi-quantitative parameters.

Although the radiomics signatures and simple model have
shown efficacy in IDHmutation status prediction, we must know
that all these imaging analyses were based on robust and
repetitive lesion delineation procedures. Experienced manual
segmentation of glioma with the reference of structural MRI
before radiomics features extraction, 1.6 times of contralateral
brain background SUVmean with correct and reproducible
tumor delineation for the acquirement of semi-quantitative
parameters are crucial for this study. Additionally, the
methodologies we used were a 3D classification approach
without the concern of data leakage or the risk of introducing
bias, compared to those 2D slice-wise-built models (37). With
the application of radiomics techniques, abundant imaging
features could be extracted for analysis. In this process caution
should be made to avoid overfitting during the radiomics
analysis, which could lead to bias in result interpretations.
With the consideration of the numbers of our patient cohort
and radiomics features, radiomics models in our research each
consisting of less than five features would be acceptable to
control possible overfitting. Cross-validations have been
applied to evaluate the generalization of these predictive
models owing to the lack of external validation.

Dynamic 18F-FET imaging could provide additional valuable
information besides regular static parameters including lesion
time activity curve pattern, time to peak, and slope. These
parameters could also enhance the performance of static
imaging parameters for IDH mutation detection (38–40).
Moreover, the combination of dynamic parameters of 18F-FET
imaging and radiomics features could benefit the non-invasive
A B

FIGURE 4 | (A) Violin plot of three radiomics models indicated different IDH genotypes has different calculated-scores. The white dot represents the median. The
black rectangle is the range from the lower quartile to the upper quartile. The black line running up and down through the violin diagram represents the range from
the minimal non-outlier value to the maximal non-outlier value. (B) Calculated-scores of the PET/CT-Rad Model for each patient in the glioma patient cohort.
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IDH genotype prediction (19, 41). In our research, dichotomized
tumor location status could slightly enhance the efficacy of PET/
CT-Rad Model (AUC from 0.912 to 0.917 and accuracy 86.2% to
87.9%, respectively). With the increasing enrollment number of
glioma patients, we look forward to further investigate the results
of radiomics features with the addition of the 18F-FET tracer
kinetics and possible clinical features.

Although the amino acid tracer PET imaging has been
recommended for the glioma diagnosis and evaluation, evidence
showed a small portion of glioma patients could have iso- or
hypo-FET uptake than the brain background (42). Limited to the
method outling the tumor VOI, our filtered radiomics model is
not generally applicable for the possible glioma patients with the
iso- or hypo-FET uptake. With the update of the follow-up
information in our facility, methodological optimization could
further facilitate the better understanding of the 18F-FET PET/CT
imaging heterogeneity in glioma patients.

There are limitations in present research. The retrospective
nature of the study, the relatively low patient number, incomplete
molecular biomarkers results (43), and lack of external validation
limit the strength of the results. Radiomics analysis with PET/CT
is substantially influenced by scanning protocol, image acquisition
parameters and reconstruction algorithms (22). Harmonization
and standardization for the radiomics methodology is essential for
results reproductivity. Finally, the percentage of IDH mutation in
our patient cohort was not well-balanced, the possible reason was
that some imaging-typical glioma patients will not be
recommended for amino acid tracer PET imaging owing to
social-economic reasons. Thus, the general application of the
radiomics model needs to be verified in an independent
T
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FIGURE 5 | Receiver operating characteristic analyses of four predictive
models for IDH genotype differentiation.
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FIGURE 6 | Decision curve analysis of four predictive models. The horizontal axis represented the threshold probability where the expected benefit of treatment as
IDH mutation was equal to the expected benefit of avoiding treatment as IDH wildtype. The vertical axis represented the net benefit for the treatment which
considered the benefit of true positive and loss of false positive. The net benefit of all these four models is further compared with the default strategies, which we
treat all patients as IDH mutation (grey line) or as IDH wildtype (black horizontal line). Results indicated PET/CT-Rad model have the most satisfactory clinical value.
FIGURE 7 | Upper row: example of a patient (patient No. 2) with 18F-FET lesion in the right frontotemporal-insular lobe infiltrating the brain midline structure (A)
relatively more intratumoral heterogeneous imaging with a SUVSD of 0.32 (> 0.23) and calculated-scores for the four predictive models (simple model, PET-Rad
model, CT-Rad model and PET/CT-Rad model) were -2.07, -1.82, -1.19, and -3.02. (B) Corresponding low dose CT image of the patient (C, D) T2 FLAIR MRI and
PET/MR fused image; histopathological analysis revealed a WHO grade II diffuse astrocytoma, IDH-wildtype. Lower row: example of a patient (patient No. 28) with
18F-FET lesion in the left frontal lobe without brain midline structure involvement (E) relatively less intratumoral heterogeneous imaging with a SUVSD of 0.17 (< 0.23)
and calculated-scores for the 4 predictive models were 0.42, 0.18, 1.80, and 0.53 (F) Corresponding low dose CT image of the patient (G, H) T2 FLAIR MRI and
PET/MR fused image; histopathological analysis revealed a WHO grade II diffuse astrocytoma, IDH-mutant.
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validation cohort with larger sample size and more comprehensive
molecular biomarker information in future studies.
CONCLUSIONS

In conclusion, we established three predictive radiomics models
and one simple model using static 18F-FET PET/CT images for
the non-invasive identification of IDH genotype in adult
untreated glioma patients. The combination of co-registered CT
and 18F-FET PET radiomics features could significantly enhance
and well balance the IDH genotype prediction, which is crucial in
treatment planning and prognostic evaluation in glioma patients.
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