
R E S E A R CH A R T I C L E

Reliability of quantitative multiparameter maps is high for
magnetization transfer and proton density but attenuated for
R1 and R2* in healthy young adults

Elisabeth Wenger1 | Sarah E. Polk1 | Maike M. Kleemeyer1 |

Nikolaus Weiskopf2,3,4 | Nils C. Bodammer1 | Ulman Lindenberger1,5 |

Andreas M. Brandmaier1,5,6

1Center for Lifespan Psychology, Max Planck

Institute for Human Development, Berlin,

Germany

2Wellcome Centre for Human Neuroimaging,

UCL Queen Square Institute of Neurology,

University College London, London, UK

3Department of Neurophysics, Max Planck

Institute for Human Cognitive and Brain

Sciences, Leipzig, Germany

4Felix Bloch Institute for Solid State Physics,

Faculty of Physics and Earth Sciences, Leipzig

University, Leipzig, Germany

5Max Planck UCL Centre for Computational

Psychiatry and Ageing Research, Berlin,

Germany

6Department of Psychology, MSB Medical

School Berlin, Berlin, Germany

Correspondence

Elisabeth Wenger, Center for Lifespan

Psychology, Max Planck Institute for Human

Development, Lentzeallee 94, 14195 Berlin,

Germany.

Email: wenger@mpib-berlin.mpg.de

Funding information

Wellcome Centre for Human Neuroimaging,

Grant/Award Number: 203147/Z/16/Z;

European Union's Horizon 2020, Grant/Award

Number: 681094; European Research Council,

Grant/Award Number: FP7/2007-2013;

Bundesministerium für Bildung und Forschung,

Grant/Award Numbers: 01EW1711A & B,

01GQ1421B; Max Planck Institute for Human

Development; Max Planck Society

Abstract

We investigate the reliability of individual differences of four quantities measured

by magnetic resonance imaging-based multiparameter mapping (MPM): magnetiza-

tion transfer saturation (MT), proton density (PD), longitudinal relaxation rate (R1),

and effective transverse relaxation rate (R2*). Four MPM datasets, two on each of

two consecutive days, were acquired in healthy young adults. On Day 1, no

repositioning occurred and on Day 2, participants were repositioned between

MPM datasets. Using intraclass correlation effect decomposition (ICED), we

assessed the contributions of session-specific, day-specific, and residual sources

of measurement error. For whole-brain gray and white matter, all four MPM

parameters showed high reproducibility and high reliability, as indexed by the

coefficient of variation (CoV) and the intraclass correlation (ICC). However, MT,

PD, R1, and R2* differed markedly in the extent to which reliability varied across

brain regions. MT and PD showed high reliability in almost all regions. In contrast,

R1 and R2* showed low reliability in some regions outside the basal ganglia, such

that the sum of the measurement error estimates in our structural equation model

was higher than estimates of between-person differences. In addition, in this sam-

ple of healthy young adults, the four MPM parameters showed very little variabil-

ity over four measurements but differed in how well they could assess between-

person differences. We conclude that R1 and R2* might carry only limited person-

specific information in some regions of the brain in healthy young adults, and, by

implication, might be of restricted utility for studying associations to between-

person differences in behavior in those regions.
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1 | INTRODUCTION

Research on human development seeks to delineate the variable and

invariant properties of age-graded changes in the organization of

brain–behavior–environment systems (Lindenberger et al., 2006).

Magnetic resonance imaging (MRI) has become an indispensable tool

for the noninvasive assessment of brain anatomy and microstructure

and will continue to contribute knowledge on how brain structure

changes in response to new environmental challenges or aging.

Quantitative MRI can help us to characterize the brain's micro-

anatomy by using the magnetophysical properties of water molecules

in brain tissue that govern MRI contrasts, which are then in turn used

as surrogate parameters to describe histological properties

(Tofts, 2003; Weiskopf et al., 2021). Recently, a comprehensive quan-

titative multiparameter mapping (MPM) approach was developed,

which provides high-resolution maps of the longitudinal relaxation

rate (R1 = 1/T1), proton density (PD), magnetization transfer satura-

tion (MT), and effective transverse relaxation rate (R2* = 1/T2*)

(Helms et al., 2009; Helms, Dathe, & Dechent, 2008; Weiskopf

et al., 2011). These multiparameter maps are related to microstruc-

tural properties of myelin, iron deposits, and water, among other

things (Draganski et al., 2011), even though it is not a simple one-to-

one mapping and the exact relation to underlying physiological pro-

cesses at the cellular and molecular level is still to be resolved

(Weiskopf et al., 2021).

Central questions in lifespan psychology often pertain to the

range and direction of within-person change and variability – be it lon-

gitudinal change observed over years and decades (Raz &

Rodrigue, 2006), intervention-induced change over weeks and months

(May, 2011), or fluctuations that occur from day to day and from

moment to moment (Schmiedek et al., 2010). Random measurement

error and systematic drifts can compromise the reliable measurement

of change (Karch et al., 2019). Given that the expected effect sizes we

typically seek to detect with structural MR are often no larger than

2%–3% of the quantity under investigation, be it gray matter volume,

mean diffusivity, or other structural brain measures, measurement

error and drift can easily jeopardize the reliable assessment of within-

person changes and between-person differences. If measurement arti-

facts are of similar magnitude as effects of interest, then reliability is

low, and effects of interest cannot be detected. Reliability is a pivotal

issue in longitudinal studies, but it also matters for cross-sectional

studies, when researchers either are interested in stable between-

person differences or when they use time- or age-related differences

between people as a proxy for change. Thus, in both cross-sectional

and longitudinal designs, the stability of MR measures cannot simply

be assumed but must instead be tested explicitly (Noble et al., 2020).

Different scientific communities such as physics and psychomet-

rics can rely on two fundamentally different conceptions of reliability

and error: physics widely uses the coefficient of variation (CoV) and

less frequently the intraclass correlation coefficient (ICC), whereas the

opposite is the case for psychometrics. Each of them is equally impor-

tant but notably provide answers to very different questions. Physi-

cists typically inquire how reliably a given measurement can detect a

given quantity. Therefore, it is common and well-justified to use CoV

as the main measure to assess repeatability, as was done, for example,

in a previous multicenter study of MPM (Weiskopf et al., 2013) or

another study testing within-site and between-site reproducibility

(Leutritz et al., 2020) of MPM. The CoV is a standardized measure of

dispersion and is often expressed as a percentage. It is widely used in

analytical chemistry, engineering, and physics to express precision of a

measurement and repeatability on well-defined objects of measure-

ment. However, Brandmaier, Wenger, et al. (2018) showed that CoV

does not distinguish between error variance and true construct-

related variance, that is, between-person differences in the construct

of interest, and may therefore not be particularly informative for cor-

relational studies interested in assessing and explaining between-

person differences. Instead, cognitive neuroscience commonly relies

on a different conception of reliability, which refers to the precision

of assessing between-person differences. This is typically expressed

as a ratio index, the ICC, which relates the variance within persons

(or groups of persons) to the total variance, and therefore represents

the strength of association between any pair of measurements made

on the same object (Bartko, 1966). It is important to keep in mind that

ICC will increase when within-subject measurements become more

similar or when the true scores of participants become more distinct

from one another. By definition, ICC values must thus be interpreted

contingent upon the characteristics of a given population.

To assess the adequacy of MPM parameters for correlational

studies of human neuroscience, we investigated the reliability of

MPM parameters within participants across four different measure-

ment occasions in relation to between-person differences, using ICC.

Specifically, we made use of intraclass correlation effect decomposi-

tion (ICED), which has been recently introduced by Brandmaier,

Wenger, et al. (2018). ICED estimates overall reliability while attribut-

ing the overall error variance to different sources by making use of

the design features of a given study. We acquired data from 15 volun-

teers, who each were assessed four times. On Day 1, participants

were measured twice back-to-back, without repositioning between

MPM datasets. On Day 2, participants were also measured twice, but

this time with a break in between measurements, which afforded

repositioning of the participants' head. With this study design, we are

able to tease apart three sources of error variance: variance originat-

ing from (1) repositioning the subject between two measurements on

the same day (session-specific error variance; mostly due to different

head position inside the coil); (2) repositioning the subject on another

day (day-specific error variance; e.g., due to different environmental

properties, intrasubject changes, or scanner-related properties); and

(3) other sources of error (residual error variance). Given that the

quantities derived from multiparameter maps, if measured reliably,

can contribute to a better understanding of individual differences in

brain physiology and age-related changes therein, estimating the size

of these sources of error variance is of great methodological interest.

In particular, if the sum of these three sources of error is small relative

to the magnitude of between-person differences, then reliability as

indexed by ICC is high, which bodes well for the investigation of indi-

vidual differences in brain physiology and potential relations to
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individual differences in behavior. Conversely, if the sum of these

three sources of error is relatively large, then these parameters are

not well suited for investigating individual differences of any sort,

including associations to behavior.

2 | METHODS

2.1 | Participants and procedure

Fifteen healthy volunteers (8 females, mean age = 27.30, SD = ±3.34,

range = 22–31 years) participated in the study. All participants had

normal hearing, normal or corrected-to-normal vision, no history of

psychological or neurological diseases, and no contraindication to par-

ticipate in an MR study, like metallic implants, tinnitus, or claustropho-

bia. The sample was quite representative regarding general cognitive

functioning, as indicated by perceptual speed performance measured

via the Digit Symbol substitution test (Wechsler, 1981) and vocabu-

lary via the Spot-a word test (Lehrl et al., 1991; M = 31.3, SD = 2.5;

see Figure 1). For comparison, data from a meta-analysis by Hoyer

et al. (2004) showed a mean performance in the Digit Symbol substi-

tution test of 69.8 in younger adults, and data from another Berlin-

based training study with 100 younger adults had a mean perfor-

mance of 60.3 (SD = 9.5) in this test (Schmiedek et al., 2010), and

data from yet another Berlin-based training study with 44 younger

adults reported a very comparable mean performance in the vocabu-

lary test of 30.3 (SD = 2.7; Lövdén et al., 2012). These behavioral test

results give reason to believe that the chosen sample is representative

of a young adult population on the cognitive level and may therefore

most likely also show to-be-expected variance in brain structure, even

though this link from cognition to brain structure is of course

speculative.

Each participant was scanned four times, distributed over two con-

secutive days. On Day 1, participants were scanned for the first time

with the full MPM protocol (Measurement 1). No repositioning was

done, that is, participants remained inside the scanner, but all scanner

adjustments and settings were reset. Then, participants were measured a

second time with the MPM protocol (Measurement 2). For the Day

2 measurement, all participants were re-invited to be scanned on the fol-

lowing day around the same time of the day and the full MPM protocol

was acquired again (Measurement 3). After that, participants were

moved out of the scanner, the head coil was removed and participants

briefly got up and walked around before lying back down on the scanner

bed and being moved back in. Participants were then scanned for the

fourth time (Measurement 4).

The study received ethical approval by the ethics committee of

the German Association of Psychology (Deutsche Gesellschaft für

Psychologie, DGPs) and was carried out as a pilot study in preparation

for a training intervention study. All participants provided written

informed consent prior to participation.
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F IGURE 1 General cognitive functioning of all 15 participants, as measured by the Digit symbol substitution test for perceptual speed
(Wechsler, 1981) and the Spot-a-word test (MWT-A) for vocabulary knowledge (Lehrl et al., 1991; M = 31.3, SD = 2.5)
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2.2 | MR image acquisition

All MPM datasets were acquired on a Siemens Tim Trio 3 T MR scan-

ner (Erlangen, Germany; VB17a software version) with a standard

radio-frequency (RF) 32-channel receive head coil and RF transmit

body coil. The MPM protocol comprised one static magnetic (B0)

GRE-field map, one RF transmit field map (B1
+), and three multiecho

3D FLASH (fast low angle shot) sequences. The MPM acquisition and

postprocessing have been developed and described in previous stud-

ies (Helms, Dathe, & Dechent, 2008; Helms, Dathe, Kallenberg,

et al., 2008; Weiskopf et al., 2011, 2013) and acquisition parameters

were chosen in accordance with previously published work (Weiskopf

et al., 2013).

The B0 gradient echo field mapping sequence was acquired with

the following parameters: 64 transverse slices, slice thickness = 2 mm

with 50% distance factor, repetition time (TR) = 1020 ms, echo times

(TE) TE1/TE2 = 10/12.46 ms, flip angle α = 90�, matrix = 64 � 64,

field of view (FOV) = 192 � 192 mm, right–left phase encoding

(PE) direction, bandwidth (BW) = 260 Hz/Px, flow compensation,

acquisition time = 2:14 min.

Maps of the local RF transmit/B1
+ field were acquired following

recommendations by Lutti and colleagues (Lutti et al., 2010) and were

measured and estimated from a 3D EPI acquisition of spin and stimu-

lated echoes (SE and STE) with different flip angles. The following

parameters were used: 4 mm isotropic resolution,

matrix = 64 � 48 � 48, FOV = 256 � 192 � 192 mm, parallel imag-

ing using GRAPPA factor 2 � 2 in PE and partition directions,

TR = 500 ms, TESE/STE/mixing time = 39.06/33.80 ms. Eleven pairs

of SE/STE image volumes were measured successively employing

decreasing flip angles α from 115� to 65� in steps of �5� (applied in a

α–2α–α series of RF pulses to produce SEs and STEs; see Akoka

et al., 1993). Acquisition time was 3 min.

The three different multiecho FLASH sequences were acquired

with predominantly T1 weighting (T1w), proton density weighting

(PDw), or magnetization transfer weighting (MTw) by appropriate

choice of repetition time (TR) and flip angle α (T1w:

TR/α = 24.5 ms/21�; PDw and MTw: TR/α = 24.5 ms/6�) and by

applying an off-resonance Gaussian-shaped RF pulse (4 ms duration,

220� nominal flip angle, 2 kHz frequency offset from water reso-

nance) prior to excitation in case of the MTw sequence version. Multi-

ple gradient echoes with alternating readout polarity were acquired at

six equidistant echo times (TE) between 2.34 and 14.04 ms for the

T1w and MTw acquisitions with two additional echoes at

TE = 16.38 ms and 18.72 ms for the PDw acquisition. A high readout

bandwidth (BW) = 465 Hz/pixel was used to minimize off-resonance

artifacts. For an effective spoiling of transverse magnetization after

each TR, gradient spoilers combined with RF spoiling were used with

a phase increment of 137�.

To speed up data acquisition, GRAPPA parallel imaging with an

acceleration factor of two was applied in the phase-encoding

(anterior–posterior) direction (outer/slow phase encoding loop) and

6/8 partial Fourier acquisitions in the partition (left–right) direction

(inner/fast phase encoding loop). Additional acquisition parameters

were as follows: 1 mm isotropic resolution, 176 slices per slab,

FOV = 256 � 240 mm, and acquisition time of each of the three

FLASH sequences = 7:03 min.

2.3 | Estimation of parameter maps

All data analyses and processing were performed in SPM12 (www.fil.

ion.ucl.ac.uk/spm) running on Matlab 2017b (The MathWorks Inc.,

Natick, MA, USA) using the hMRI toolbox (Tabelow et al., 2019;

https://hmri-group.github.io/hMRI-toolbox/). The Create hMRI maps

module was used to compute quantitative and semi-quantitative esti-

mates of R2*, R1, PD, and MT from unprocessed multiecho T1-, PD-,

and MT-weighted RF-spoiled gradient echo acquisitions.

As has been described in more detail elsewhere (Helms, Dathe, &

Dechent, 2008; Helms, Dathe, Kallenberg, et al., 2008; Weiskopf

et al., 2011, 2013), the signal from the PD-, and T1-weighted echoes

can be described by the Ernst equation, whereas the signal strength

throughout a train of gradient-recalled echoes follows a largely expo-

nential decay with time constant T2*—for all three contrasts. For the

MT-weighted contrast, Helms et al. have suggested to treat the MT-

weighting preparation of the sequence like a first pulse in a dual-

excitation FLASH sequence and introduced—based on the associated

extended Ernst equation—a novel semi-quantitative parameter for

describing the MT saturation effect (Helms, Dathe, & Dechent, 2008).

This novel MT parameter is “semi-quantitative” since it still depends

on the efficiency of the applied MT saturation, but—different from

the frequently used magnetization transfer ratio (MTR)—an influence

by the local T1 and also by transmit field inhomogeneities is largely

canceled.

The R2*, that is, the effective transverse relaxation rate (R2* = 1/

T2*) was estimated by applying the ESTATICS approach (Weiskopf

et al., 2014) assuming mono-exponential signal decay with increasing

TE with the same R2* for all three contrast weightings. That is, for all

three contrasts (PDw, T1w, and MTw)—and within each contrast for

the number of available TEs as datapoints—a joint log-linear fit using

ordinary least squares (OLS) is applied. Thereby the slope corresponds

to R2*, identically for all three contrasts, whereas the intercept, that is,

the signal values extrapolated to TE = 0, are representing the three

different contrasts without any influence of this common transversal

relaxation. With this approach, relatively stable values for R2* are esti-

mated for each voxel; additionally, and values largely unaffected by

R2* are estimated for all three contrasts (i.e., extrapolated to TE = 0).

Due to their minimized dependency on R2*, these images are an opti-

mal basis for further calculations.

As a next step, uncorrected R1, PD, and MT maps are calculated

from the extrapolated T1w-, PDw, and MTw measurements (for

TE = 0) by applying the Ernst equation according to Helms and col-

leagues (Helms, Dathe, & Dechent, 2008; Helms, Dathe, Kallenberg,

et al., 2008). Quantitative maps of R1, that is, the longitudinal relaxa-

tion rate (R1 = 1/T1) were corrected for local RF transmit field inho-

mogeneities. To do so, the acquired 3D-EPI-based B1
+ maps (Lutti

et al., 2012) were used after correcting them for EPI-specific
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distortions by means of the gradient echo-based B0 fieldmaps. Also

the MT maps were corrected for residual local RF transmit field

inhomogeneities—using a semi-empirical approach (Rowley

et al., 2021; Weiskopf et al., 2013). Imperfect RF spoiling was also

corrected for in the T1 maps using the approach described by

Preibisch and Deichmann (2009), which was adapted to the FLASH

acquisition parameters used here. PD maps were estimated from the

signal amplitude maps by adjusting for global and local receive sensi-

tivity inhomogeneities using the “unified segmentation” approach

(Ashburner & Friston, 2005). The mean white matter PD value was

calibrated to 69% units, since the global mean PD cannot be esti-

mated accurately without an external standard.

To achieve an improved within-subject coregistration of the cre-

ated maps, we adapted a longitudinal processing pipeline of the data

(see Figure 2 for an overview of the longitudinal registration proce-

dure). To do this, we first thresholded all MT maps (between 0 and 5)

and all PD maps (between 0 and 200) in order to improve the segmen-

tation performance. We then conducted multichannel segmentations

F IGURE 2 Overview of the registration procedure of the multisubject scan–rescan (longitudinal) data

WENGER ET AL. 3589



using the thresholded MT and PD map pairs for each session and each

subject. The resulting gray and white matter segments from the four

sessions per subject were used to create an unbiased within-subject

template using the diffeomorphic registration tool with geodesic

shooting “SHOOT” (Ashburner & Friston, 2011), available in SPM12

onwards. Currently, the shoot toolbox only works with images that

have isotropic voxels, identical dimensions and are in approximate

alignment with each other. Therefore, the registration was based on

images that were first “imported” via the New Segment toolbox. The

resulting deformation fields of this within-subject registration were

applied to the raw MT and PD maps to warp them into each subject's

template space, and the median MT and PD map across all sessions of

one individual was computed. These median maps were then also sub-

jected to a multichannel segmentation, and the resulting median gray

and white matter segments of all subjects were used to create a

between-subject template, again using SHOOT, thereby also creating

deformation fields from each subject's template space to the group

template space. Subsequently, we combined these two deformation

fields (see Figure 2), namely the one from native space to the subject's

template space and the second from the subject's template space to

group template space. All four parameter maps (MT, PD, R1, R2*) of all

four sessions were then normalized to MNI space based on this com-

bined deformation field, again using SHOOT. Also, the median gray

and white matter segments were spatially normalized to MNI space

(with application of Jacobian modulation). Following the voxel-based

quantification (VBQ) approach by Draganski et al. (2011), we used

these normalized tissue class segments together with the four param-

eter maps to finally compute “smoothed tissue specific MPMs” applying
a 6 mm FWHM smoothing kernel and weighted averaging (the full set

of scripts can be found on https://git.mpib-berlin.mpg.de/plasticity/

aktiv/hmri_scripts.git).

These segmented and smoothed maps were used to extract the

mean and standard deviation values across voxels in each one of the

predefined regions of interest (ROIs) for every individual, at every

measurement time point from the Harvard-Oxford cortical and

subcortical structural atlases (https://identifiers.org/neurovault.

collection:262; Desikan et al., 2006). In the following, we focused on a

selection of ROIs that are typically of interest to neuroscientists when

for example investigating language learning and effects of physical

exercise. However, results for all regions of interest of the Harvard-

Oxford atlas can be found here: https://osf.io/6p9bf/. We therefore

extracted means and SD for whole gray matter (cortex; GM), whole

white matter (WM), inferior frontal gyrus (IFG) pars triangularis (pars

tri), IFG pars opercularis (pars oper), orbitofrontal cortex (OFC), ante-

rior cingulate cortex (ACC), precuneus, middle temporal gyrus (MTG),

caudate nucleus, putamen, and pallidum (see Figure 3). Additionally,

we also performed a whole-brain voxel-wise analysis, such that reli-

ability was also estimated for every individual voxel.

2.4 | Statistical analysis

We used intra-class effect decomposition (ICED) to estimate reliability

(Brandmaier, Wenger, et al., 2018). This recently introduced approach

uses structural equation modeling (SEM) of data to decompose reli-

ability in orthogonal sources of measurement error that can be attrib-

uted to different measurement characteristics. Using ICED, we are

F IGURE 3 Cortical regions of interest
(ROIs) from the Harvard-Oxford atlas. In
addition to the six selected regions
displayed here, we also investigated the
subcortical regions caudate, putamen, and
pallidum, as well as whole gray matter and
white matter additionally, we investigated
reliability in a voxel-wise manner

F IGURE 4 Path diagram of a structural equation model derived
from Ωnyx. This diagram exemplifies the parameter magnetization
transfer saturation (MTsat) in whole gray matter (GM). In our repeated
measures design, each participant was scanned four times: Twice on

Day 1 without repositioning (D1M1 and D1M2), and twice on Day
2 with repositioning (D2M1 and D2M2). Data were standardized
across days and measurements, and a saturated mean structure was
used. Var T = true score variance, Var S = session-specific variance,
Var D = day-specific variance, Var E = residual error variance
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able to estimate the main effects of session, day, and residual variance

on measurement error. It therefore allows to distinguish between the

following variance compartments: true-score variance (Var T; rep-

resenting true between-person differences in the construct of inter-

est), day-specific error variance (Var D), session-specific error variance

(Var S; here capturing the effect of repositioning a person between

the MPM datasets, accompanied by a new prescan, i.e. new adjust-

ments of RF amplitude, center frequency and B0 shim), and residual

error variance (Var E). Model specification and estimation were per-

formed in Ωnyx (von Oertzen et al., 2015) and lavaan, an SEM pack-

age for the statistical programming language R (Rosseel, 2012).

The path diagram in Figure 4 illustrates the ICED model for esti-

mating the individual variance components of the total observed vari-

ance of the MPM parameter magnetization transfer saturation (MT) in

gray matter. The four measurements are labeled in the path diagram

as “GM_MT_D1M1,” “GM_MT_D1M2,” “GM_MT_D2M1,” and

“GM_MT_D2M2.” The same labeling convention was applied to all

parameters (MT, PD, R1, R2*) in all ROIs and in every voxel.

First, the baseline SEM model was generated, which estimated all

four variance parameters related to the four sources of variance

(Var T, Var D, Var S, and Var E), with a lower bound of 0.0001 applied

to the estimates. Three additional null models were generated in

which the true, day-related, and session-related variance were,

respectively, set to zero, one at a time. To assess the significance of

the magnitudes of these separate sources of error, likelihood ratio

tests were used to compare the unconstrained models against the

respective null models. A Wald test was used to test the residual error

variance component, as the null model without an orthogonal error

structure cannot be estimated. We report all variances rescaled such

that they add up to one; this way, the variances can directly be inter-

preted as relative contributions to overall variance or variance

explained.

TABLE 2 Parameter-specific means
and SDs of CoVs across participants,
where each participant's CoV is
calculated by dividing the SD across the
four measurement points (normalized by
n � 1 = 3) by the mean of the four
extracted values

Coefficient of variation

ROIs MT PD R1 R2*

Gray matter 1.0% ± 0.6% 0.2% ± 0.2% 0.9% ± 0.7% 1.0% ± 0.5%

White matter 0.9% ± 0.5% 0.1% ± 0.1% 1.1% ± 0.6% 0.8% ± 0.4%

IFG (pars tri.) 1.6% ± 0.6% 0.4% ± 0.2% 1.6% ± 0.7% 2.0% ± 1.2%

IFG (pars oper.) 1.3% ± 0.5% 0.3% ± 0.2% 1.4% ± 0.8% 2.0% ± 1.1%

OFC 2.3% ± 1.9% 0.6% ± 0.4% 2.0% ± 1.3% 2.2% ± 1.1%

ACC 1.4% ± 0.8% 0.3% ± 0.1% 1.7% ± 1.0% 1.9% ± 1.7%

Precuneus 1.4% ± 0.8% 0.3% ± 0.2% 1.7% ± 0.9% 2.0% ± 2.0%

MTG (posterior) 1.2% ± 0.6% 0.4% ± 0.2% 1.0% ± 0.8% 1.7% ± 1.1%

Caudate 2.4% ± 1.0% 0.4% ± 0.3% 2.4% ± 1.4% 2.9% ± 1.2%

Putamen 1.5% ± 0.7% 0.4% ± 0.4% 1.5% ± 0.8% 1.8% ± 1.0%

Pallidum 1.7% ± 0.9% 0.6% ± 0.4% 1.8% ± 0.8% 1.9% ± 1.2%

TABLE 1 Means and standard
deviation for each ROI and for each
MPM parameter: Magnetization transfer
saturation (MTsat), proton density (PD),
longitudinal relaxation rate (R1), and
effective transverse relaxation rate (R2*)

ROIs MTsat (p.u.) PD (p.u.) R1 (s
�1) R2* (s

�1)

Gray matter 0.874 ± 0.011 80.61 ± 0.26 0.622 ± 0.007 16.9 ± 0.2

White matter 1.706 ± 0.017 69.69 ± 0.10 0.967 ± 0.012 21.5 ± 0.2

IFG (pars tri.) 0.912 ± 0.016 80.11 ± 0.38 0.644 ± 0.011 16.2 ± 0.4

IFG (pars oper.) 0.893 ± 0.013 80.46 ± 0.33 0.629 ± 0.010 15.9 ± 0.4

OFC 0.898 ± 0.027 79.96 ± 0.58 0.635 ± 0.016 17.5 ± 0.4

ACC 0.846 ± 0.014 81.98 ± 0.29 0.598 ± 0.012 14.9 ± 0.4

Precuneus 0.899 ± 0.014 80.57 ± 0.27 0.615 ± 0.012 17.5 ± 0.5

MTG (posterior) 0.879 ± 0.013 80.53 ± 0.37 0.617 ± 0.008 16.7 ± 0.3

Caudate 0.913 ± 0.024 81.31 ± 0.40 0.684 ± 0.019 19.2 ± 0.6

Putamen 1.039 ± 0.018 79.26 ± 0.44 0.744 ± 0.013 21.3 ± 0.5

Pallidum 1.211 ± 0.023 77.39 ± 0.59 0.842 ± 0.017 29.7 ± 0.7

Note: Values extracted for ROIs from the Harvard-Oxford atlas, from the longitudinally processed

normalized and segmented parameter maps. Means were calculated across all voxels and all participants.

Standard deviations were calculated across the means of the four measurement points (normalized by

n � 1 = 3). p.u. = percentage units.
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TABLE 3 Variance estimates and reliability measures

ROI Modality RMSEA Var T

Var

D Var S Var E ICC 95% CI

ICED

ICC2 95% CI

Gray matter 1,016,729

voxels

MT 0.215 0.883* 0.000 0.003 0.114* 0.883 0.759–0.951 0.967 0.930–0.986

PD 0.449 0.873* 0.000 0.021 0.106* 0.873 0.636–0.963 0.958 0.855–0.991

R1 0.357 0.728* 0.000 0.000 0.272* 0.728 0.348–0.900 0.914 0.738–0.975

R2* 0.000 0.781* 0.090 0.072 0.057* 0.781 0.547–0.866 0.885 0.740–0.939

White matter 498,645

voxels

MT 0.194 0.875* 0.000 0.000 0.125* 0.875 0.764–0.943 0.965 0.912–0.982

PD 0.291 0.808* 0.000 0.020 0.172* 0.808 0.458–0.914 0.937 0.682–0.979

R1 0.386 0.733* 0.000 0.029 0.238* 0.733 0.385–0.854 0.906 0.737–0.956

R2* 0.125 0.883* 0.062 0.000 0.055* 0.883 0.624–0.950 0.952 0.825–0.986

IFG (pars tri.) 9,503 voxels MT 0.000 0.757* 0.000 0.092 0.151* 0.757 0.598–0.864 0.891 0.769–0.948

PD 0.522 0.769* 0.000 0.000 0.231* 0.769 0.465–0.903 0.930 0.807–0.973

R1 0.274 0.562* 0.000 0.000 0.438* 0.562 0.242–0.769 0.837 0.512–0.929

R2* 0.158 0.389* 0.000 0.229 0.381* 0.389 0.030–0.671 0.627 0.082–0.902

IFG (pars oper.) 11,674

voxels

MT 0.000 0.835* 0.000 0.069 0.096* 0.835 0.654–0.914 0.927 0.816–0.971

PD 0.420 0.816* 0.000 0.000 0.184* 0.816 0.536–0.926 0.946 0.783–0.981

R1 0.122 0.547* 0.000 0.000 0.453* 0.547 0.173–0.797 0.828 0.510–0.935

R2* 0.113 0.427* 0.199 0.000 0.374* 0.427 0.000–0.742 0.688 0.000–0.902

OFC 25,157 voxels MT 0.258 0.570* 0.000 0.000 0.430* 0.570 0.246–0.819 0.841 0.557–0.953

PD 0.307 0.584* 0.000 0.000 0.416* 0.584 0.354–0.685 0.849 0.745–0.900

R1 0.132 0.424* 0.000 0.000 0.575* 0.424 0.000–0.778 0.747 0.042–0.931

R2* 0.290 0.523* 0.000 0.134 0.343* 0.523 0.202–0.770 0.761 0.433–0.917

ROI Modality RMSEA Var T Var D Var S Var E ICC 95% CI ICED ICC2 95% CI

ACC 20,844 voxels MT 0.192 0.817* 0.000 0.000 0.182* 0.817 0.630–0.928 0.947 0.869–0.980

PD 0.541 0.828* 0.000 0.000 0.172* 0.828 0.693–0.911 0.950 0.877–0.974

R1 0.153 0.453* 0.000 0.000 0.547* 0.453 0.124–0.727 0.768 0.380–0.917

R2* 0.338 0.754* 0.000 0.000 0.246* 0.754 0.410–0.919 0.924 0.737–0.976

Precuneus 44,699 voxels MT 0.000 0.834* 0.000 0.031 0.135* 0.834 0.629–0.942 0.942 0.809–0.978

PD 0.241 0.840* 0.016 0.000 0.145* 0.840 0.660–0.945 0.950 0.894–0.983

R1 0.208 0.612* 0.000 0.000 0.388* 0.612 0.307–0.803 0.863 0.623–0.941

R2* 0.304 0.209 0.626* 0.000 0.165* 0.209 0.000–0.671 0.371 0.000–0.856

MTG (post.) 21,879 voxels MT 0.300 0.780* 0.000 0.000 0.220* 0.780 0.542–0.898 0.934 0.831–0.973

PD 0.177 0.836* 0.017 0.031 0.117* 0.836 0.701–0.919 0.938 0.834–0.976

R1 0.000 0.660* 0.105 0.129 0.106* 0.660 0.151–0.875 0.810 0.378–0.960

R2* 0.173 0.532* 0.297* 0.000 0.171* 0.532 0.234–0.759 0.735 0.428–0.920

Caudate 5,750 voxels MT 0.000 0.346* 0.000 0.000 0.654* 0.346 0.083–0.539 0.679 0.197–0.822

PD 0.000 0.662* 0.000 0.000 0.337* 0.662 0.214–0.858 0.887 0.635–0.967

R1 0.294 0.433* 0.000 0.000 0.567* 0.433 0.222–0.656 0.753 0.594–0.897

R2* 0.000 0.571* 0.000 0.000 0.429* 0.571 0.183–0.845 0.842 0.458–0.951

Putamen 9,626 voxels MT 0.236 0.780* 0.000 0.000 0.220* 0.780 0.550–0.893 0.934 0.821–0.969

PD 0.418 0.596* 0.000 0.211 0.193* 0.596 0.165–0.861 0.771 0.264–0.957

R1 0.220 0.666* 0.000 0.034 0.301* 0.666 0.328–0.851 0.876 0.618–0.963

R2* 0.000 0.766* 0.077 0.014 0.143* 0.766 0.227–0.918 0.903 0.429–0.978

Pallidum 4,244 voxels MT 0.244 0.817* 0.000 0.017 0.166* 0.817 0.641–0.917 0.941 0.857–0.976

PD 0.034 0.483* 0.000 0.197 0.320* 0.483 0.192–0.741 0.710 0.339–0.900

R1 0.213 0.715* 0.000 0.000 0.285* 0.715 0.338–0.850 0.909 0.726–0.959

R2* 0.000 0.861* 0.033 0.023 0.082* 0.861 0.669–0.945 0.945 0.833–0.985

Abbreviation: RMSEA, root mean squared error of approximation.

*p of chisq difference from null model < .05 (VarT, VarD, VarS), or p of Wald test < .05 (Var E).
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These variance components were then used to calculate ICC, an

index of reliability between MPM datasets within the study. We

defined ICC as the ratio of between-person variance to total variance

at the level of observed variables. In addition, we calculated ICC2 as a

measure of reliability on the construct level. As such, it is defined as

the ratio of true score variance to total (effective) variance, where the

effective error is the single residual error term that arises from all vari-

ance components other than the construct that is to be measured.

When assuming no day-specific and session-specific effects, we

would obtain exactly the classical definition of ICC2, which scales the

residual error variance with the number of measurement occasions

(Brandmaier, Wenger, et al., 2018, for exact definitions and formulae).

In addition, ICC is a coefficient describing test–retest reliability of a

single measurement (i.e., how well can a single measurement measure

the underlying quantitative value), whereas ICC2 is a coefficient

describing test–retest reliability of the entire design (i.e., how well can

we measure the underlying quantitative value with multiple measure-

ments; here a total of four measurements in the given study design).

As ICC2 is contingent upon a certain study design (with a specific

number of measurement occasions), we prefer to rely on ICC in our

interpretation of the data, as it relies on a single occasion of measure-

ment per person and thus provides a lower bound of reliability. ICC2

values are additionally reported for reference. Note that as the vari-

ance estimates were rescaled such that they represent proportions of

the total variance, true score variance is equal to the ICC here.

Bootstrapped 95% confidence intervals, using 1000 samples,

were generated for ICC and ICC2 values of each parameter (MT, PD,

R1, and R2*) in all ROIs (using boot.ci in lavaan).

We report mean values of all MPM parameters and CoVs. We cal-

culated CoV for each parameter in each ROI by dividing the standard

deviation of the four extracted means (SD, normalized by N � 1 sam-

ple size to avoid bias; in our case, 4 scans � 1) by the overall mean

across all four measurement points (CoV = SD/Mean). In addition, we

visualize true score variance, that is ICC, in every voxel in whole-brain

maps where the whiter a voxel is displayed, the closer its ICC is to 1.

3 | RESULTS

3.1 | Mean MPM parameter values and CoVs

The means and SDs, as well as CoVs of all four MPM parameters in all

ROIs are presented in Tables 1 and 2.

3.2 | Reliability of MPM parameters and variances
explained

In Table 3, we summarize all estimates for the four sources of vari-

ance: true-score variance (i.e., variance attributable to between-

person differences), day-specific error variance, session-specific error

variance, and residual error variance, as well as ICC and ICC2, calcu-

lated using ICED. As the variance components are rescaled such that

they add up to one, they can directly be interpreted as relative contri-

butions to the total observed variance.

3.2.1 | Variance in MT

In both whole gray and white matter, most variance in MT could be

attributed to true score variance (ca. 88%). There were no day- or

session-specific effects, and relatively small amounts of variance

appeared as residual error (11% and 13%). This was also reflected in

high ICC values (GM: 0.88, WM: 0.88). In the localized ROIs, true-

score variance in MT varied quite a bit, from high (84% in pars oper-

cularis, 83% in precuneus, 82% in ACC, 82% in pallidum, 78% in MTG,

78% in putamen, 76% in pars triangularis), to lower (57% in OFC), and

very low (35% in caudate). There were no significant day- or session-

specific effects in any of the regions, indicating a robustness against

repositioning. Therefore, ICCs of MT were excellent for most of the

regions and were only lower for OFC and caudate. In particular, cau-

date showed a poor reliability estimation of MT compared to the

other regions. This is also reflected in the wide confidence interval of

the ICC for MT in caudate, ranging from 0.07 to 0.54 (Figures 5

and 6).

3.2.2 | Variance in PD

In both whole GM and WM, the relative proportion of true-score vari-

ance for PD was very high (87% and 81%), relatively small amounts

appeared as residual error variance (11% and 17%) and again no sig-

nificant effects of day or session appeared indicating no effects of

repositioning. This was also reflected in high ICC values. Note, though,

that per construction the absolute variance of PD in WM is negligible

as PD is set to 69 p.u., see also second row from Figures 7 and 8.
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True-score variance for PD was also high in precuneus (84%), MTG

(84%), ACC (83%), pars opercularis (82%), and pars triangularis (77%),

and slightly lower in caudate (66%), putamen (60%), OFC (58%), and

pallidum (48%), again with no significant day- or session-specific vari-

ances. ICC values for PD were all excellent, except for lower values in

caudate (0.66, CI ranging from 0.15 to 0.85), in putamen (0.60, CI

ranging from 0.17 to 0.86), in OFC (0.58, CI ranging from 0.41 to

0.70), and pallidum (0.48, CI ranging from 0.19 to 0.74).

3.2.3 | Variance in R1

In general, R1 and R2* values exhibited overall much smaller propor-

tions of true-score variances than MT and PD parameters. In both

whole GM and WM, true-score variance for R1 accounted for 73% of

the estimated variance, and larger amounts appeared as residual error

variance (27% and 24%), while effects of day and session were still

not significantly different from zero, that is, showed no effects of

F IGURE 6 Boxplots of MT values for each of the 15 participants and their four measurements. Parts of the plots marked in red indicate an
attenuated ICC value (<0.75) for this region. Note that the range displayed on the y-axis differs across ROIs; importantly, though, the width of the
displayed range is constant across ROIs to ensure comparability and is always 0.207
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repositioning. Accordingly, ICC values for R1 in whole GM and WM

were only fair, both at 0.73. For the smaller, localized ROIs, true-

score variances for R1 were considerably smaller, the highest being

in pallidum (72%), putamen (67%), MTG (66%), precuneus (61%),

pars triangularis (56%), and pars opercularis (55%), and the lower

ones in ACC (45%), caudate (43%), and OFC (42%), the latter three

with a higher proportion of residual error variance than true-score

variance at 55%, 57%, and 58%. Accordingly, ICC values were

rather low for ACC, OFC, and caudate with wide confidence inter-

vals and only slightly better for pars triangularis, pars opercularis,

precuneus, and MTG. Indeed, for R1, none of the ICC values was

above our desired threshold for reliability of 0.75 (Figures 9

and 10).

3.2.4 | Variance in R2*

In GM and WM, true-score variance was found to be 78% and 88% of

the total variance, with a residual error variance of 6% in each. ICC

values were excellent at 0.78 and 0.88. The proportion of true-score var-

iance for R2* was excellent in ROIs of the basal ganglia, namely 77% in

putamen, 86% in pallidum, and was also excellent in ACC (75%). How-

ever, it was considerably lower in the remaining ROIs, with 57% in cau-

date, 53% in MTG, 52% in OFC, and 43% in pars opercularis, and was

poor in pars triangularis with 39% and in precuneus with 21%, a value

not significantly different from the null model. For R2*, there were signif-

icant day-specific effects in MTG (Var D = 30%) and precuneus (Var

D = 63%). However, as total variance in these regions was numerically

so small, the allocation of this small variance to day-specific effects

should not be over-interpreted as true effects of repositioning here. For

R2*, ICC values were overall relatively low, compared to MT and PD,

except for putamen and pallidum and ACC, and reached an unacceptable

value of 0.21 in precuneus (Figures 11 and 12).

3.2.5 | Voxel-specific analysis

In addition to the ROI analysis, we performed the above-described

reliability estimation also in every single voxel. Figure 13 displays true

score variance, that is identical to ICC in our case, in all gray matter

voxels, such that the whiter a voxel appears, the higher its ICC value.

These whole-brain maps of variability for all four parameter maps for

both gray and white matter can be found in OSF at https://osf.io/

6p9bf/. A visual inspection of these images mirrors the above

described pattern of overall good ICC for MT and PD but attenuated

values for R1 and R2*.

4 | DISCUSSION

In this study, we investigated the test–retest reliability of four MPM

parameters, namely MT, PD, R1, and R2*, in whole gray and white mat-

ter as well as in selected gray matter ROIs that are commonly of inter-

est in cognitive neuroscience studies. To evaluate reliability, we used

ICED (Brandmaier, Wenger, et al., 2018), which partitions multiple

sources of unreliability into its constituent components and therefore

provides a more detailed picture of the parameter properties than

CoV or ICC alone.

A basic check of value plausibility shows that the measured

parameter values fall well within the range of those from previously

published studies. For example, the R1 = 0.62/0.98 s�1 in GM/WM

was similar to the R1 reported previously 0.61/1.04 s�1 (Weiskopf

et al., 2013) and 0.63/1.19 s�1 (Wright et al., 2008). The same holds

for our PD estimates of 80.6/81.3 p.u. in GM/caudate, which were

comparable to previous studies reporting 84.4/82.7 p.u. (Weiskopf

et al., 2013), 81.1/81.5 p.u. (Volz et al., 2012), and 82.2/84.8 p.-

u. (Neeb et al., 2008) for the same structures. The small numerical dif-

ference here might originate from the usage of effective PD, that is,

not extrapolating to TE = 0 in some previous publications as, for

example, in the study by Weiskopf et al. (2013). Our estimates of R2*

were also similar to previously published values, namely 16.9/21.5 s�1

compared to 15.2/21.0 s�1 in GM/WM (Weiskopf et al., 2013) and

19.5 s�1 and 21.7 s�1 in WM (Baudrexel et al., 2009; Martin

et al., 2008). For all parameters, the choice of resolution can lead to a

certain change of the measured parameter values by partial volume

effects. In case of R2*, the chosen resolution can produce even more

substantial deviations due to the fact that for larger voxels the

intravoxel B0 field is more inhomogeneous, which causes larger R2*

values.

All four MPM parameters showed excellent reliabilities for whole

gray and white matter across the four measurements. However, we

noted marked differences in reliability among the four MPM parame-

ters for different regions of the brain: MT and PD exhibited excellent

reliability and were robust against participant repositioning within a

scanning session and on different days in nearly all regions, except for

OFC (ICCs fair at 0.57 for MT and 0.58 for PD), caudate (ICC for MT

poor at 0.35, ICC for PD good at 0.66), pallidum (ICC for PD fair at

0.48), and putamen (ICC for PD good at 0.60). In contrast, R1 and R2*
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showed only fair reliability in most regions (<0.60) with the excep-

tion of regions of the basal ganglia, namely putamen and pallidum,

and even poor reliability (<0.40) for R2* in pars triangularis and

precuneus. In some regions, the sum of the error estimates

exceeded between-person differences (e.g., for R1 in ACC, OFC,

and caudate), effectively rendering it hard if not impossible to inter-

pret between-person differences and continue with correlational

approaches. For R2* in precuneus, the proportion of true-score

variance was not significantly different from zero, that is, all partici-

pants yielded very similar values on this parameter in precuneus.

For that region, R2* did not convey any person-specific information

that would be potentially associated with any sort of between-

person differences in behavior. Given that cognitive neuroscience

often aims at delineating brain–behavior relations (Blakemore &

Lindenberger, 2020; Krakauer et al., 2017), knowing about these

differences in reliability is of critical importance.
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These observations on differential reliability of the four MPM

parameters reported above exist in parallel to observations of high

precision of these parameters, when calculated as the variation over

four different measurements on the same scanner, with CoVs ranging

between 0.2% and 2.4%. Our estimates of CoVs are even better than

those reported before, for example, in an intersite and intrasite valida-

tion study (Weiskopf et al., 2013), or in another study testing within-

site and between-site reproducibility of MPM (Leutritz et al., 2020). In

general, other studies have also found quantitative MRI to be highly

reproducible across software updates, different sites, and even across

different vendors (Gracien et al., 2020; Lee et al., 2019; Leutritz

et al., 2020). It is important to note that the findings of high reproduc-

ibility as assessed with CoVs, and those of varying reliability between

the four MPM parameters across different ROIs as assessed with ICCs

do not contradict each other, but are simply different pieces of the

same puzzle. To repeat, these two notions of reliability both capture

the precision of measurement; however, they standardize them with

respect to different sample values; CoV standardizes against the sam-

ple mean, whereas ICC standardizes against the between-person vari-

ance. In experimental approaches, the former logic may be more apt

to quantify a standardized precision of measurement, whereas the

precision necessary for correlational (individual differences) studies is

better captured by the latter.

By definition, ICC values must be interpreted contingent upon

the characteristics of a given population. This is important to keep

in mind when interpreting a given ICC. To the extent a given study

population has lower or higher true score variability, reliability will

increase or decrease proportionally. Here, we have measured

15 healthy younger adults aged 20–30 years. In this sample, ICCs

were high for MT and PD but attenuated for R1 and R2*. It is an

empirical question whether similar results would be obtained in

samples representing an older or diseased population. For example,

it may very well be that the underlying biological characteristics

associated with these parameters simply do not yet show or do not

anymore show any substantial variance in the 15 younger adults

included in this study as childhood and adolescence is over and

older age has not yet begun. Also, the chosen ROI approach here

might limit the ability of MPM to pick up small changes. Classical

voxel-based mass univariate mapping approaches might be better

suited to deliver more fine-grained results that can be picked up at

the individual voxel level, but go unnoticed in the averaging process

done to form an ROI.

According to a commonly accepted biophysical interpretation, R1

depends on the mobility of water in its microenvironment, which is

affected by certain aspects of cell membranes, and is thus related to

myelination due to the presence of dense multiple myelin sheaths

(Weiskopf et al., 2021). R2* is dependent on the magnetic field distri-

bution, which in turn is particularly affected by iron (Cherubini

et al., 2009; Duyn et al., 2007; Péran et al., 2007, 2009; Weiskopf

et al., 2021). Healthy young adults may simply not differ substantially

in iron deposition and molecular mobility near membranes. In other

words, there may not have been between-person differences to be

detected by R1 and R2* in this specific sample. The fact that reliability

of R2* was considerably higher in regions of the basal ganglia speaks

to the fact that this part of the brain is indeed specifically amenable to

iron deposition and may therefore also be more likely to show individ-

ual differences in R2* than other cortical regions. Future studies using

ICC as a reliability measure of MPM parameters in more diverse sam-

ples will show whether reliability attenuation of R1 and R2* in most

cortical regions generalizes beyond the present sample of healthy

young adults.

The importance of considerations on reliability of different

parameters cannot be overstated. As statistical power is directly

influenced by precision of measurement (besides sample size, test

size, and population effect size), it is essential to be aware of the reli-

ability of each parameter that is used to characterize, for example,

age-related changes in brain structure, as is often intended when

using the MPM protocol. With knowledge of reliability estimates, it is

then possible to perform power analyses in the context of individual

differences in longitudinal designs (Brandmaier, von Oertzen,

et al., 2018), thereby enabling informed study design decisions to

optimize conditions to detect a hypothesized effect. The “replicability
revolution” in psychological science is an example of how changing

norms can shape research practices and standards. In only a few years,

practices to foster replicability, be it preregistration of hypotheses and

planned analyses or publishing of analysis scripts or even data, have

rapidly gained in popularity (Nosek et al., 2018). Similar norms would

be highly desirable in the context of reliability: Researchers should

report the reliabilities of all MRI-derived estimates whenever these

are used to study individual differences, similar to what has been pro-

posed for task-fMRI (Elliott et al., 2020). In doing so, researchers can

make more informed decisions about sample size and select reliable

measures for a given research question.

At the risk of redundancy, we would like to reiterate that all four

MPM parameters showed excellent reproducibility, that is, they show

very little variability when measurements are repeated in the same
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participant four times. However, the four parameter estimates do dif-

fer in how informative they are for assessing between-person differ-

ences in young adults. In particular, R1 and R2* seem to carry only

limited person-specific information as can be gathered from the very

low variability among participants displayed in Figures 10 and 12.

In the following, we discuss this differential reliability in light of a

number of potential influences on parameter estimation.

4.1 | Potential causes of variations in
parameter maps

The dual flip angle mapping approach used in MPM (Helms, Dathe, &

Dechent, 2008) provides signal amplitude (proportional to PD) and R1

maps that need to be corrected for RF transmit and receive field inho-

mogeneities. As recommended for the preprocessing stream, we used
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highly accurate and precise RF transmit field maps with a total error

of less than 3% (Lutti et al., 2010, 2012) and corrected for imperfect

RF spoiling. The previous effects lead to deviations from the Ernst sig-

nal equation underlying the R1 estimation and imprecisions in their

correction may thus lead to inaccuracies (Corbin & Callaghan, 2021;

Preibisch & Deichmann, 2009; Yarnykh, 2010). For example, even

small deviations of 3% in the RF transmit field mapping can cause

errors of up to 6% in the R1 maps due to the quadratic dependence of

the estimated R1 on the local flip angle (Weiskopf et al., 2011). MT

saturation maps are largely self-correcting and independent of the RF

transmit and receive fields (Helms, Dathe, & Dechent, 2008). In addi-

tion, residual effects of RF transmit field inhomogeneities were fur-

ther reduced in postprocessing based on the measured RF transmit

maps (Weiskopf et al., 2013).

There is some bias to be expected in R2* (and PD) maps as the

mono-exponential decay model applied by the ESTATICS approach

and extrapolation to TE = 0 is just a simplification that does not

perfectly fit due to partial voluming of different cell compartments

with different transversal relaxation rates as intra- and extra-

cellular and myelin-associated spaces. Thus R2* is poorly defined

and also the extrapolation of the signal to TE = 0 for the PD map-

ping is inaccurate (Neeb et al., 2008; Tabelow et al., 2019;

Weiskopf et al., 2013). Thus, differences in shim, which can also be

caused by differences in relative orientation of the head, may have

influenced R2* maps (Draganski et al., 2011). At the same time, the

high spatial resolution of 1 mm should reduce the effects of suscep-

tibility artifacts on the signal decay due to a smaller within voxel

spin phase coherence loss (Weiskopf et al., 2007). R2* of highly

structured brain structures can also exhibit a field orientation

dependence due to their microstructural geometry even indepen-

dent of shim quality (Papazoglou et al., 2019; Wharton &

Bowtell, 2012). Similar effects have actually been demonstrated for

both R1 and MT within WM (Schyboll et al., 2020). Also, nonlinear

B0 inhomogeneities may have an influence on the R2* maps, as 3D

R2*-mapping by short TE trains have been shown to be affected by

local B0 gradients (Helms & Dechent, 2010). Since the longest echo

time acquired in the PD-weighted sequence was 18.79 ms, the esti-

mation of the long T2* (=1/R2*) found in GM, WM, or CSF is rela-

tively poorly conditioned. The precision of the R2* maps may be

improved by increasing the maximal echo time, but this would also

prolong the total acquisition time (Weiskopf et al., 2013). Addition-

ally, the generally relatively poor reproducibility and performance

of shimming routines might influence the reliable estimation of R2*

(Leutritz et al., 2020).

The RF receive field effect on the PD map was minimized by

image postprocessing. Unified segmentation (Ashburner &

Friston, 2005) was adapted to robustly determine and correct for the

multiplicative receive coil sensitivity profile in the PD maps, similar to

the previously developed UNICORT approach for correcting R1 maps

(Weiskopf et al., 2011). Indeed, this seems to be working quite well,

as the PD estimates exhibited consistently high ICC values across all

the regions in our study (with only a slight attenuation in OFC and

caudate).

As with any other MR sequence, MPM performance may be

impaired in noncompliant volunteers. For example, some participants

may have difficulties to minimize head or body motion, which can

change the magnetic field in the head and affect data quality (Versluis

et al., 2010; Weiskopf et al., 2013). The parameter maps are estimated

from three acquired FLASH sequences and are sensitive to existing

artifacts in any of these. When inspecting our plots above depicting

the individual means of all four measurements for every participant, it

is obvious that some participants' data were in general more variable

than others (e.g., Participants 8 and 12). Some of these problems may

be alleviated by using prospective motion correction (Callaghan

et al., 2015; Maclaren et al., 2012) and phase navigator techniques

(Versluis et al., 2010).

We also note that the physical and biophysical models underlying

the modeling, analysis and interpretation of quantitative MRI and

MPM data pose additional constraints. The brain tissue is a highly

complex structure with a plethora of cells, cellular process and exten-

sive vascularization. Thus, for example, the reduction and description

by single compartments underlying standard relaxation parameters

such as R1 and R2* can only partially capture the tissue's complexity,

effectively causing instabilities in the aggregate parameter measures

(Weiskopf et al., 2021).

5 | CONCLUSION

This study used ICED (Brandmaier, Wenger, et al., 2018) to investi-

gate the reliability of MPM parameters assessed with 3 T MRI. ICED

allowed us to separate sources of unreliability due to session- and

day-specific effects from residual error variance. In line with earlier

validation studies, we found high reproducibility of all four MPM

parameters using CoV throughout all assessed regions of the brain.
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Going beyond common practice, we placed special emphasis on rep-

resenting the precision with which MPM parameters capture

between-person differences. To this end, we calculated the ICC based

on ICED, which quantifies variance within persons in relation to total

variance. We found that reliabilities of between-person differences

were high for all four parameters in relation to whole gray and white

matter. However, across different regions of the brain, the reliabilities

of the four parameters varied greatly. Specifically, MT and PD

emerged as highly reliable parameters that are robust against

participant repositioning in nearly all regions, whereas true-score vari-

ances were lower for R1 and R2*. In some regions, residual-error vari-

ances of R1 and R2* exceeded true-score variances, rendering the

interpretation of between-person differences for these parameters

unviable. We conclude that R1 and R2* carried little person-specific

information in regions outside the basal ganglia in the present sample

of healthy young adults, and recommend researchers to routinely

check the reliability of MRI parameters before examining their associ-

ations to individual differences in behavior.
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