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Abstract

Background. Adults with attention deficit hyperactivity disorder (ADHD) frequently suffer from
sleep problems and report high levels of daytime sleepiness compared to neurotypical controls,
which has detrimental effect on quality of life.

Methods. We evaluated daytime sleepiness in adults with ADHD compared to neurotypical
controls using an observer-rated sleepiness protocol during the Sustained Attention Response
Task as well as electroencephalogram (EEG) slowing, a quantitative electroencephalographic
measure collected during a short period of wakeful rest.

Results. We found that adults with ADHD were significantly sleepier than neurotypical controls
during the cognitive task and that this on-task sleepiness contributed to cognitive performance
deficits usually attributed to symptoms of ADHD. EEG slowing predicted severity of ADHD
symptoms and diagnostic status, and was also related to daytime sleepiness. Frontal EEG slowing
as well as increased frontal delta were especially prominent in adults with ADHD. We have
validated and adapted an objective observer-rated measure for assessing on-task sleepiness that
will contribute to future sleep research in psychology and psychiatry.

Conclusions. These findings indicate that the cognitive performance deficits routinely attrib-
uted to ADHD and often conceptualized as cognitive endophenotypes of ADHD are largely due
to on-task sleepiness and not exclusively due to ADHD symptom severity. Daytime sleepiness
plays a major role in cognitive functioning of adults with ADHD.

Introduction

Attention deficit hyperactivity disorder (ADHD) is a pervasive neurodevelopmental disorder, which
can manifest itself throughout human lifespan and is characterized by symptoms of inattention and
hyperactivity/impulsivity. First-line treatment strategy for ADHD comprises psychopharmaco-
logical treatments, which can be further optimized with the use of psychosocial interventions.
Most adults with ADHD suffer from at least one other psychiatric comorbidity with especially
high prevalence of anxiety and mood disorders [1]. In terms of somatic disease, sleep disorders are
next to asthma and obesity, one of the best documented comorbidities in adults with ADHD [2].

A total of 50-70% of adults with ADHD experience sleep disorders [3,4]. They also report
higher daytime sleepiness [5] and lower sleep quality [6-9] compared to neurotypical controls.
These difficulties have a negative influence on quality of life [10] and make management of
ADHD and diagnostic differentiation much more challenging, as they result in ADHD-like
symptoms [11-13]. However, although verbally reported sleep problems can be robustly linked
to ADHD (with effect sizes ranging from medium to very large), there is only very limited
evidence from objective sleep measures [14].

Electroencephalogram (EEG) slowing is a consequence of normal daytime sleepiness in healthy,
neurotypical adults [15]. It can be used to detect the emergence of fatigue during tasks [16] and can
be reversed by consumption of caffeine [17]. EEG slowing is a part of normal development, seen in
children, adolescents, and young adults as well as part of normal aging, but can also be indicative of
neurodegenerative and neurodevelopmental disorders [18,19]. EEG slowing is also a sign of
excessive daytime sleepiness due to hypoxia typical of sleep disorders such as obstructive sleep
apnea (OSA) [20,21], where it has been linked with hypoxemic frontal lobe dysfunction and
executive function deficits [22,23]. Measured as theta/beta ratio, EEG slowing is a prominent
quantitative electroencephalographic marker in ADHD research [24] and considered valuable in
predicting response to stimulant medication [25], but not for diagnostic purposes [26]. Multiple
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studies reported EEG slowing in people with ADHD [24,25,27,28] and
it has been used a target for neurofeedback treatments in ADHD [29].

Here, we evaluate daytime sleepiness in adults with ADHD
compared to neurotypical controls using observer-rated sleepiness
[30,31] during the Sustained Attention Response Task (SART); and
EEG slowing collected before the cognitive testing session during a
short period of wakeful rest with eyes open [20,21,32]. We aim to
link sleepiness to ADHD-related cognitive performance deficits to
determine the influence of excessive daytime sleepiness on cogni-
tive processing and their relation to symptoms of ADHD. Daytime
sleepiness and hypo-arousal are involved in cognitive physiopa-
thology of ADHD [33,34] and are considered to be some of the
major research priorities in the field [35].

We hypothesize that: (a) adults with ADHD will exhibit elevated
levels of both on-task and at-rest sleepiness compared to neuroty-
pical controls; (b) excessive on-task sleepiness will be linked to
cognitive performance deficits; and (c) EEG slowing will differen-
tiate adults with ADHD from neurotypical controls.

Methods
Sample

We used data from the OCEAN clinical trial (Oils and Cognitive
Effects in Adult ADHD Neurodevelopment, ClinicalTrials.gov Iden-
tifier: NCT01750307). Research ethics approval was granted by the
National Research Ethics Service Committee London (reference:
11/LO/1042). In total, 111 English-speaking adults volunteered to
participate in the study (60 men, 51 women, mean age 32.4 years, SD
10years, mean IQ =110, SD =13). Among them, 81 diagnosed with
ADHD according to the DMS-5 criteria (73 of them with combined-
type ADHD) [36] and recruited via South London and Maudsley
Adult ADHD Outpatient Service, and 30 non-ADHD controls (see
Table 1 for detailed characteristics). Participants were either on stable
treatment with ADHD medication (stimulant or nonstimulant
medication), or on no medication, and could also be taking a low
dose of adjunctive medication for depression or anxiety. Participants
had no mental or physical comorbidities; however, as a lifetime
history of depression is common in adults with ADHD, only partic-
ipants with recurrent depression or undergoing a depressive episode

Table 1. Background, clinical and cognitive variables of the study sample
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were excluded. This resulted in including 14 adults with ADHD
additionally taking antidepressants.

Clinical and cognitive measures

ADHD symptom severity was measured using the Conners’ Adult
ADHD Rating Scales (CAARS) [37], a self-report 18-item scale
assessing the level of inattention and hyperactivity/impulsivity con-
sistent with the DSM-5 criteria for adult ADHD [36]. Two subtests
(vocabulary and matrix reasoning) of The Wechsler Abbreviated
Scale of Intelligence II (WASI-II) [38] were used to measure
IQ. Participants with IQ below 80 were excluded from the study.
Sleep quality was measured using the Pittsburgh Sleep Quality Index
(PSQI) [39], a 19-item questionnaire with high validity and reliabil-
ity in retrospective self-assessment of disturbed sleep quality over the
last month, including the ensuing daytime dysfunction [40]. PSQI
broadly assess both quantitative (sleep latency, number of awaken-
ings) and qualitative (restlessness, functioning) aspects of sleep.

Cognitive function was measured using the SART and the Cued
Continuous Performance Task with flankers (CPT-OX). See Sup-
plementary Material for details of these experimental paradigms.
ADHD participants did not take any stimulant medication for at
least 48 h prior to cognitive performance test sessions. We recorded
commission errors (failure to correctly withhold following a no-go
target) and omission errors (OEs) (failure to correctly respond to a
go target); as well reaction time variability calculated as the stan-
dard deviation (SD) of reaction times.

To evaluate on-task sleepiness during SART, we used video
recordings from the cognitive testing sessions and an observer-rated
sleepiness assessment protocol [30,31]. It is a well-established, low-
cost, and reliable method of rating sleepiness and that has often been
used in studies carried out while the participant is driving a car, which
requires vigilance and sustained attention. Participants’ sleepiness
was evaluated during the three blocks of the SART on a continuous
scale from 0 to 100 and divided into six categories with detailed
behavioral descriptions (ranging from “not drowsy” to “extremely
drowsy”). A Behavior and Mannerism Checklist [30] was additionally
provided to support quantitative evaluation. Please refer to the Sup-
plementary Material for a detailed description of the Observer-Rated
Drowsiness Scale and the Behavior and Mannerism Checklist.

Participants with ADHD Controls

Gender N=81 44 males (54%) N=30 16 males (53%)

Mean SD Mean SD t p value
Age (years) 335 10.3 29.5 8.8 1.90 0.06
1Q 109.4 13.7 111.7 11.4 —0.83 0.41
ADHD symptom severity 65.2 15.7 14.8 9.8 20.22 <0.001
Sleep quality (PSQI) 14.1 6.8 7.2 4.6 5.10 <0.001
SART commission errors 46.8 175 27.9 15.4 5.13 <0.001
SART omission errors 3.8 4.3 11 1.5 3.78 <0.001
SART reaction time variability 87.2 60.7 56.3 18.8 4.02 <0.001
CPT-OX commission errors 7.9 14.9 11 1.4 5.11 <0.001
CPT-OX omission errors 2.1 2.6 0.4 0.8 4.01 <0.001
CPT-OX reaction time variability 142.1 65.2 103.9 73.9 2.59 0.01

Abbreviations: CPT-OX, Cued Continuous Performance Task with flankers; PSQI, Pittsburgh Sleep Quality Index; SART, Sustained Attention Response Task.
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EEG data from the resting-state eyes-open baseline condition
was used for this analysis. EEG slowing was calculated as a ratio of
the slow frequency bands (delta + theta) to the fast frequency bands
(alpha + beta) for each scalp region as well as across regions. This
spectral calculation of EEG slowing ensures that the ratio stays
sensitive to both simultaneous changes across bands as well as in
any individual frequency [32]. See Supplementary Material for
details of EEG recording, pre-processing, and statistical analysis.

Analysis and Results
Observer-rated sleepiness

A main effect of time was found and showed a statistically signif-
icant difference in mean on-task sleepiness at the three different
time points, F(1.65, 155.50) = 15.018, p <0.001, partial * =0.138.
Bonferroni-corrected pairwise comparisons between the time
points revealed that participants became gradually sleepier as
showed by statistically significant 2 - 1 difference (0.119; 95%
confidence intervals [CI] 0.050-0.188, p <0.001) and #3 - t1 dif-
ference (0.148; 95% CI 0.064-0.232, p <0.001).

A main effect of group was also identified and showed a statistically
significant difference in mean sleepiness scores between adult ADHD
and the control group, F(1, 94) = 12.274, p =0.001, partial 7* =0.115.
Bonferroni-corrected pairwise comparisons between groups revealed
that participants with ADHD were on average much sleepier than
neurotypical participants (mean difference=0.40; 95% CI 0.173-
0.627, p =0.001). There was no statistically significant interaction
between group and sleepiness, F(2, 188)=1.643, p =0.19, partial
> =0.017. See Figure 1 for a graphical representation of these results.

As most study participants were not visibly sleepy during the
cognitive testing procedure and because the reliability of the
observer-rated sleepiness tool is higher at the higher levels of sleep-
iness, we created an additional group for participants falling into the
“at least slightly sleepy” category. See Supplementary Material for
details, including analysis of cognitive variables controlled for IQ.

To investigate whether the sleepy group and the ADHD group
differ on relevant clinical scales, we compared mean ADHD symp-
tom severity and sleep quality (as measured by PSQI) in the two

1.2
1.0

.

0.6
0.4 }

0.2

0.0 1

0.482
0.826

< Controls
BADHD

groups. The analysis showed that sleep quality is slightly lower in
the sleepy group (14.03 8.52) compared to the ADHD group
(12.88 +5.82) and that the ADHD group has a slightly higher
ADHD symptom severity (63.64 &= 15.79) than the sleepy group
(60.64 +£24.91), but none of these results were statistically
significant.

To further verify whether sleepiness has a detrimental effect on
cognitive performance over and beyond ADHD symptoms, we
re-analyzed the rate of OEs in the SART task using ADHD symp-
tom severity as a covariate in the model. The result remained
statistically significant F(2, 95)=7.817, p =0.001, partial #* =
0.141; although the adjusted values have changed with the highest
error rate still in the sleepy group (OE = 4.88; standard error [SE] =
0.67;95% CI 3.55-6.22), followed by the neurotypical group (OE =
3.28; SE=1.04; 95% CI 1.22-5.34), followed by the ADHD group
(OE=1.61; SE=0.59; 95% CI 0.45-2.78).

Additionally, we run correlations within the ADHD group alone
to explore the relationship between observer-rated sleepiness as a
continuous variable and the cognitive measures. We did this with
and without covarying ADHD symptom severity and IQ. OEs in the
SART were strongly correlated with the sleepiness level, 7(66) = 0.49,
p <0.001, and the strength of this correlation was independent of
ADHD symptom severity, r(66) = 0.45, p <0.001, or IQ r(66) = 0.44,
p <0.001. Table 2 shows the details on the other cognitive measures.

The multiple regression model statistically significantly pre-
dicted OEs in the SART, F(3, 64) =4.201, p =0.009. R* for the
overall model was 16.5% with an adjusted R* of 12.5%, a small
effect size. Only observer-rated sleepiness added statistically signif-
icantly to the prediction, p =0.004. Regression coefficients and SEs
are presented in Table 3.

EEG slowing

The main effect of group, F(1,100) =9.016, p = 0.003, > = 0.083, as
well as location, F(2,200)=3.184, p <0.001, 112 =0.097, and no
significant interaction, F(2,200) =2.610, p =0.076, > =0.25, were
identified. EEG slowing in all regions was higher in the ADHD
versus neurotypical group and was highest in the frontal region
in the ADHD group (3.00+1.64), see Figure 2 for details.

2 3
0.568 0.579
0.977 1.025

Figure 1. On-task sleepiness (log-transformed) in the adult ADHD and neurotypical group across the three time points. t1 is the 5th minute of the Sustained Attention Response
Task, t2 the 10th, and t3 the 15th minute. Abbreviation: ADHD, attention deficit hyperactivity disorder.



Prominently, frontal delta was almost twice as high in the ADHD
group (1.04 +0.43) than in the neurotypical group (0.53 £0.62)
and statistically significant at Bonferroni-corrected a =0.004, ¢
(103) =4.597, p =0.000012 (see Figure 2 for details).

Table 2. Correlation coefficients between observer-rated sleepiness and
cognitive measures

Covarying for
Observer- ADHD
rated symptom Covarying
sleepiness severity for IQ
SART commission errors 0.14 (0.249) 0.15 (0.210) 0.12 (0.322)
SART omission errors 0.49 (0.001)* 0.45 (0.001)* 0.44 (0.001)*
SART reaction time 0.25 (0.042)* 0.17 (0.172) 0.21 (0.086)
variability
CPT-OX commission 0.22 (0.066) 0.09 (0.492) 0.13 (0.283)
errors
CPT-OX omission errors 0.11 (0.356) 0.12 (0.083) 0.25 (0.039)*
CPT-OX reaction time 0.27 (0.024)*  0.24 (0.037)*  0.28 (0.024)*

variability

All correlations reported as coefficient (p-value).

Abbreviations: CPT-0X, Cued Continuous Performance Task with flankers; SART, Sustained
Attention Response Task.

*p <0.05.

Table 3. Summary of multiple regression analysis for omission errors in the
SART task

Variable B SEg B Sig.

Intercept —0.940 2.565 0.715
Sleepiness 2.763 0.918 0.357 0.004
EEG slowing 0.015 0.316 0.005 0.962

ADHD symptom severity 0.036 0.036 0.119 0.320

Abbreviations: B, unstandardized regression coefficient; SART, Sustained Attention Response
Task; SEg, standard error of the coefficient; f, standardized coefficient.
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EEG slowing was 0.95 (95% CI 0.51-1.39) higher in the ADHD
group (2.67 £ 1.56) than in the neurotypical group (1.72 £ .64). This
difference was statistically significant, #(92.314) =4.343, p <0.001.

Additionally, a statistically significant difference in global EEG
slowing between groups was identified when the sleepy group was
again separated and included as a third group (see details above), F
(2,58.648) =9.226, p < 0.001. Importantly, highest EEG slowing was
in the ADHD group (2.81 £1.76; 95% CI 2.27-3.35), followed by
the sleepy group (2.39 £1.29; 95% CI 1.91-2.87), followed by the
neurotypical group (1.64 £ 0.62; 95% CI 1.35-1.93). The Games—
Howell post-hoc tests revealed a statistically significant difference
between sleepy and neurotypical groups (0.75; 95% CI 0.09-1.41,
p =0.023) as well as between ADHD and neurotypical group (1.17;
95% CI 0.44-1.90, p =0.001), but not between ADHD and sleepy
group (0.42;95% CI —0.44 to 1.28, p =0.473). Although too small of
a group for statistical testing, the four neurotypical controls from
the sleepy group for whom EEG slowing data was available showed
elevated global slowing (2.11 4 0.66) compared to others from the
neurotypical group (1.64 £ 0.62).

There was a small positive correlation between EEG slowing and
ADHD symptom severity, r(100) = 0.196, p = 0.049, as well as a large
positive correlation between EEG slowing and ADHD diagnostic
status 7,(109) =0.762, p <0.001. The logistic regression model was
statistically significant, y*(4) =4.112, p =0.042. EEG slowing was a
statistically significant predictor of ADHD, p =0.047, as well as
ADHD symptom severity, F(1, 100) = 3.978, p =0.049.

Discussion

Adults with ADHD were much sleepier during the attention task
compared to neurotypical controls and they were becoming sleepier
as the task progressed. However, they did not get sleepier at a faster
rate than neurotypical controls as the task progressed. To investi-
gate whether sleepiness or ADHD plays a larger role in cognitive
performance, we created a third group consisting of the sleepiest
subjects. This group had the same ADHD symptom severity as the
ADHD group. We found that participants in the sleepy group made

Central Parietal
1.891 1.501
2.646 2.520

Figure 2. Electroencephalogram slowing in the adult ADHD and neurotypical group across three scalp locations. Abbreviation: ADHD, attention deficit hyperactivity disorder.
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more OEs in both cognitive tasks (SART and CPT-OX) and had the
highest reaction time variability in the SART compared to the non-
sleepy ADHD and neurotypical groups even when we controlled for
ADHD symptom severity in the analysis.

These findings indicate that the cognitive performance deficits
routinely attributed to ADHD and often conceptualized as cognitive
endophenotypes of ADHD, are largely due to on-task sleepiness and
not exclusively due to ADHD symptom severity. Among the most
established of these cognitive performance deficits associated with
ADHD are increased OEs and reaction time variability thought to
reflect preparation-vigilance deficits [41]. Here, we show that apart
from ADHD symptom severity, these measures are to a significant
extent negatively affected by on-task sleepiness. This fits well with
some previous findings, where objectively measured sleepiness cor-
related with OEs but not commission errors in a group of people with
narcolepsy [42] or where sleep deprivation in adolescents with
ADHD resulted in more OEs [43]. Sleepiness is associated with
suboptimal arousal [44] which leads to impairments in cognitive
performance [45]. The cognitive-energetic model of ADHD stressed
the role of arousal in neurodevelopmental cognitive performance
deficits, suggesting that they emerge from reduced energetic states
[46]. According to this model the optimization of under-arousal (low
energetic state) in ADHD results in reduction of attentional lapses
and faster, less variable, and more accurate responses.

Although ADHD participants went through a wash-out phase to
ensure elimination of any short-term medication effect, more long-
term influence of ADHD medication cannot be excluded. ADHD
medication is known to normalize performance measures in people
with ADHD [47]; however, data on long-term effects of stimulant
medication are limited. Additionally, the only way to ensure that
participants were medication free during the testing session would
be to assess the blood concentration of ADHD medication, which
we considered too burdensome for our study volunteers.

This is the first paper using video recordings to evaluate on-task
sleepiness in ADHD. We have adopted a well-established sleepiness
assessment protocol, specifically developed for observer evaluation
of naturalistic videos of participant’s head and torso during a
cognitive task [30]. This systematic protocol adopts a highly reliable
scale of sleepiness [31], which is in widespread research use outside
psychiatry and resulted in strong inter-rater reliability. We recom-
mend our adopted protocol as a low-cost, reliable tool for assessing
on-task sleepiness in psychiatric research.

We also found that global quantitative EEG slowing, as well as EEG
slowing in all analyzed scalp regions was higher in adults with ADHD
versus neurotypical controls and was highest in the frontal region in
the ADHD group. This can be indicative of frontal slowing in ADHD.
In terms of individual frequency bands, elevated frontal delta was very
prominent in the ADHD group. Contrary to our hypothesis, when the
sleepy group was added to the analysis, we found that EEG slowing is
greater in the non-sleepy ADHD group than in the sleepy group or in
the non-sleepy neurotypical group. Importantly, EEG slowing signif-
icantly predicted both ADHD diagnostic status, as well as ADHD
symptom severity. Overall, this suggests that EEG slowing is more
strongly related to ADHD psychopathology than to normal sleepiness
in this group (although data from four neurotypical sleepy subjects
showed elevated global slowing).

In a recent latent class analysis study with a large (N =620)
sample of children with ADHD, it was found that a sub-group of
children with increased delta had a significantly worse cognitive
performance relative to all other groups, as measured by OEs in a
go/no-go task and reaction-time variability in a spatial working
memory task [23]. Elevated delta has also been linked to reduced

resting state connectivity in the default-mode network of the brain
[48], which is a prominent feature of ADHD [49].

According to the Developmental Origins of Health and Disease
Hypothesis (DOHaD) [50,51], our results could be interpreted as a
residue of developmentally early ischemic/hypoxic events. Accord-
ing to DOHaD, deficient prenatal blood and oxygen supply results
in lowered weight at birth, leading to an enhanced risk of develop-
ing ADHD [50,51]. EEG slowing and the elevated frontal delta
could perhaps serve as indicators of these altered neurodevelop-
mental pathways in adults with ADHD.

EEG slowing with elevated frontal delta is also characteristic of
people with OSA and can be attributed to the hypoxia apneic
patients experience during sleep [20]. A similar delta increase has
been found in healthy awake subjects with hypoxia experimentally
induced by gas inhalation [52]. Children suffering from OSA-
hypopnea syndrome (OSAHS) with comorbid ADHD have a sig-
nificantly higher hypoxia than children with OSAHS alone
[53]. Crucially, converging evidence now exist suggesting that
pre- and perinatal hypoxia is a major environmental pathogen
for ADHD with the common risk factors associated with ADHD,
such as low birth weight, prematurity, obstetric complications, and
maternal smoking, all strongly linked to hypoxia-ischemia
[50,54]. Animal models suggest that pre-, peri-, or neonatal
ischemia-hypoxia results in neurocognitive and behavioral deficits
lasting into adulthood [55,56]. Hypoxia results in neuroinflamma-
tion which has been linked to ADHD diagnosis and neurocognitive
deficits related for ADHD [57,58]. Taken together, this body of
evidence gives room for speculation that EEG slowing and the
elevated frontal delta in adults with ADHD might be a residue of
either developmentally early or sleep-related hypoxic events.

Based on the results presented here and some recently published
findings [59], we would like to propose a simple working hypothesis
that daytime sleepiness plays a major role in cognitive functioning of
adults with ADHD. This will come to no surprise to clinicians, who
consistently appreciate sleepiness as an integral part of the disorder
[60]. However, the experimental neuro-cognitive literature on adult
ADHD leaves an impression that sleepiness is a rather peripheral
phenomenon and that the cognitive deficits related to ADHD should
be attributed to state-independent neurocognitive deficits.

Sleep plays a key role in restoring brain function responsible for
higher-order cognition [61]. Functional neuroimaging studies showed
that sleep deprivation reduces global cerebral metabolism, especially
in fronto-parietal cortex and thalamus [62,63], as well as reduces the
hemodynamic response in the dorsolateral prefrontal cortex and
bilateral posterior parietal cortices [64]—regions significantly over-
lapping with the attentional networks of the brain. Moreover, the
extent of such reductions is larger in people with higher susceptibility
to sleep deprivation [65]. Therefore, a simple brain mechanism
underlying sleep deprivation and the resulting daytime sleepiness in
ADHD emerges. As adults with ADHD are more severely sleep
deprived compared to neurotypical control subjects [5] and are more
vulnerable to sleep deprivation [11], in various neurocognitive tasks,
they should manifest larger sleepiness-related reductions in cognitive
performance. Many of the cognitive performance deficits might be
linearly related to the level of daytime sleepiness.

This circadian-dependent pattern of arousal in ADHD [59]
could exacerbate many of the impairments linked with ADHD.
For example, sleep deprivation could be exacerbated by educational
demand of early morning wakefulness [66], which over time can
lead to increased mental health problems [66,67]. Additionally,
evening hyperarousal interferes with falling asleep despite high
sleep drive [68], leading to a vicious circle of sleep deprivation in



ADHD [69]. This might also explain why morning bright light
therapy seems to be promising in ADHD resulting in phase advance
in circadian preference and reduction of symptoms [70].

One clear testable prediction of the working hypothesis would
be that carefully controlling for sleepiness, time of day and/or
individual circadian rhythms, would result in substantial reduction
in the neurocognitive deficits in replications of classic ADHD
studies. This might possibly lead to identification of specific areas
of cognition that are influenced by excessive daytime sleepiness to a
different extent, which would enable a more precise specification of
the state- and context-independent nature of cognition in adults
with ADHD.
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