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Abstract

The DNA cutting and joining reactions of HIV-1 integration are catalyzed by integrase (IN), a viral protein that functions as a
tetramer bridging the two viral DNA ends (intasome). Two major obstacles for biochemical and structural studies of HIV-1
intasomes are 1) the low efficiency of assembly with oligonucleotide DNA substrates, and 2) the non-specific aggregation of
both intasomes and free IN in the reaction mixture. By fusing IN with a small non-specific DNA binding protein, Sulfolobus
solfataricus chromosomal protein Sso7d (PDB: 1BNZ), we have engineered a highly soluble and hyperactive IN. Unlike wild-
type IN, it efficiently catalyzes intasome assembly and concerted integration with oligonucleotide DNA substrates. The
fusion IN protein also functions to integrate viral reverse transcripts during HIV-infection. The hyperactive HIV-1 IN may
assist in facilitating future biochemical and structural studies of HIV-1 intasomes. Understanding the mechanistic basis of the
Sso7d-IN fusion protein could provide insight into the factors that have hindered biophysical studies of wild-type HIV-1 IN
and intasomes.
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Introduction

Integration of retroviral DNA into the host chromosomal DNA

is an essential step in the retroviral replication cycle (reviewed in

[1]). The newly synthesized viral DNA is initially blunt ended, yet

prior to integration into cellular DNA it must be processed by the

removal of two nucleotides from each 39 end. The 39 end

processing reaction exposes the 39 hydroxyl groups that are used in

the subsequent attack of phosphodiester bonds at the site of

integration into host chromosomal DNA within the nucleus during

the DNA strand transfer reaction. In the case of HIV, the sites of

insertion on the two target DNA strands are separated by 5 bp,

resulting in a 5 bp duplication of target DNA sequence flanking

the integrated provirus upon repair of the integration intermedi-

ate.

Under most reaction conditions HIV-1 integrase (IN) predom-

inantly catalyzes a half-site reaction in which only a single viral

DNA end is joined to one strand of target DNA, rather than the

two-ended reaction that is required for productive integration. In

contrast, preintegration complexes (PICs) isolated from infected

cells exclusively carry out two-end integration in vitro. Improved

reaction conditions support concerted integration [2–4], but the

efficiency is low and both the substrates and products aggregate.

Concerted integration proceeds through a series of stable

nucleoprotein complexes, or intasomes [5]. First, a tetramer of

IN bridges the pair of newly reverse-transcribed viral DNA ends to

form the Stable Synaptic Complex (SSC). Processing of the viral

DNA ends converts the SSC to the cleaved intasome (CI) [6] or

cleaved donor complex (CDC) [7]. Next, subsequent to nuclear

import, the CI captures a target DNA and covalently joins viral to

target DNA. The product DNA remains associated with the IN

tetramer in a stable complex called the Strand Transfer Complex

(STC). IN inhibitors such as Raltegravir and Dolutegravir

recognize intasomes rather than free IN protein [8], so high

resolution structures of intasomes are needed to understand the

atomic details of the mechanism of inhibition and evolution of

resistance. To date there are no high-resolution structures of HIV

intasomes, although structures of the closely related Prototype

Foamy Virus (PFV) intasomes have been determined [6,9,10]. The

PFV structures serve as an excellent guide to model the active site

of HIV intasomes [11,12], but sequence divergence makes

modeling less reliable outside the immediate vicinity of the active

site.

The major obstacles to high-resolution structural studies of HIV

intasomes are: 1) the low efficiency of assembly with oligonucle-

otide DNA substrates, and 2) non-specific aggregation of both

intasomes and free IN in the reaction mixture. In contrast, PFV

intasomes are soluble and monodisperse at high concentration and

are efficiently assembled with oligonucleotide DNA [10,13]. A

striking feature of PFV IN is the presence of an extra domain, the

N-terminal extension domain (NED), which interacts with viral

DNA in the PFV intasome structures. We therefore tested whether

fusing non-specific DNA binding domains to the N-terminus of
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HIV-1 IN would confer some of the favorable properties of PFV

IN. One of the domains we tested, Sulfolobus solfataricus
chromosomal protein Sso7d (PDB: 1BNZ), resulted in a hyperac-

tive IN protein. Unlike wild-type IN, it efficiently catalyzes

intasome assembly and concerted integration with oligonucleotide

DNA substrates in vitro. The intasomes are also much more

soluble than those assembled with the wild-type protein. The

hyperactive HIV IN will facilitate future biochemical and

structural studies of HIV intasomes.

Materials and Methods

DNA substrates and recombinant DNA construction
The oligonucleotide viral DNA substrates used in this work

contained 10 bp of a GC rich motif (AGCGTGGGCG) at the 59

end, followed by U5 DNA sequence from the long terminal repeat

(LTR) terminus. Double strand pre-processed DNA substrates

were: U5-19, AGCGTGGGCGTCTCTAGCA; U5-21, AGCG-

TGGGCGAATCTCTAGCA; U5-23, AGCGTGGGCGAAA-

ATCTCTAGCA; U5-25, AGCGTGGGCGGGAAAATCTC-

TAGCA; U5-27, AGCGTGGGCGGTGGAAAATCTCTAGC-

A; U5-29, AGCGTGGGCGGTGTGGAAAATCTCTAGCA;

U5-33, AGCGTGGGCGGTCAGTGTGGAAAATCTCTAGC-

A; U5-37, AGCGTGGGCGTTTAGTCAGTGTGGAAAAT-

CTCTAGCA; U5-41, AGCGTGGGCGCCCTTTTAGTCAG-

TGTGGAAAATCTCTAGCA.

U5-25 was used for the experiments, unless otherwise noted.

Fluorescent DNA substrates were prepared by attaching 6-FAM

fluorophor at the 59 ends of the above oligonucleotides.

Oligonucleotides were purchased from Integrated DNA Technol-

ogies (Coralville, Iowa). An N-terminal His-tagged Sso7d fusion to

the HIV-1 IN sequence (Sso7d-IN) was synthesised by GenScript

(Piscataway, NJ) in pET-28a. Various lengths of glycine linker

were introduced between the Sso7d and IN domains. Sso7d-IN

Figure 1. Sso7d-IN is a hyperactive IN. A, Schematic of the IN fusion proteins. NED, N-terminal extension domain NTD, N-terminal domain; CCD,
catalytic core domain; CTD, C-terminal domain. B, Comparison of the solubilities of wild-type HIV-1 IN and Sso7d-IN. Proteins were incubated at the
indicated NaCl concentrations in 20 mM HEPES pH 7.5, 10% glycerol, 5 mM DTT and 1 mM EDTA, centrifuged and the supernatants and pellets were
analyzed by SDS PAGE. C, Schematic of the in vitro integration reaction with a double stranded oligonucelotide mimicking viral LTR-U5 and a circular
target DNA. D, Strand transfer reaction carried with either wild-type HIV-1 IN or Sso7d-IN with an 11 amino acid linker and a fluorescently labeled viral
DNA substrate (U5-25) in 20 mM HEPES pH 7.5, 10 mM DTT, 5 mM MgCl2, 4 mM ZnCl2, 100 mM NaCl, 300 ng pGEM-9zf and 0.5 mM viral DNA
substrate. The position of concerted and half-site integration products is indicated. The same gel was visualized by either ethidium bromide staining
(left panel) or a Typhoon 8600 fluorescence scanner (right panel).
doi:10.1371/journal.pone.0105078.g001
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with an 11 glycine linker (referred as to Gly-11) was used for this

work unless otherwise noted. A DNA binding deficient mutant,

Sso7dmut, harbored two point mutations, W24A and R43E. Vpr

fusion (Vpr-IN) constructs were prepared by insertion of Sso7d-IN

or Sso7dmut-IN DNA into pLR2P-Vpr vector DNA between the

BamHI and XhoI sites; the constructs maintained the upstream

PR cleavage site IRKVL/FLDGI.

Protein expression and purification
His-tagged wild-type IN and Sso7d-IN were expressed and

purified essentially as described [5] with minor modifications.

Briefly, the IN was expressed in E. coli BL21(DE3) and the cells

were lysed in buffer containing 20 mM Hepes pH 7.5, 10%

glycerol, 2 mM 2-mercaptoethanol, 20 mM imidazole and 1 M

NaCl. The protein was purified by nickel-affinity chromatography

and the His-tag was removed with thrombin. Aggregated protein

was removed by gel filtration on a Hiload 26/60 Superdex-200

column (GE Healthcare) equilibrated with 20 mM Hepes pH 7.5,

10% glycerol, 5 mM DTT, 1 mM EDTA and 1 M NaCl. The

protein was concentrated using an Amicon centrifugal conten-

trator (EMD Millipore) as necessary, flash-frozen in liquid nirogen

and stored at 280uC.

Figure 2. Optimization of reaction conditions with Sso7d-IN and oligonucleotide DNA substrates. Concerted integration bands are
indicated with arrows. A, Effect of donor DNA length. The reactions were carried with 1 mM Sso7d-IN (Gly-11) and 0.5 mM viral DNA substrate
containing a ‘‘GC rich’’ motif in 20 mM HEPES pH 7.5, 10 mM DTT, 5 mM MgCl2, 4 mM ZnCl2, 100 mM NaCl, and 300 ng pGEM-9zf. B, Reactions were
carried with 1 mM Sso7d-IN differing in the length of the glycine linker. C, Concerted integration under optimized conditions. The ratio of Sso7d-IN
(Gly-11) to donor DNA (U5-25) was kept constant at 2:1. Sso7d-IN concentrations are 0.4 mM (lane 1), 1.0 mM (lane 2), 2.0 mM (lane 3), 4.0 mM (lane 4)
and 8.0 mM (lane 5). 25% glycerol was included in the reaction buffer. The DNA smear (S) below the linear concerted integration product results from
multiple integrations into the same target DNA (depicted in D).
doi:10.1371/journal.pone.0105078.g002
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Integration assay and intasome assembly
IN (1 mM, unless otherwise noted) and 0.5 mM viral DNA

substrate were preincubated on ice in 20 mM HEPES pH 7.5,

25% glycerol, 10 mM DTT, 5 mM MgCl2, 4 mM ZnCl2, and

100 mM NaCl in a 20 ml reaction volume. 300 ng of target

plasmid DNA pGEM-9zf was then added and the reaction was

initiated by transfer to 37uC and incubation for 1 hr. For

integration product analysis, the reactions were stopped by

addition of SDS and EDTA to 0.2% and 10 mM, respectively,

together with 5 mg of proteinase K. Incubation was continued at

37uC for a further 1 hr. The DNA was then recovered by ethanol

precipatation and subjected to electrophoresis in a 1.5% agarose

gel in 1x TBE buffer. DNA was visualized either by ethidium

bromide staining or by fluorescence using a Typhoon 8600

fluorescence scanner (GE Healthcare). Intasome assembly was

carried out in the same way except that no target DNA was added

and CaCl2 was substituted for MgCl2. For electrophoretic mobility

shift assays of intasomes (EMSA), the reaction was stopped after

1 hr incubation at 37uC by chilling on ice and addition of 10 mg/

ml heparin. A 2.5 ml aliquot was subjected to electrophoresis on a

3.0% low melting 1x TBE agarose gel (SeaKem LE agarose)

containing 10 mg/ml heparin. Integration products were se-

quenced as described [14]. Briefly, linear DNA corresponding to

concerted integration products was isolated from an agarose gel

and ligated to the Tn5 aminoglycoside-39-O-phosphotransferase

(kanamycin resistance cassette) gene. The DNA was then

transformed into E. coli, and the plasmids were recovered from

kanamycin resistant colonies. Plasmids with the expected correct

size were sequenced and analyzed.

Size-exclusion chromatography of intasomes
500 mM NaCl was added to scaled-up intasome assembly

reaction mixtures (100 ml). After incubation at RT for 15 min, the

mixture was centrifuged at 15,000 g for 15 min and the

supernatant was concentrated to 50 ml using a micro concentrator

(Satorius Stedim Biotech) and loaded onto a Superdex 200 PC

3.2/30 gel filtration column (GE Healthcare) equlibrated with

20 mM HEPES pH 7.5, 20% glycerol, 5 mM DTT and 500 mM

NaCl. The flow rate was 40 ml/min and the fraction size was

50 ml. Fractions were assayed for integration activity. Briefly, 20 ml

of each fraction was added to a 80 ml reaction mixture containing

20 mM HEPES pH 7.5, 25% glycerol, 10 mM DTT, 5 mM

MgCl2, 4 mM ZnCl2, and 300 ng of pGEM-9zf. The NaCl

concentration was adjusted to 100 mM. Integration products were

analyzed as described above.

Infectivity assay for Sso7d-IN function
The infectivity assay is based on the ability of IN expressed as a

Vpr fusion protein to trans-complement virus lacking a functional

integrase in a single round of infection. Plasmids pNLX.Luc.R-

[15], pN/N.Luc(R-) [15], and pNLX.Luc.R-DIN [16] expressed

single-round HIV-1NL4-3 carrying wild-type IN, D64N/D116N IN

active site mutations, or a stop codon between the RT and IN

boundary, respectively. Plasmid pRL2PVpr-IN expressed Vpr

fused to the IN protein from HIV-1SG3 [17]. The D64A missense

mutation was introduced into the IN coding region of pRL2PVpr-

IN using PCR-directed mutagenesis. pRL2PVpr-IN was modified

by replacing the coding sequence of SG3 IN with that of NL4-3

IN. The coding sequence for Sso7d was inserted into each plasmid

so as the fuse Sso7d to the N-terminus of IN with a 11 aa glycine

linker. Plasmid pCG-VSV-G [15] was used to express the vesicular

stomatitis virus G (VSV-G) glycoprotein.

HEK293T cells were grown in Dulbecco’s modified Eagle

medium supplemented to contain 10% (v/v) fetal bovine serum,

100 IU/mL penicillin, and 100 mg/mL streptomycin. Pseudovir-

ions harboring transcomplemented IN were constructed by co-

transfecting HEK293T cells with pRL2PVpr-IN expression

plasmids as described [16]. Cell-free supernatants were measured

for p24 content utilizing a commercial p24 ELISA kit (Advanced

Biosciences Laboratories), and SupT1 T cells were infected with

p24-normalized levels of virus as described [16]. Raltegravir

(RAL; 10 mM), which was obtained from the National Institutes of

Health AIDS Research and Reference Reagent Program, was

added to target cells at the time of infection.

Supernatants for immunoblotting were pelleted via ultracentri-

fugation at 4uC for 2 h in a Beckman SW41 rotor at 32,000 rpm.

Pelleted virions were lysed in 40 ml SDS/PAGE sample buffer

[0.3125 M Tris-HCl pH 6.8, 2% SDS, 10% (wt/vol) glycerol, 5%

(wt/vol) 2-mercaptoethanol, 0.001% bromophenol blue, 0.1 M

dithiothreitol], boiled for 5 min, and p24-normalized levels of viral

lysates were fractionated by SDS/PAGE. IN and p24 were

Figure 3. Sequence analysis of concerted integration products.
A, Cone presentation of target duplication size distribution or deletions
in concerted integrants. 36 clones contained a 5 bp duplication. 10
clones contained a short terminal deletion, likely resulting from
contaminating DNA from the smear below the concerted integration
product. B, Weblogo representing nucleotide base frequencies at the
junction of concerted integration products (n = 72). The arrow indicates
the middle position of the 5 bp target site duplication. Alignment of
integration site revealed a weak consensus target sequence (GTA/TAC).
The overall height of the stack indicates the sequence conservation at
that position, while the height of symbols within the stack indicates the
relative frequency of each nucleotide at that position. The figure was
created by WebLogo.
doi:10.1371/journal.pone.0105078.g003
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detected using mouse antibodies 8E5 [18] and anti-HIV-1 p24

(Abcam) at 1:5,000 and 1:1,000 dilution, respectively. Horseradish

peroxidase-conjugated secondary antibodies (Dako) were used at

1:10,000.

Results

Construction of a hyperactive IN mutant
PFV IN has several advantages over HIV IN that make it more

amenable to structural studies. The protein is soluble in solution

and remains so when complexed viral DNA ends in the SSC

[10,13]. Furthermore, it assembles SSCs and is highly active with

short oligonucleotide viral DNA substrates. One major difference

between HIV IN and PFV IN is the presence of the extra NED

that binds DNA. Since other attempts to improve the properties of

HIV IN by mutagenesis have been largely unsuccessful, we

decided to take a long-shot approach of fusing other non-specific

DNA binding domains to the N-terminus of HIV IN to make it

more similar to the PFV enzyme (Figure 1A). We screened more

than 30 DNA binding domains, including the PFV NED, zinc

finger domains, pur repressor DNA binding domains, poxvirus

type IB topoisomerase DNA binding domains, and Sso7d (S.
solfataricus chromosomal protein). As expected, most of fusion

proteins exhibited worse behavior and lower activity than the wild-

type IN. In contrast, we found that HIV IN fused with Ssod7

behaved much better than wild-type IN and was predominantly

monomeric under conditions where wild-type is extensively

aggregated (data not shown). Sso7d is a small (,7,000 KDa),

chromosomal protein from the hyperthermophilic archaebacteria

S. solfataricus. It binds to DNA non-specifically and the structure

in complex with DNA has been solved [19]. Fusion of this domain

to other proteins has previously been shown to confer interesting

properties, including increasing the processivity of DNA polymer-

ases [20].

Sso7d - HIV IN is competent for highly efficient concerted
integration in vitro

Wild-type IN has very low solubility in physiological buffer

conditions (150 mM NaCl). In order to keep it soluble, it is usually

stored in high salt (such as 1 M NaCl). We first compared the

solubility of Sso7d-IN protein with that of wild-type. The same

amount of each protein (3 mM) was incubated in 20 mM HEPES

pH 7.5, 10% glycerol, 5 mM DTT and 1 mM EDTA in the

presence of NaCl ranging from 50 mM to 1 M at room

temperature for 30 min. After centrifugation at 15,000 g for

15 min, the soluble protein in the supernatant and the insoluble

protein in the pellet were analyzed by SDS-PAGE. The results are

shown in Figure 1B. Sso7d-IN exhibited much better solubility

than wild-type IN, remaining soluble even at 150 mM and

100 mM NaCl conditions. We next analyzed the ability of Sso7d-

IN to catalyze concerted DNA integration with short (25 bp)

oligonucleotide viral DNA substrates containing a 6-FAM

fluorophore and a circular target DNA (Figure 1C) in a buffer

containing 20 mM HEPES pH 7.5, 10 mM DTT, 5 mM MgCl2,

4 mM ZnCl2, and 100 mM NaCl, in the absence of glycerol,

DMSO and PEG, which are required for integration with wild-

type HIV IN (Figure 1D). Concerted integration was readily

detected and activity was maximal at a protein to viral DNA ratio

of about 2:1. The panel on the left is stained with ethidium

Figure 4. EMSA of intasomes assembled with Sso7d-IN (Gly-11) and a 25 bp DNA substrate (FAM labeled U5-25). To prevent non-
specific DNA binding, 10 mg/ml of heparin was added to the reaction mixture after intasome assembly as well as into 3% agarose gels. A, Intasomes
assemble with Sso7d-IN (lane 3), but not with wild-type HIV-1 IN (lane 1) or the Sso7d domain alone (lane 2). B, Sso7d-IN specifically assembles
intasomes on LTR-U5 sequence (lane 1), but not on ‘‘CA/GT mut’’ (lane 2) or ‘‘3 bp mismatch’’ (lane 3) DNAs. In the ‘‘CA/GT mut’’ DNA, the conserved
‘‘CA’’ dinucleotide is replaced by ‘‘GT’’ (highlighted in the sequence). ‘‘3 bp mismatch’’ was prepared by replacing of ‘‘ACT’’ with ‘‘TGA’’ at the 59 end
of the non-joining strand.
doi:10.1371/journal.pone.0105078.g004

Engineered Hyperactive HIV-1 Integrase

PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e105078



Figure 5. Size-exclusion chromatography of intasomes assembled with Sso7d-IN (Gly-11) and 25 bp DNA (U5-25 DNA). A, Elution
profile of intasomes on Superdex 200 2.3/30. The peak labeled free protein as expected elutes in the presence of zinc at a position consistent with a
tetramer of Sso7d-IN. The intasome peak elutes at greater than 400 kD relative to protein standards, which is greater than expected for monomeric
intasomes. B, Fractions 1 to 15 (F1–F15), corresponding to 13.75 min to 32.5 min elution time (highlighted with blue bar) were analyzed by SDS PAGE
(panel B) and 3% agarose gel electrophoresis (panel C), and visualized by silver staining and ethidium bromide staining, respectively. D, Fractions F5
to F20 (highlighted in red), corresponding to 18.75 min to 38.75 min elution time, were tested for strand transfer activity in the presence of Mg2+ and
supercoiled plasmid DNA. Note that the bulk of strand transfer activity co-elutes with the protein-DNA complex at around 23–28 min elution time
(F8–F11). Concerted integration products are indicated by the arrow. The smear resulting from multiple concerted integration events is indicated by
the square brackets.
doi:10.1371/journal.pone.0105078.g005
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bromide and in the right panel the 6-FAM fluorophore is

visualized. Interestingly, mutations in Sso7d that impair DNA

binding did not reduce the hyperactive phenotype (Figure S1).

Optimization of the Sso7d-IN construct and reaction
condition

The length of LTR-U5 DNA sequence was varied to maximize

the reaction efficiency (Figure 2A). Concerted integration was

Figure 6. Sso7d-IN is functional in virions. The assay is based on the ability of IN expressed as a Vpr fusion protein to transcomplement N/N
virus lacking a functional integrase. A, HIV-1 infectivity normalized to the level obtained with Vpr-IN complementation. The Vpr fusions used for
complementation and the infections that were conducted in the presence of RAL are indicated. Sso7d(mut) contains the mutations W24A and R43E
which abrogate DNA binding. Graphed are averages with standard deviation for n = 3 (infections with RAL or Vpr-IN-D64A) or n = 6 independent
experiments. B, Western blot of IN deletion mutant virus produced with indicated Vpr fusions probed for IN (left panel) and p24 (right panel). All Vpr-
IN constructs yielded similar levels of packaged IN protein. The anti-IN antibody 8E5 recognizes the C-terminus (262–271) of IN [18] while the anti-p24
was from Abcam.
doi:10.1371/journal.pone.0105078.g006
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minimal for DNA substrates shorter than 21 bp. DNA longer than

37 bp was less efficient, perhaps due to the competition for the

fixed protein concentration in the reaction mixture. During

reaction optimization of Sso7d-IN, we noticed that substrates

containing the GC rich motif AGCGTGGGCG at the 59 end of

the non-joining strand had slightly greater activity (Figure S1), but

this phenomenon was not further explored. The length of the

linker between Sso7d and IN was also optimized (Figure 2B).

Fusion proteins with a glycine linker as short as 1 amino acid (Gly-

1) were capable of catalyzing concerted integration, but the

reaction was somewhat more efficient with longer linkers, likely the

result of greater flexibility between the domains, increasing

modestly from Gly-3 to Gly-11. Unless otherwise stated, Sso7d-

IN with an 11-glycine linker was used for the rest of the work. We

also found the strand transfer reaction was favored in 20–25%

glycerol, whereas PEG and DMSO, which stimulate the reaction

with wild-type IN, reduced the reaction efficiency with Sso7d-IN

(data not shown). Figure 2C shows concerted integration carried

out by the Sso7d-IN with an 11 amino acid linker and U5-25 in

the presence of 25% glycerol. The reaction is so efficient that the

entire supercoiled target DNA substrate is consumed. The smear

below the linear integration product results from multiple

concerted integration events on the same target (Figure 2D),

which is possible because the viral DNA ends are in large excess.

Sequence analysis of the concerted integration products
To test the fidelity of Sso7d-IN mediated strand transfer under

optimized in vitro conditions the linear DNA corresponding to

concerted integration products was isolated from an agarose gel,

cloned and sequenced. The majority of integration products

contained a 5 bp target site duplication (n = 36), which is the

hallmark of correct HIV DNA integration. The other 10 clones

did not exhibit target-site duplications and instead had very short

deletions of target DNA sequence (Figure 3A). We believe these

products are explained by a second concerted integration event

occurring very close to the first integration site. In other words,

they are representative of the contaminating smear from just

below the linear product DNA excised from the agarose gel shown

in Figure 2C. Alignment of all the U5-target DNA junction

sequences recovered in our experiments (n = 72) revealed a weak

bias in nucleotide content that is consistent with the observed

in vivo results [21] (Figure 3B).

Sso7d-IN forms stable intasomes with oligonucleotide
DNA

Previous experiments have shown that wild-type IN forms

intasomes with 1 kb viral DNA ends and that these intasomes

migrate as discrete bands within a native agarose gel [22].

However stable intasomes do not form with DNA shorter than a

few hundred base pairs. We therefore tested whether Sso7d-IN

forms intasomes with short DNA substrates. Gel-shift analysis

showed that Sso7d-IN does indeed assemble intasomes with a

25 bp DNA substrate (Figure 4A). The intasomes were assembled

in the presence of Ca2+ which supports assembly of intasomes, but

not catalysis of DNA strand transfer [23,24]. Intasome assembly is

specific for the viral DNA sequence. Importantly, intasomes were

not formed when the conserved CA is mutated to GT or when a

3 bp mismatch is present at the viral DNA terminus (Figure 4B).

Intasomes assembled with Sso7d-IN, like PFV intasomes, are

stable to challenge with 1 M NaCl (data not shown).

Efficient strand transfer reactions with purified HIV-1
intasomes

Intasomes were purified from unreacted DNA substrate and

free protein by size exclusion chromatography on Superdex 200

(Figure 5A). As expected, the fractions corresponding to the

intasome peak contained both DNA substrate and Sso7d-IN

protein (Figure 5B and 5C). The purified intasomes carried out

highly efficient concerted integration in the presence of Mg2+, with

minimal half-site integration events (Figure 5D). The smear below

the concerted integration product is the result of multiple

integrations within the same target DNA molecule.

Sso7d-IN activity in vivo
Can Sso7d-IN support integration of viral DNA in vivo? To

answer this question we tested the ability of Vpr-Sso7d-IN fusion

protein to transcomplement a non-infectious virus that carries IN

active site mutations D64N/D116N (N/N) and a luciferase

reporter gene (Figure 6A). As expected (15), the N/N virus alone

supported an extremely low level of luciferase activity from

unintegrated DNA (,0.4% of the level of wild-type HIV-Luc

infection), which was not further affected by including the potent

integrase inhibitor RAL during the infection. The addition of Vpr-

IN significantly boosted N/N infectivity to approximately 58% of

the wild-type virus. Potent inhibition of this infection by RAL

proves that Vpr-IN transcomplementation required HIV-1 DNA

integration, which was also evident by the lack of complementa-

tion by a Vpr-IN mutant that carried the D64A active site

mutation. The function of Vpr-Sso7d-IN was reduced about four-

fold relative to wild-type IN. As RAL similarly inhibited this

infection, the Sso7d-IN protein is active in the context of HIV-1

infection. Mutations that reduced the binding of Sso7D to DNA

had little effect on the efficiency of integration, as is also observed

in vitro. Western blotting was utilized to visualize IN protein

content in virus preparations. To avoid potential misassignement

of the viral N/N active site mutant IN, pseudovirus for western

blotting was based on an IN deletion mutant construct. Vpr-

Sso7d-IN is packaged at comparable levels to that of Vpr-IN

(Figure 6B).

Discussion

Obtaining high-resolution structures of HIV-1 intasomes

remains an elusive goal. Such structures are required to

understand the detailed mechanism of action of inhibitors and

mutations that confer resistance. In the absence of structures of the

HIV complexes, models based on the PFV intasome structures are

the best available option [11–13]. These are likely to be quite

reliable in the immediate vicinity of the active site, but because of

the degree of sequence divergence, modeling regions further from

the active site presents challenges. The two main obstacles to high-

resolution structures of HIV-1 intasomes are the propensity of

them to aggregate and the requirement for several hundred bp

long DNA substrate for efficient assembly. The Sso7d-IN fusion

protein described here overcomes the requirement for long DNA

through allowing intasomes to assemble with an oligonucleotide

DNA substrate as well as improving the solubility of the complex.

By a combination of ion exchange and size-exclusion chromatog-

raphy we have purified HIV intasomes made with Sso7d-IN and

concentrated them to about 5 mg/ml in the presence of 0.5 M

NaCl (data not shown). However, there is still some heterogeneity

as judged by the shape of the peak eluted from size exclusion

columns (Figure 5) and atomic force microscopy (data not shown).

How does the Sso7d domain improve the concerted integration

activity and biophysical properties of HIV-1 IN? It would appear
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to not involve DNA binding because these properties are not

significantly diminished when the Sso7d domain contains muta-

tions that greatly reduce DNA binding (Figure S1). We favor the

hypothesis that Sso7d shields a surface on HIV-1 IN that is

responsible for unfavorable interactions that mediate aggregation

and non-productive intasome assembly. The hyperactive pheno-

type likely results from blocking the formation of nonproductive

complexes rather than directly ‘‘hyperactivating’’ the enzymatic

activity by classical means. This interpretation is consistent with

several other observations that are not easily explained. Wild-type

HIV-1 IN requires viral DNA several hundred base pairs in length

to efficiently assemble intasomes, even though footprinting shows

interaction with less than 20 terminal base pairs [22,25], consistent

with the crystal structure of the PFV intasome. Curiously, only one

of the two DNA molecules in the intasome needs to be long for

efficient assembly [26]. One possible explanation is that the DNA

bends back onto the intasome surface masking unfavorable

interactions. LEDGF/p75 may also perform a similar function

in vitro. LEDGF/p75 stimulates concerted integration with

oligonucleotide DNA substrate [27] by a mechanism that may

be distinct from its in vivo role of tethering intasomes to

chromatin.

Sso7d-IN is not hyperactive when incorporated into virions and

viral DNA integrates with several fold lower efficiency than with

wild-type IN. This is consistent with an in vitro role of Sso7d in

preventing aggregation and non-productive intasome assembly.

Since only one viral DNA is made per infecting virion and

therefore only a single intasome is assembled, aggregation of

intasomes is not an overarching issue and protein modifications

that lessen aggregation therefore do not confer an advantage.

Although the modified N-terminus hinders IN activity by

approximately 4-fold, Sso7d-IN importantly retains significant

function in the context of HIV-1 infection. Sso7d-IN is a step

forward towards high-resolution structural studies of HIV-1

intasomes, but further advances will likely be necessary before

this goal can be attained.

Supporting Information

Figure S1 Mutations on the DNA binding surface of
Sso7d do not diminish the hyperactive phenotype of
Sso7d-IN. Reactions were carried out with Sso7d-IN or

Sso7dmut-IN (W24A/R43E). The DNA substrates were 25 bp

of HIV-1 U5 terminal DNA sequence (U5) or the same DNA with

a GC rich motif at the 59 end of the non-transferred strand (see

Materials and Methods).

(PDF)
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