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A B S T R A C T

The 2015 Nobel Prize in Physiology or Medicine has been awarded to avermectins and artemisinin, re-
spectively. Avermectins produced by Streptomyces avermitilis are excellent anthelmintic and potential
antibiotic agents. Because wild-type strains only produce low levels of avermectins, much research effort
has focused on improvements in avermectin production to meet the ever increasing demand for such
compounds. This review describes the strategies that have been widely employed and the future pros-
pects of synthetic biology applications in avermectin yield improvement. With the help of genome
sequencing of S. avermitilis and an understanding of the avermectin biosynthetic/regulatory pathways,
synthetic and systems biotechnology approaches have been applied for precision engineering. We focus
on the design and synthesis of biological chassis, parts, devices, and modules from diverse microbes to
reconstruct and optimize their dynamic processes, as well as predict favorable effective overproduction
of avermectins by a 4Ms strategy (Mine, Model, Manipulation, and Measurement).

© 2016 Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

Introduction

Microbial natural products are valuable compounds used in ag-
ricultural, pharmaceutical, and food industries. However, there has
been an industrial challenge in that wild-type strains isolated from
nature usually produce low levels of these compounds that can never
meet commercial demands. Avermectin and its analogs, a series of
eight major 16-membered macrocyclic polyketides produced by
Streptomyces avermitilis, are widely used in the fields of animal health
and agriculture, according to their activities against a variety of
nematodes and arthropod parasites, with low levels of side effects
on humans.1 Because the derivatives of avermectins lowered the in-
cidence of River Blindness and other parasitic diseases, half of the
2015 Nobel Prize in Physiology or Medicine was awarded to
avermectin discoverer, William C. Campbell and Satoshi Ōmura.2

Avermectins contain fourmajor (80–90%) components A1a, A2a, B1a,
and B2a in varying proportions and four minor (10–20%) compo-
nents A1b, A2b, B1b, and B2b,3 among which the B1a component
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has the most effective anthelmintic activity.4 Recently, the phar-
maceutical potential of avermectins has been extended against
Mycobacterium tuberculosis, including multidrug-resistant tuber-
culosis (MDR-TB) and extensively drug-resistant tuberculosis
(XDR-TB),5 as well as the synergistic effect of avermectin B1a with
methicillin (MET) against methicillin-resistant Staphylococcus aureus
(MRSA).6,7

The efforts to produce improved avermectins have never stopped
since the discovery of avermectin by Ōmura and co-workers in 1975.1

Avermectins were first commercialized by Merck Sharp & Dohme
Research Laboratories, Kitasato Institute, and Kitasato University in
1985. China joined this campaign in 1988 and succeeded in pro-
duction in 1993. Four companies for avermectin production went
public during 1988–2007. The Institute of Microbiology Chinese
Academy of Sciences and other institutes, with strong support from
those companies, significantly increased the production of
avermectin B1a with a titer from 0.009 to 9 g/L (Fig. 1). Now, China
is the only avermectin producing country in the world. Avermectin
is the only bio-pesticide that has an annual sale above 3 billion RMB,
creating great social and economic benefits. Thus, in this review,
we summarize the various strategies used to improve production
of avermectins.

Improving the production of avermectin by traditional
mutagenesis methods

Microbial fermentation and random mutagenesis are conven-
tionally applied industrially to produce natural products, displaying
the advantages of production improvement of the natural product
by strains with little genetic information. These approaches have
been applied to improve avermectin production in the fermenta-
tion industry and increased the titer to 0.5 g/L by strain selection
from ultraviolet (UV) light radiation, Methyl methanesulphonate
(MMS) and N-methyl-N-nitro-N-nitrosoguanidine (NTG) treat-
ment and media modifications.8,9

Optimization of media and the fermentation process

A low-cost medium was developed through optimization of ni-
trogen and carbon sources, as well as supplementation with 0.2mM
Co2+.10 The production of avermectin B1a has increased to a titer of
0.46 g/L, which is 48.8% higher than that of the production in the
original medium. Then, statistical experimental designs were used
in consideration of the interactions between different factors.11 Out
of nine components, corn starch and yeast extract were found to
significantly affect the production of avermectin B1a by Plackett–

Burman design (PBD). The optimum values of medium composition
of 149.57 g/L corn starch and 8.92 g/L yeast extract were
determined.11

Aside from the optimization of the fermentation medium, the
addition of possible precursors or stimulators of avermectin also
plays an important role during the fermentation process. The in-
fluence of the addition of the possible precursors of avermectin,
acetate and propionate, were investigated on two different strains.12

The addition of 0.8% (w/w) propionate at 24 h of cultivation re-
sulted in a 12.8–13.8% improvement in the production of avermectin
B1a after 5 days of incubation. However, there was no change when
propionate was added at the beginning of cultivation. Additional-
ly, the proportion of B1a is not affected by propionate
supplementation. In the case of acetate, the avermectin yield im-
provement was not observed when the acetate was added either
at the beginning of or 24 h into cultivation.12

The above evidence indicates that glucose metabolism affects
avermectin biosynthesis.10,12,13 Indeed, avermectin fermentation and
6-phosphoglu-conate dehydrogenase in the pentose phosphate
pathway are significantly suppressed by the addition of glucose at
the early stage of fermentation.10 Even though the involvement of
the pentose phosphate pathway in avermectin production is still
unclear, it may help to supply NADPH in avermectin biosynthesis
(data unpublished). Avermectin production can be further in-
creased when glucose is fed at a late stage of fermentation in the
flask, bench-top, and pilot-plant scales.10,12,13 Moreover, a B1a ratio
increase by glucose feeding was observed, and the stimulation is
further enhanced by controlled glucose feeding.7,9 It has been sug-
gested that glucose affects avermectin formation by providing
additional dTDP-oleandrose, an immediate precursor of
avermectin.14,15 The B1a ratio might be changed due to the feeding
of glucose, which could regulate the activity of aveD, a crucial gene
that is responsible for the conversion between avermectin B and
A types.16–18 However, the genetic mechanism of this phenome-
non is still under investigation.

Some physiological parameters also affect avermectin produc-
tion by influencing cell growth, such as dissolved oxygen (DO)19 and
the oxygen uptake rate (OUR).20 Higher DO tension (usually >20%
saturation) is beneficial for pellet formation and avermectin pro-
duction during submerged cultivation.19 By controlling OUR between
15 and 20 mmol/L/hour, the production of avermectin B1a reaches
5.568 ± 0.111 g/L, which is 21.8% higher than that of the control. This
indicates that the stimulatory effects on avermectin B1a produc-
tion might contribute to improve the precursor supply.20 The OUR
parameter is also used to determine the glucose feeding rate in
avermectin production, as well as the ethanol evolution rate (EER).21,22

Fig. 1. Avermectin production improvement in China. The solid line indicates the avermectin production level in industry in China. The red line indicates contribution by
the Institute of Microbiology, CAS. The red dashed line indicates starting from a wild type strain.
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The EER parameter is mainly affected by O2 supply and the glucose
feeding rate and can be considered as another physiological pa-
rameter correlated with OUR.22

Improving the production of avermectin by random mutagenesis and
screening

The optimization of media and fermentation process plays an
important role for industrial overproduction of natural products.
Aiming for the same goal by strain improvement by random mu-
tation and follow-up screening is very labor intensive. However, the
metabolic capabilities of the production of desired compounds could
be enhanced via manipulating and improving microbial strains.

The traditional mutate-and-screen method is typically per-
formed by subjecting the strains to a variety of physical or chemical
mutagens and screening. The mutagens used to improve avermectin
production are listed in Table 1. These mutagens introduce muta-
tions into strains and, hence, resulted in different production
improvements. Wang et al.23 introduced a newmutation tool called
radio frequency (RF) atmospheric pressure glow discharge (APGD)
plasma jet, which has a high mutagenic capability compared to tra-
ditional mutation methods and is an efficient method because of
its higher (>30%) and positive (>20%)mutation rate. Themutant colo-
nies displayed different morphologies and colors, which are feasible
for initial screening. Among thesemutants, G1-1 showed the highest
yield of avermectin B1a, which is increased by 40% compared to the
wild type strain. Furthermore, the B1a ratio is also increased in G1-
1. However, the detailed mutation effect of APGD plasmas in G1-1
still needs to be classified.

Gao et al.24 assessed a potential induced mutation strategy called
high-magnet gravitational environment (HMGE), a space flight-
simulated mutation strategy. HMGE was compared with two other
conventional strategies, UV and NTG. An algorithmwas used to assess
the mutation spectrum, and HMGE was approved to enhance the
phenotype distribution and diversity better than UV and NTG, even
though the positive mutation rate of NTG was the highest. Another
technique called diamagnetic levitation has also been used to sim-
ulate the space environment for mutagenesis.25 Diamagnetic
levitation generates both a varyingmagnetic field and altered gravity.
The individual effects of magnetic field and gravity were investi-
gated for the first time, and the results demonstrate that the
magnetic field is amore dominant factor influencing changes inmor-
phology and avermectin production than altered gravity.25

After introducing mutations to production strains, the screen-
ing and acquisition of the overproducers from a large number of
mutants is crucial. Earlier screening of avermectin overproducers
was based on the identification of morphological features, such as
the production of aerial mycelia, spore formation, and melanin
production.26 However, this method also introduces many nega-

tive mutants.23 Thus, a more efficient screening strategy based on
UV absorbance using 96 deep-well microtiter plate (MTP) cultiva-
tion was introduced.27 This high-throughput screening approach
focuses on the culture and avermectin concentration measure-
ment. It uses the UV assay in solid-stateMTP cultures, which is much
simpler and more rapid than HPLC assays in Erlenmeyer flask cul-
tures. The correlation between the results of the UV assay and the
HPLC assay was investigated to test the accuracy of this strategy,
and the UV assay was proved to correspond well with the conven-
tional HPLC assay. Subsequently, it was used for high-throughput
screening of avermectin over-producing strains, and a 60% in-
crease in avermectin B1a compared to the parent strain in a 360-
m3 batch fermentation was observed.

Metabolic engineering

Random mutagenesis and screening is widely applied because
it is simple and easy to manipulate for efficient strain improve-
ment. However, the method is time-consuming and laborious. Also,
mutationsmay result in strainswith undesirable or detrimental traits.
Further, the mechanism behind the increase in production of the
strains obtained by this method is largely unknown, and thus, it
cannot be applied further for the rational design of an overproduc-
ing strain. After discovering the avermectin biosynthetic gene
cluster28 and determining the genome sequence of S. avermitilis,29

a more rational method called metabolic engineering was intro-
duced and has been widely applied in avermectin improvement
research.

Avermectin biosynthesis consists of the following steps (Fig. 2):
(1) the elongation of a polyketide chain by four multi-functional
modular polyketide synthase components (AVES 1, 2, 3, and 4), with
the addition of five methylmalonyl-CoA (MM-CoA) units and seven
malonyl-CoA units to the starter units, 2-methybutyryl-CoA (MB-
CoA, “a” components) and isobutyryl-CoA (IB-CoA, “b” components);
(2) C22-23 dehydration modification (“1” and “2” components) and
spiroketal formation by AveC;30 (3) furan formation and keto re-
duction by AveE and AveF, respectively; (4) C5O-methylation by AveD
(“A” and “B” components); (5) the biosynthesis of TDP-l-oleandrose
by AveBII-VIII; and (6) the glycosylation of aglycones to form the
final avermectin compounds.31,32 In this biosynthetic pathway, AveC
performs the dehydration modification function before its
spirocyclization formation activity.30 These two functions are in-
dependently performed and competed with the same substrate. This
dehydration activity can be reduced or increased by mutations in
AveC33,34 without inactivating the spirocyclase. Further elucida-
tion of the AveC structure related to its activity and specificity would
take full advantage of this dual function and aid in the develop-
ment of only “1” components to enhance the production.

After the complete genome sequencing of S. avermitilis, the study
of overall gene expression at the mRNA and protein levels became
feasible with the development of genetic manipulation.35 The
transcriptome and proteome comparisons between wild-type and
avermectin overproducing reveal the possible mechanisms under-
lying avermectin overproduction and provide new targets for rational
yield improvement by usingmetabolic engineering.36–38 This method
typically involves altering the metabolic flux related to the precur-
sors, regulating the biosynthesis pathway and antibiotic resistance.
Here, we present the different genetic approaches used in meta-
bolic engineering for the overproduction of avermectin.

Engineering precursors

The sufficiency of biosynthetic precursors is very important for
the production of secondary metabolites. These precursors come
from primary metabolism, such as the fatty acid, amino acid, and
glucose metabolic pathways. Starch is the most important carbon

Table 1
Mutagens used for avermectin overproduction.

Mutagens

Physical mutagenesis Ultraviolet rays (UV)
12C+6 heavy ion beams
Co60 gamma rays
High-magnet gravitational environment (HMGE)
RF APGD plasma jet
Spaceflight

Chemical mutagenesis Methyl methanesulphonate (MMS)
N-methyl-N-nitro-N-nitrosoguanidine (NTG)
Nitrous acid (NA)

Composite mutagenesis UV + HNO2 + NTG + L- Ile
Co60 gamma rays-Met-5-fluorouracil
UV + LiCl
UV + NTG
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source in the fermentation process of S. avermitilis.11 Starch utili-
zation requires external amylase addition into the medium to form
maltose and maltodextrin. The overexpression of malEFG, which
encodes a maltose ATP-binding cassette transporter, improves the
utilization rate of starch and enhances avermectin production.
However, the yields of avermectin are similar when a different copy
number of the malEFG is introduced. This may be due to the lim-
itation of the ATPase subunit, which is needed in the ABC
transporter.39 This maltose ATP-binding cassette transporter also pro-
vides a newmethod for yield improvement of other natural products
that use starch or maltose as a carbon source.

The branched-chain α-keto acid dehydrogenase (BCDH) pro-
vides the branched-chain fatty acid starter units 2-methylbutyryl
CoA and IB-CoA from the catabolism of L-valine and L-isoleucine,
respectively.31,32 There are two gene clusters encoding the E1α, E1β,
and E2 subunits of the BCDH complex.40,41 Deletion of the 5′ end
of bkdF causes complete loss of E1 BCDH activity and the ability to
produce natural avermectins, while inactivation of the bkdABC genes
does not cause obvious phenotypic changes.41 According to these
results, further expression level or enzyme activity enhancement
research of BCDHmay result in avermectin production improvement.

The loading module of avermectin PKS can also recruit >40 al-
ternative carboxylic acids as the starter units.42 However, the
efficiency is much lower than the natural starter unit.43 With struc-
tural and specificity analysis of the loading acyltransferase from
avermectin PKS, it may be possible to engineer the loading
acyltransferase to acquire only the “a” components and enhance
avermectin production.44,45

The overexpression of the S-adenosylmethionine (SAM) synthe-
tase gene (metK) in the wild type strain increases avermectin
production.44,45 The mechanism for this is unclear, but it is hypoth-
esized that it increases intracellular SAM levels, which activates the
transcriptional activators responsible for antibiotic biosynthesis or
serves as a methyl donor in primary and secondary metabolism.46,47

This is consistent with the result that the overexpression of themetK
gene increases the mRNA levels of metK and the SAM concentra-

tion, as well as further upregulates the pathway-specific regulatory
gene aveR.45 Further, the overexpression of metK in the avermectin
overproducing industrial strains, which already display higher ex-
pression levels ofmetK, aveR, and aveA1, has no effect on avermectin
production.45

Engineering regulators

Avermectin biosynthesis is a process under the tight control of
multilevel signal transduction mechanisms. There is a putative
pathway-specific regulator called aveR located at the far left arm
of the avermectin biosynthetic gene cluster, outside of aveF. Tn4560
transposonmutants in the aveR region do not produce avermectins.48

Deletion of aveR results in the complete loss of avermectin pro-
duction, which can be restored by complementation.49,50 AveR
positively regulates avermectin biosynthesis by specifically binding
to the promoter region of the ave structural genes with its C-terminal
HTH domain. The overexpression of aveR results in an opposite in-
fluence (including improvement and complete loss) on avermectin
production in two conflicting reports.49,50 The discrepancies among
these results may come from different wild type strains. However,
more research into the binding sequence or the structure of aveR
is required to elucidate the regulatorymechanism of avermectin bio-
synthesis. Aside from the pathway-specific regulator, there are other
regulators that have been investigated for avermectin production
improvement (Fig. 3).

Several regulators affect avermectin production through the
pathway specific activator aveR. This includes the global regulator
σHrdB, which directly recognizes the promoter region of aveR in vitro.
The hrdB gene has been engineered in an industrial strain to iden-
tify the effect of σHrdB on aveR and avermectin biosynthesis.36 Two
high-avermectin producing mutants, A56 and A393, were ob-
tained by high-throughput screening of a hrdBmutant library. The
genetically stable mutant A56 was further cultivated in a 180-m3

fermentor, and the production of avermectin B1a reached 6.38 g/L,
an increase of 53% over the parent strain. The mutations in the

Fig. 2. Biosynthesis of avermectin. (A) The avermectin biosynthesis gene cluster 82 kb. White, the genes involved in the formation of avermectin aglycones; black, the genes
involved in glycosylation of the aglycones; gray, the regulator gene; dash line, the gene that is not involved in the biosynthesis of avermectin. (B) The avermectin biosyn-
thetic pathway.

10 J. Chen et al./Synthetic and Systems Biotechnology 1 (2016) 7–16



conserved region 1.1 and region 2.4 of hrdB influence the transcrip-
tional levels of aveR and, thus, avermectin production. However,
elucidating the mechanism of the hrdBmutant and its effect on the
regulatory network or metabolic flux toward avermectin biosyn-
thesis requires further study.36

The extracytoplasmic function (ECF) σ factors σ6 and σ25 inhibit
avermectin production by indirectly affecting the transcription of
aveR via an unknown mechanism. Through gene-deletion, comple-
mentation, and over-expression experiments, the role of σ6 on
avermectin production was investigated. The results show that σ6

negatively regulates avermectin production but has no effects on
growth, stress responses, or morphology. The avermectin produc-
tion was increased 2 to 2.7-fold (0.68 g/L) compared to the wild-
type strain by deletion of the sig6 gene.51 The deletion of the sig25
gene results in ~1.23-fold higher avermectin production than the
wild-type strain.52

σ25 initiates the transcription of olmRI and indirectly activates
olmRII expression. olmRI and olmRII are the pathway-specific acti-
vator genes of oligomycin biosynthesis, which negatively affect
avermectin production.53 The overproduction of avermectins in the
olmRI and olmRII deleted mutants may be due to the extended units
of competition for polyketide backbone synthesis of the oligomy-
cin and avermectin.54 Thus the effect of σ25 on avermectin production
may be induced by the regulation of aveR and the metabolic flux
alteration toward avermectin production. Further studies show that
σ25 initiates its own transcription, and its expression is directly ac-
tivated by SmrA, the response regulator of a putative two-component
system (TCS) smrAB located upstream of sig25.52 Deletion and
complementation experiments with smrAB indicate that smrAB and
σ25 function similarly in the regulation of avermectin. However, the
exact regulatory mechanism of this ECF σ factor-TCS signal trans-
duction system remains to be clarified.

Avermectin production is positively affected by ribosome recy-
cling factor (RRF), which is involved in the release of ribosomes from
the translational post-termination complex for a new round of ini-
tiation. The overexpression of frr increases avermectin yield by 3-
to 3.7-fold compared to the wild-type strain and exhibits a greater
promoting effect with multiple copies of frr. This effect functions
by promoting cell growth, as well as the expression of the ave genes

(including aveR and the ave structural genes). However, the exact
targets of RRF remain a subject for further investigation.55

Some regulators that are involved in autoregulatory signaling also
regulate aveR transcription and affect avermectin production.
Avenolide is a class of Streptomyces autoregulators essential for elic-
iting avermectin production. The aco gene (encoding an acyl-CoA
oxidase) that is involved in avenolide biosynthesis is clustered at
the same locus with three homologs of the γ-butyrolactone
autoregulator receptor proteins AvaR1, AvaR2, and AvaR3.56 Dele-
tion of avaR3 results in a great decrease in avermectin production
compared to the wild type strain. AvaR3 indirectly controls the ex-
pression of aveR and thus activates avermectin production. AvaR3
also negatively regulates the transcription of both avaR1 and avaR2.57

Deletion of avaR1 in a high-producing strain increases the pro-
duction of avermectin B1a ~1.75-fold compared to the parent strain.58

AvaR1 represses avenolide production by binding to the promoter
of the aco gene, and this interaction is inhibited by avenolide.56 AvaR1
also indirectly regulates the expression of AveR.58 However, the exact
mechanism of how this autoregulator signaling system influences
avermectin production has yet to be determined. We also identi-
fied four TetR genes (A, B, C, and D) that directly regulate the
transcription of aveR and indicate another GBL signaling molecule
in this process (data unpublished).

Other regulators target genes that may be involved in avermectin
precursor metabolism. The negative role of the TetR transcrip-
tional regulatory gene SAV7471 in avermectin production was found
by deletion, complementation, and overexpression experiments.
SAV7471 directly represses the transcription of SAV7472-SAV7473,
which has a positive effect on avermectin production. SAV7473
encodes a flavoprotein that is possibly involved in pantothenate and
coenzyme A (CoA) metabolism. SAV7471 negatively regulates CoA
biosynthesis, which may provide the precursors for avermectin
biosynthesis.59 Deletion of the TetR transcriptional regulatory gene
SAV151 results in 2-fold higher avermectin production than the wild
type strain. SAV151 directly regulates the transcription of itself and
the adjacent transcriptional unit SAV152-SAV153-SAV154. SAV152
encodes a putative dehydrogenase, and SAV154 encodes a putative
hydrolase. These two genes may provide energy or precursors to
promote avermectin production.60 However, the function of the target

Fig. 3. Networking of regulators that affect avermectin production. Green, positive regulators; red, negative regulators; and blue, the target genes of these regulators; dash
lines: indirect effect with unknown mechanism; solid lines: direct effect; arrows: positive effect; bars: negative effect.

11J. Chen et al./Synthetic and Systems Biotechnology 1 (2016) 7–16



genes that may be involved in precursor or energy supply for
avermectin biosynthesis need further clarification.

Some regulators affect both ave transcription and avermectin pre-
cursormetabolism. The TetR family transcriptional regulators SAV576
and SAV577 both have negative effects on avermectin production.
The double deletion of SAV576-SAV577 produces an additional en-
hancing effect on avermectin yield. These two regulators indirectly
downregulate the transcription of ave genes and reciprocally repress
each other’s transcription. They both directly repress the transcrip-
tion of the adjacent gene SAV575 by competitively binding the same
region, and SAV576 represses the transcription of its own gene.
SAV575 encodes a cytochrome P450/NADPH-ferrihemoprotein re-
ductase, which may provide precursors and enhance avermectin
production.37,61 The deletion of aveI results in at least 10-fold more
avermectin B1a than the wild type strain and increases the level
of the aveR transcript.62 The aveI gene also negatively regulates the
genes involved in precursor biosynthesis for avermectin based on
global comparative transcriptomic analysis between the aveI dele-
tion mutant and the wild-type.63 The response regulator PhoP in
the two-component PhoR-PhoP system negatively affects avermectin
biosynthesis in S. avermitilis by directly regulating the transcrip-
tion of aveR. PhoP also regulates nitrogen metabolism and some key
genes involved in morphological differentiation and antibiotic
production.64

Additional regulators affect avermectin production via unknown
mechanisms. Up-stream of the aveR gene are two genes, aveR1 and
aveR2, that negatively influence avermectin production. Disrup-
tion of these two genes increases avermectin levels more than 3-fold.
However, their relationship with aveR and the mechanism of reg-
ulation are still unknown.65 Three regulatory genes (SAV213, SAV3818,
and SAV4023) have stimulatory effects on avermectin production via
an unknown mechanism.66 Bacterial eukaryotic-type serine-
threonine protein kinases (STPKs), AfsK of S. coelicolor A3 (2) and
S. griseus, activate the AfsR orthologs, and their coding genes are
located near the afsR gene.67 SAV3816, which localizes near one afsR
homolog (SAV3804), is an afsK ortholog (afsK-av). Avermectin pro-
duction is abolished in an afsK-av deletionmutant and restored with
complementation of the intact afsK-av or the 900-nt catalytic domain
region.68 Further, tandem phosphorylation on Thr-165 and Thr-
168 in afsK-av is responsible for the response to SAM accumulation
to modulate avermectin production.

AfsR2 of S. lividans, also known as a target gene called AfsS in
S. coelicolor, was introduced into S. avermitilis and increases
avermectin production.69 Further experiments show that S. lividans
AfsR2 targets several genes, such as glyceraldehyde-3-phosphate de-
hydrogenase, polyribo-nucleotide and superoxide dismutase,
indicating that AfsR2 may be a pleiotropic regulator that controls
differential expressions of various kinds of genes in Streptomyces
species.70 However, a better understanding of the regulatory mech-
anism of the afs-gene family in avermectin productionwould provide
new strategies for yield improvement.

Engineering drug efflux pumps

Drug efflux pumps are very important for self-protection to over-
come the toxic effects of natural products and to reduce feedback
inhibition to increase production.71 The avtAB operon, which is
located upstream of the avermectin biosynthetic gene cluster,
encodes the ABC transporter AvtAB, which is also an avermectin ex-
porter. The inactivation of avtAB has no effect on avermectin
production. However, avermectin production is increased both in
the wild type and in industrial strains by increasing the concen-
tration of avtAB mRNA. The ratio of intracellular to extra cellular
accumulation of avermectin B1a drops from 6:1 to 4.5:1, and the
overall productivity of avermectin B1a is improved by ~50%, from
3.3 to 4.8 g/L by increasing the transcriptional level of AvtAB.72

However, there is no effect on oligomycin levels. Regardless, whether
this transporter can affect the production of other compounds re-
quires further research.

Protoplast fusion

Protoplast fusion is a method commonly used for natural product
yield improvement. Chen et al.73 use the high avermectin produc-
er 76-05 obtained through a continuous strain improvement program
and the genetically engineered strain 73-12 that produces only B
components and no oligomycin as the parental strains for intras-
pecific protoplast fusion. They created two genetically stable
recombinant strains, F23 and F29, with both parental merits. The
avermectin production of F23 and F29 is increased by 2.66- and 3.50-
fold compared to parental strain 73-12, and reaches 84.20 and
103.45% of the parental strain 76-05. Further, F29 is very tolerant
of fermentation conditions, such as temperature and aeration, which
makes it a promising strain for industrial applications.73

Synthetic biology methods

Unlike metabolic engineering, which focuses on the rational
design of natural regulation ormetabolic networks, synthetic biology
aims to design and build new biological systems from standard in-
terchangeable parts for specific functions.74 With developments in
molecular biology technology and systems biology, synthetic biology
has been successfully applied to improving the yield of natural prod-
ucts. For instance, Artemisinin, a sesquiterpene lactone endoperoxide
extracted from Artemisia annua L, is a highly effective anti-malaria
drug that is in short supply.75 Paddon et al. report the engineering
of Saccharomyces cerevisiae to produce high titers (up to 25 g/L) of
artemisinic acid using a redesigned biosynthetic pathway.76 And the
characterization of fumitremorgin B endoperoxidase (FtmOx1) may
help to unravel the novel mechanism of endoperoxide formation
reaction for the conversion of artemisinic acid to artemisinin.77 Sim-
ilarly, taxol (paclitaxel) is a potent anticancer drug with cost-
efficient production that was first isolated from the Taxus brevifolia
Pacific yew tree. Ajikumar et al. report an Escherichia coli strain to
increase taxadiene, the first committed Taxol intermediate, by
15,000-fold by using a multivariate modular approach to metabolic-
pathway engineering.78

The application of synthetic biology to natural product yield im-
provement involves two main steps: (1) engineering cells used as
specialized chassis; and (2) improving standard parts for optimi-
zation of the biosynthetic pathway.79 There are some Streptomyces
chassis that can be used for avermectin production improvement,
such as S. coelicolor80 and S. avermitilis.81,82 Avermectin production
was detected by using a new recombination cloningmethod to clone
the 81-kb avermectin biosynthetic gene cluster into the linear
plasmid of the model organism S. coelicolor.83 This confirms that the
avermectin metabolite pathway is available in the new host
S. coelicolor.

Synthetic biology research consists of iterative cycles of exper-
imentation and computation characterized as the 4Ms Strategy:
Mine, Model, Manipulation, andMeasurement. This methodwas first
applied in systems biology research at MIT.84 Systems biology re-
search in natural biological systems will form the foundation for
synthetic biology to redesign new biological systems.85 Synthetic
biology will aid systems biology to understand and control the bi-
ological systems. Here, we introduce the 4Ms Strategy of synthetic
biology and review avermectin yield improvement (Fig. 4).

Mine

Mining is a way to identify the underlying relationships among
a large number of datasets, such as genome, transcriptome, and
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proteome data. Chou and co-workers identify a synthase for a new
sesquiterpene called Avermitilol with genome mining.86 Ikeda re-
viewed the biosynthetic gene cluster for secondary metabolites in
S. avermitilis and provides the information needed for develop-
ment of genome-minimized hosts.87 Proteomic analysis shows that
fatty acid metabolism and the TCA cycle are repressed during
avermectin biosynthesis.36–38 These data also revealed the associ-
ation between hyphal morphology and avermectin production. This
indicates that avermectin production is globally regulated and re-
sponds to environmental stresses. After transcription comparison
betweenwild-type and avermectin overproducing strains, the global
regulator σHrdB36 and several TetR family transcriptional regulators,
such as SAV576,32 SAV577, and SAV15137,61 were characterized. Other
pieces of the genome were mined as well, such as the ABC trans-
portermalEFG-α,39 AvtAB,72 the signaling molecule Avenolide,56 and
additional regulators like σ25 52 and SAV7471.59

Model

The underlying relationships that come from mining can form
hypotheses, which are reflected in predicted models. There are dif-
ferent types of models according to the type of questions that one
seeks to answer.88 One type of models involves gene transcription
regulation by regulators. The aveR promoter is predicted to be bound
by the global regulator σHrdB.36 The interactions between two regu-
lators SAV576 and SAV577weremodeled and considered to regulate

the expression of each other and co-regulate avermectin
production.37,61 The other two regulators, SAV15160 and SAV7471,59

are assumed to regulate the adjacent genes that may be involved
in the precursor’s synthesis of avermectin. Luo et al. model the σ25-
SmrAB (the down-stream genes) signal transduction system and the
σ25 regulation of avermectin and oligomycin.52 Our group has also
devoted efforts to construct a computational model of the primary
metabolic variation toward avermectin biosynthesis (data
unpublished).

Manipulation

In experimental manipulation, it is very important to test a com-
putational model before it is adopted for practical application. Zhuo
et al. use in vitro transcription assays to verify that the transcrip-
tion of aveR is specifically recognized and activated by σHrdB.36

Moreover, a library was constructed by using error-prone PCR for
randommutagenesis of the hrdB gene to identify the effect of σHrdB

on aveR and avermectin biosynthesis. Gene disruption, comple-
mentation, and overexpression are used to identify the effects on
avermectin production. Real-time RT-PCR, chromatin immunopre-
cipitation (ChIP) assays, and electrophoretic mobility shift assays
(EMSAs) are used to determine the regulatory relationship between
two genes. DNase I footprinting is used to confirm the binding se-
quence of the regulators.37,61 Ikeda’s group has constructed genome-
minimized Streptomyces hosts by using two complementary

Fig. 4. The 4Ms Strategy used for avermectin improvement.
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strategies, including general homologous recombination and site-
specific recombination (Cre-loxP) in S. avermitilis. They also test this
chassis by heterologous expression of biosynthetic gene clusters for
secondary metabolites.81,82 Additionally, the advent of new recom-
binant DNA technologies, such as Gibson Assembly,89 Red/ET,90 and
TAR (transformation-assisted recombination),91 have facilitated syn-
thetic biology applications, including the reconstruction of the
biosynthetic pathway of natural products.

Measurement

After genetic manipulation, the final step in the 4Ms Strategy is
the measurement of the change in phenotype. A56, an avermectin
yield-improved strain, was obtained through high-throughput
screening,36 and the yield of avermectin B1a in A56 is increased by
53% relative to the parental strain in a 180-m3 fermentor. Avermectin
production has also been evaluated after the disruption, comple-
mentation, or overexpression of the regulator and ABC transporter.37,72

The measurement of exogenous secondary metabolites in genome-
minimized S. avermitilis hosts confirms engineered S. avermitilis as
a viable chassis for natural and unnatural metabolite biosynthesis.81,82

A new quantitative method based on flow cytometry and a
superfolder green fluorescent protein (sfGFP) at single-cell resolu-
tion in Streptomyceswill also facilitate the functional optimization
of biosynthetic gene clusters in Streptomyces.92

These measurement data obtained from experimental manip-
ulation were subsequently mined to build more optimal models.
After iterative cycles of the 4Ms Strategy, the models will be im-
proved to verify the hypotheses and predict the outcome. Indeed,
the signaling molecule, transcriptional factor, and ABC transporter
that are relevant to avermectin biosynthesis were all identified using
this strategy. These parts could be assembled into devices that
perform simple and defined functions, such as activation, regula-
tion, and transportation. Further, these devices can form a simple
system, i.e., avermectin synthesis. With cell growth, the signaling
molecule accumulates and activates quorum sensing. This acti-
vates the positive regulators and efflux pump of avermectin. It also
represses the negative regulators and inhibits the biosynthesis of
other second metabolites. Ultimately, a high yield of avermectin is
acquired.

Conclusions and future perspectives

The application of avermectin as an anthelmintic agent and the
new discovery of antibacterial activity will increase the require-
ment for this compound. Here, we reviewed various methods that
are widely used to improve avermectin fermentation production and
the great progress that has been made in this field. The traditional
fermentation and randommutagenesis methods are crucial for in-
dustrial fermentation and have a long history of success for natural
product improvement. However, they are labor intensive and un-
suitable for rational engineering. In contrast, metabolic engineering
tunes the metabolic and regulatory networks in a rational way to
improve production, while providing a better understanding of this
natural biological system. With the development of genetic ma-
nipulation technologies and the understanding of the natural biology
of the system, synthetic biology became available. Synthetic biology
redesigns or constructs a more efficient biological system from new
biological parts for specific functions. To synthesize a bioactive
product, the whole system will be more predictable and control-
lable when using a specialized chassis and improved biosynthetic
pathway. Further, it may optimize the industrial fermentation in such
a way as to utilize fewer nutrient supplies and shorten the fermen-
tation time. Synthetic biology has created new opportunities for
particular strains that are recalcitrant to genetic manipulation and/
or contain cryptic biosynthetic gene clusters. We anticipate that

synthetic biology will be considered a promising strategy for the
improvement of avermectin yield and other natural products in the
future.
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