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Abstract: Background: CSF1/CSF1R neuroinflammatory signaling is emerging as an important
pathway involved in the pathogenesis of Parkinson’s disease (PD). However, the genetic associations
between CSF1/CSF1R and PD have not yet been explored. Methods: We investigated the effects of two
functional genetic variants, including CSF1 rs1058885 and CSF1R rs10079250 in a cohort including 502
Taiwanese patients with PD and 511 age- and gender-matched healthy controls. Results: The CSF1
rs1058885 TT genotype was less frequent in PD patients compared with control subjects (odds ratio
(OR) = 0.63, 95% confidence interval (CI): 0.43–0.92, p = 0.015). The PD patients also had a lower
frequency of the CSF1 rs1058885 T allele compared with the control subjects (OR = 0.80, 95% CI:
0.67–0.96, p = 0.014). No statistically significant differences in allelic and genotypic frequencies of
CSF1R rs10079250 between the PD and control subjects were found, even after stratification by age at
onset and gender. Conclusion: This study reports a genetic association between CSF1 and PD for the
first time.
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1. Introduction

Parkinson’s disease (PD), characterized by rigidity, resting tremor, and slow movement, is a
common neurodegenerative disease [1]. The pathogenesis of PD is mainly associated with the
degeneration of dopaminergic (DAergic) neurons and the presence of inclusion bodies enriched with
α-synuclein in the substantia nigra (SN) of the ventral midbrain [2]. Neuroinflammation, which has
been repeatedly observed in PD pathology, may contribute to PD pathogenesis and is thought to
be a therapeutic target for PD [3]. Neuroinflammation has been shown to interact with α-synuclein
aggregation via a vicious cycle, in which microglia are activated, which produce pro-inflammatory
cytokines, chemokines, and complements, leading to the overt production of reactive oxygen species
(ROS) and nitrogen species, and eventually resulting in neuronal loss [4].

Microglia, the most important part of the defense system against pathogens in the brain and
spinal cord, constitute around 10% of cells in the central nervous system [5]. Proliferation, survival,
and polarization of microglia are mediated by CSF1 and its receptor, CSF1R [6]. CSF1R-deficient mice
have defective microglial development and demonstrate severe microglial loss [7,8]. Inhibition of CSF1R
depletes microglia in the central nervous system [9]. In contrast, overexpression of CSF1 promotes
microglial proliferation in transgenic mouse models [10]. In addition to proliferation regulation
of microglia, the CSF1/CSF1R-mediated pathway also plays a role in the functional phenotype of
microglia. When CSF1 was injected into mouse brains, the inflammatory response of microglia against
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lipopolysaccharides (LPS) was impaired [11]. These findings indicate the pivotal role of CSF1/CSF1R
signaling in neuroinflammation.

It has been suggested that genetic variants of CSF1 and CSF1R are associated with different
inflammatory diseases, such as asthma and periodontitis [12–14]. However, the roles of genetic
variants of CSF1 and CSF1R in PD have not yet been revealed. In this study, we assessed the potential
association of two functional genetic variants, namely CSF1 rs1058885 [15] and CSFR1 rs10079250 [16],
of PD via a case-control association study in 502 PD patients and 511 age- and gender-matched healthy
control subjects in Taiwan.

2. Subjects and Methods

2.1. Ethics Statement

This study was approved by the institutional review boards of Chang Gung Memorial Hospital
(ethical license No: 102-5614A3 and 201701921A3). Written informed consent was obtained from
all participants.

2.2. Patient Population

We recruited 1013 subjects, including 502 patients (female/male: 253/249) with PD and
511 normal control subjects (female/male: 252/259) in the neurology clinics of Chang Gung
Memorial Hospital-Linkou Medical center (Table 1). The mean age at onset of PD symptoms was
63.64 ± 10.76 years (range 19–89), and that of control subjects upon recruitment was 63.38 ± 11.90 years
(range 26–94). The diagnosis of PD was made according to the UK Brain Bank diagnostic criteria by 3
movement disorder-specialized neurologists (YR Wu, CM Chen, and KH Chang) [17]. The disease
stage was evaluated using the Hoehn and Yahr scale [18].

Table 1. Demographics and clinical characteristics of Parkinson’s disease (PD) patients and
control subjects.

PD Controls Total p Value
Number 502 511 1013

Age (years) 63.64 ± 10.76
(age at onset) 63.38 ± 11.90 63.51 ± 11.35 0.72

Gender (female/male) 253/249 252/259 505/508 0.73
Hohn and Yahr stage

I 170 (33.9%)
II 197 (39.2%)
III 101 (20.1%)
IV 25 (5.0%)
V 9 (1.8%)

Among the disease group, 13 patients presented with a family history of PD, while 489 patients
were sporadic. To avoid the skew caused by multiple family members carrying the same genetic
variants, we only included one proband if patients had a family history of PD. None of the patients
had Sjőgren syndrome, systemic lupus erythromatosus, rheumatoid arthritis, vasculitis, or malignancy.
Unrelated healthy volunteers with matched ages, genders, ethnic origins, and areas of residence
were enrolled as the control subjects. Patients with an age of onset of ≤50 years were categorized as
early-onset PD (EOPD), while those with an age of onset of >50 years were categorized as late-onset
PD (LOPD).
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2.3. Genetic Analysis

Functional single nucleotide polymorphisms (SNPs) in CSF1 and CSF1R, such as rs1058885 and
rs10079250 [15,16], may influence the signaling pathways and the inflammatory process response
involving PD neurodegeneration. Therefore, we genotyped these two SNPs to assess their potential
associations with PD. The CSF1 rs1058885 polymorphism was examined using the Agena MassARRAY
platform with iPLEX gold chemistry SNP (San Diego, CA, USA). Genomic DNA of peripheral
leukocytes was extracted using a DNA Extraction Kit (Stratagene, La Jolla, CA, USA). The specific PCR
primer for rs1058885 genotyping (forward: ACGTTGGATGTGTGGCTGAGCAGAGAGGGT,
reverse: ACGTTGGATGCCAGGCTCTCCCAGGATCT) and extension primers
(CCCCACCCAGGATCTCATCAC) were designed using the Assay Designer software package
(v.4.0, Agena, San Diego, CA, USA). Briefly, 10 ng DNA was loaded with 5 µL of the PCR reaction
mixture, containing 500 nmol of each PCR primer mix, 1 unit of Taq polymerase, and 2.5 mM of each
deoxy-ribonucleoside triphosphate (Agena, San Diego, CA, USA). The thermocycling reaction was set
at 94 ◦C for 4 min, followed by 45 cycles of 94 ◦C for 20 sec, 56 ◦C for 30 sec, and 72 ◦C for 1 min,
then 72 ◦C for 3 min. Shrimp alkaline phosphatase (0.3 U) was added to deactivate unincorporated
dNTP. A single base extension reaction was performed using iPLEX enzyme, terminator mix,
and extension primer mix, under thermocycling of 94 ◦C for 30 sec followed by 40 cycles of 94 ◦C for
5 sec, and 5 cycles of 56 ◦C for 5 sec and 80 ◦C for 5 sec, then 72 ◦C for 3 min (iPLEX gold kit, Agena,
San Diego, CA, USA). Subsequently, 7 nL of the primer extension reaction, which was purified by
cation exchange resin, was loaded onto the matrix pad of a SpectroCHIP (Agena, San Diego, CA, USA).
MassARRAY Analyzer 4 (Agena, San Diego, CA, USA) was used to analyze the SpectroCHIPs.

The CSF1R rs10079250 polymorphism was genotyped using a custom-designed TaqMan
SNP genotyping assay (assay ID: C__22274425_20) using the ABI 7000 Real Time PCR system
(Applied Biosystems, Foster City, CA, USA). Briefly, 20 ng of DNA was loaded with 5 µL
of the PCR reaction mixture with 0.9 µM of each primer, 0.2 µM of probe (probe sequence:
GCGGGGCAGAGAGAGGGTGAAGGTG[C/T]GCCTGCAGGAGAGAATCAGGTGGTG),
and Universal PCR Master Mix (Applied Biosystems). Thermocycling was set at 50 ◦C for
2 min, 95 ◦C for 10 min, 40 cycles of 95 ◦C for 15 sec, and finally 60 ◦C for 1 min. The results were
analyzed using SDS software version 1.1 (Applied Biosystems, Foster City, CA, USA).

2.4. Statistical Analysis

The distribution of both genotypes did not deviate from the Hardy–Weinberg equilibrium.
The allele and genotypic frequencies between the PD patients and the controls were compared using
the Chi square test. The level of statistical significance was set at p < 0.025 (two tailed) to adjust
multiple comparisons. Given the observed allele frequency at the significance level of 0.025, we had a
power of greater than 0.8 when the odds ratio (OR) of the per-allele genetic effect was greater than 1.4
or lesser than 0.70 for both the rs1058885 and rs10079250 variants.

3. Results

The CSF1 rs1058885 TT genotype was less frequent in PD patients compared with the control
subjects (OR = 0.63, 95% confidence interval (CI): 0.43–0.92, p = 0.015, Table 2). PD patients had a
lower frequency of the CSF1 rs1058885 T allele compared with the control subjects (OR = 0.80, 95% CI:
0.67–0.96, p = 0.014). Further stratification according to the age at symptom onset and gender did not
find significant differences in the allelic and genotypic frequencies of CSF1 rs1058885 between PD
patients and the control subjects.
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Table 2. Genotype and allele frequencies of CSF1 rs1058885 polymorphism among Parkinson’s disease
(PD) patients and control subjects in Taiwan.

PD (%) Controls (%) OR (95% CI) p Value
Overall 502 511

Genotype frequency
CC 184 (36.7%) 155 (30.3%) 1.00
CT 247 (49.2%) 261 (51.1%) 0.80 (0.61–1.05) 0.107
TT 71 (14.1%) 95 (18.6%) 0.63 (0.43–0.92) 0.015

Dominant model
CC 184 (36.7%) 155 (30.3%) 1.00

CT + TT 318 (63.3%) 356 (69.7%) 0.75 (0.58–0.98) 0.033
Recessive model

CT + CC 431 (85.9%) 416 (81.4%) 1.00
TT 71 (14.1%) 95 (18.6%) 0.72 (0.52–1.01) 0.056

Allele frequency
Major allele (C) 615 (61.3%) 571 (55.9%) 1.00
Minor allele (T) 389 (38.7%) 451 (44.1%) 0.80 (0.67–0.96) 0.014

EOPD 60 78
Genotype frequency

CC 27 (45.0%) 24 (30.8%) 1.00
CT 27 (45.0%) 43 (55.1%) 0.56 (0.27–1.16) 0.116
TT 6 (10.0%) 11 (14.1%) 0.48 (0.16–1.51) 0.208

Allele frequency
Major allele (C) 81 (67.5%) 91 (58.3%) 1.00
Minor allele (T) 39 (32.5%) 65 (41.7%) 0.67 (0.41–1.11) 0.119

LOPD 442 433
Genotype frequency

CC 157 (35.5%) 131 (30.3%) 1.00
CT 220 (49.8%) 218 (50.3%) 0.84 (0.63–1.13) 0.259
TT 65 (14.7%) 84 (19.4%) 0.65 (0.43–0.96) 0.031

Allele frequency
Major allele (C) 534 (60.4%) 480 (55.4%) 1.00
Minor allele (T) 350 (39.6%) 386 (44.6%) 0.82 (0.67–0.99) 0.035

Female 253 252
Genotype frequency

CC 89 (35.2%) 75 (29.8%) 1.00
CT 128 (50.6%) 130 (51.6%) 0.83 (0.56–1.23) 0.351
TT 36 (14.2%) 47 (18.7%) 0.65 (0.38–1.10) 0.106

Allele frequency
Major allele (C) 306 (60.5%) 280 (55.6%) 1.00
Minor allele (T) 200 (39.5%) 224 (44.4%) 0.82 (0.64–1.05) 0.113

Male 249 259
Genotype frequency

CC 95 (38.2%) 80 (30.9%) 1.00
CT 119 (47.8%) 131 (50.6%) 0.77 (0.52–1.13) 0.175
TT 35 (14.1%) 48 (18.5%) 0.61 (0.36–1.04) 0.069

Allele frequency
Major allele (C) 309 (62.0%) 291 (56.2%) 1.00
Minor allele (T) 189 (38.0%) 227 (43.8%) 0.78 (0.61–1.01) 0.057

CI: Confidence interval; EOPD: early-onset Parkinson’s disease; LOPD: late-onset Parkinson’s disease; OR: Odds ratio.

The allelic and genotypic frequencies of CSF1R rs10079250 were similar in both the PD and
control groups (Table 3). There were no statistically significant differences in the allelic and genotypic
frequencies between PD patients and control subjects after stratification of age of symptom onset
and gender.



J. Clin. Med. 2019, 8, 1529 5 of 8

Table 3. Genotype and allele frequencies of the CSF1R rs10079250 polymorphism among Parkinson’s
disease (PD) patients and control subjects in Taiwan.

PD (%) Controls (%) OR (95% CI) p Value
Overall 502 511

Genotype frequency
TT 199 (39.6%) 188 (36.8%) 1.00
CT 233 (46.4%) 241 (47.2%) 0.91 (0.70–1.20) 0.509
CC 70 (13.9%) 82 (15.9%) 0.81 (0.55–1.18) 0.263

Dominant model
TT 199 (39.6%) 188 (36.8%) 1.00

CT + CC 303 (60.4%) 323 (63.2%) 0.89 (0.69–1.14) 0.351
Recessive model

CT + TT 432 (86.1%) 429 (84.0%) 1.00
CC 70 (13.9%) 82 (16.0%) 0.85 (0.60–1.20) 0.349

Allele frequency
Major allele (T) 631 (62.8%) 617 (67.8%) 1.00
Minor allele (C) 373 (37.2%) 405 (39.6%) 0.90 (0.75–1.08) 0.253

EOPD 60 78
Genotype frequency

TT 18 (30.0%) 27 (34.6%) 1.00
CT 33 (55.0%) 33 (42.3%) 1.50 (0.70–3.23) 0.301
CC 9 (15.0%) 18 (23.1%) 0.75 (0.28–2.03) 0.572

Allele frequency
Major allele (T) 69 (57.5%) 87 (55.8%) 1.00
Minor allele (C) 51 (42.5%) 69 (44.2%) 0.93 (0.58–1.51) 0.774

LOPD 442 433
Genotype frequency

TT 181 (41.0%) 161 (37.2%) 1.00
CT 200 (45.2%) 207 (47.8%) 0.86 (0.64–1.15) 0.304
CC 61 (13.8%) 65 (15.0%) 0.83 (0.55–1.26) 0.386

Allele frequency
Major allele (T) 562 (63.6%) 529 (61.1%) 1.00
Minor allele (C) 322 (36.4%) 337 (38.9%) 0.90 (0.74–1.09) 0.284

Female 253 252
Genotype frequency

TT 94 (37.2%) 92 (36.5%) 1.00
CT 122 (48.2%) 120 (47.6%) 1.00 (0.68–1.46) 0.980
CC 37 (14.6%) 40 (15.9%) 0.91 (0.53–1.54) 0.713

Allele frequency
Major allele (T) 310 (61.3%) 304 (60.3%) 1.00
Minor allele (C) 196 (38.7%) 200 (39.7%) 0.96 (0.75–1.24) 0.758

Male 249 259
Genotype frequency

TT 105 (42.2%) 96 (37.1%) 1.00
CT 111 (44.6%) 121 (46.7%) 0.84 (0.57–1.22) 0.362
CC 33 (13.3%) 42 (16.2%) 0.72 (0.42–1.23) 0.224

Allele frequency
Major allele (T) 321 (64.5%) 313 (60.4%) 1.00
Minor allele (C) 177 (35.5%) 205 (39.6%) 0.84 (0.65–1.09) 0.185

CI: Confidence interval; EOPD: early-onset Parkinson’s disease; LOPD: late-onset Parkinson’s disease; OR: Odds ratio.

4. Discussion

This study showed that the CSF1 rs1058885 polymorphism affects the risk of PD in the Taiwanese
population. This is the first study to identify a specific genotype of CSF1 associated with PD. The results
strongly support the role of neuroinflammation in PD neurodegeneration, with CSF1 rs1058885 playing
a particular role in this process.
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CSF1 rs1058885 is associated with aggressive periodontitis in the Japanese population [14]. The T
allele in rs1058885 may reduce the risk of periodontitis. However, this association cannot be replicated
in Han-Chinese patients with chronic periodontitis [12]. The genetic association between rs1058885
and Alzheimer’s disease was studied in the European population, but the result was negative [19].
It is important to note that rs1058885 is located within a highly variable region of exon 6 of CSF1.
The frequency of the minor rs1058885 T allele in our study (44.1%) was similar to East Asian population
(40%), whereas this allele is predominant in American (67%), African (54%), European (66%), and South
Asian (65%) populations according to 1000 Genome (http://www.1000genomes.org/home). To determine
whether CSF1 rs1058885 is associated with PD in different ethnic populations, more genetic studies
should be performed in different races.

CSF1 acts as a mitogen of microglia [20,21]. Microglial proliferation can be induced by systemic
delivery or direct injection of CSF1 into the hippocampus of mouse models used to investigate prion
disease [22], Alzheimer’s disease [23], ischemic stroke [24], and amyotrophic lateral sclerosis [24].
In CSF1-overexpressing mice, inhibition of CSF1R reversed the increase in the number of microglia by
promoting microglial apoptosis [10]. On the other hand, CSF1 may dampen the microglial response to
LPS [10]. Withdrawal of CSF1 in cultured microglia up-regulated the pro-inflammatory cytokine IL-12
in response to LPS [25]. The CSF1 rs1058885T allele resulted in an amino acid substitution from leucine
to proline at position 408 (p. L408P). This protein variant demonstrated that lower CSF1 activity is
required to stimulate formation of macrophage colonies in vitro compared to C-terminally truncated
CSF1 [26]. Therefore, we proposed that the rs1058885 T allele may demonstrate protective effects
against PD via down-regulation of CSF1 activity. Further functional studies to test the effect of this
allele on microglia are necessary to explore the mechanism and the potential therapeutic strategies
regarding targeting CSF1 in PD.

Mutations of CSF1R cause inherited diffuse white matter encephalopathy with spheroids
pathology, an autosomal dominant neurodegenerative disorder presenting with such clinical features
as parkinsonism, cognitive decline, and personality and behavioral changes [27]. Remarkably,
mutations in CSF1R (p.P54Q, p.L536V, p.L868R, p.Q691H, and p.H703Y) have been reported in AD
patients [28,29]. Our results failed to demonstrate a significant association between CSF1R rs10079250
and PD. However, the minor allele frequencies of rs10079250 demonstrated in our results (32.2%)
and the East Asian population (38%) are higher than those observed in other populations (7%–11%)
(http://www.1000genomes.org/home). This genetic discrepancy among different ethnicities may
underestimate its significance regarding its association with disease. Given the high genetic overlap
between different neurodegenerative diseases, further studies to assess the association between more
genetic variants of CSF1R and PD or other neurodegenerative diseases are warranted.

Our study provides important information regarding the association of CSF1 rs1058885 with
PD patients in Taiwan. Study limitations include the relatively small sample size for the EOPD
patients, which may have reduced the statistical power. Since the T allele in rs1058885 may be
associated with a reduced risk of periodontitis [14], co-morbidity with periodontitis may affect the
rs1058885 distribution in each group. However, the proportion of periodontitis in our cohort was
not available, so our statistical results could not be adjusted according to periodontitis incidence.
The potential interactions of environmental factors, such as exposures to smoking, toxins, heavy metals,
or pesticides, with tested genetic variants were not explored. Future prospective studies involving
different potential confounding factors in populations of different ethnicities are merited to confirm the
potential association between CSF1/CSF1R signaling and PD or other neurodegenerative diseases.
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