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Abstract

Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the
metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to
develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of
mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to
identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56
differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp,
Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and
showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role
during early nephron formation. Our study should help to define the minimal set of genes that is required to form a
functional nephron.
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Introduction

The mammalian kidney is a complex organ comprising

thousands of nephrons that are connected by a branched

collecting duct system [1]. The nephrons, the functional units of

the kidney, filter the blood through a basement membrane and

drain the filtrate via the collecting ducts to the bladder. In the

mouse, nephron development is initiated at E10.5 when a caudal

portion of the Wolffian duct near the hindlimbs bulges out and

forms the ureteric bud. Signals from the metanephric mesenchyme

induce the ureteric bud to branch in a stereotypical fashion to

form the highly branched collecting duct system. The ureteric bud

in turn releases signals that induce the metanephric mesenchyme

to condense around the tips of the ureteric bud and to form the

cap mesenchyme. Some cells of the cap mesenchyme undergo a

mesenchymal-to-epithelial transition and develop into renal

vesicles. These vesicles elongate, form s-shaped bodies and finally

mature into nephrons.

Several signaling pathways are involved in the development of

the nephron, including the Fgf/Fgfr, the Wnt/ß-catenin and the

Notch/Presenilin pathway. To induce nephron formation, Wnt9b

is secreted from the ureteric bud into the adjacent mesenchyme

where it binds to Frizzled receptors and activates the canonical ß-

catenin pathway [2,3]. In response, the metanephric mesenchyme

expresses the morphogens Fgf8 [4,5] and Wnt4 [6]. Fgf8 is

required for cell survival at different stages of nephrogenesis. Wnt4

induces cells from the cap mesenchyme to undergo the

mesenchymal-to-epithelial transition, which finally leads to the

formation of renal vesicles. Signaling by Notch and Presenilin is

then needed to pattern the proximal tubule of the nephron [7,8].

Recently, we have identified Fgfrl1 as a novel receptor that is

essential for nephron development [9]. Fgfrl1 belongs to the Fgfr

(fibroblast growth factor receptor) family of single transmembrane

receptors (for review see [10]). Its extracellular domain resembles

those of the classical Fgfrs in amino acid sequence and in that it

contains three Ig-like loops. However, the intracellular domain

differs from the classical receptors and does not possess any

tyrosine kinase activity [11,12]. The extracellular domain of Fgfrl1

interacts with heparin [13] and with Fgf ligands, primarily Fgf-2,

-3, -4, -8, and -22 [14]. The intracellular domain binds to

members of the Sprouty/Spred family that are known as negative

regulators of the growth factor-mediated activation of the Ras/

Raf/Erk signaling pathway [15]. During embryonic development,

Fgfrl1 is expressed in tissues of the musculoskeletal system,

including cartilage, bone and muscles [13], but also in the lung

and the kidneys [9]. Information about the function of Fgfrl1 was

gained from studies with mice, in which the Fgfrl1 gene was

deleted by targeted inactivation [16,17]. Fgfrl1 knock-out mice die

shortly after birth due to malformation of the diaphragm. The

mutant diaphragm muscle obviously is not strong enough to inflate

the lungs after birth. However, the most striking phenotype of the

Fgfrl1 deficient mice is the nearly complete absence of the

metanephric kidneys. Utilizing organ cultures and different

staining techniques, we demonstrated that Fgfrl1 deficiency leads
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to a dramatic reduction of ureteric branching and to a lack of

mesenchymal-to-epithelial transition in the nephrogenic mesen-

chyme [9]. As a result, the mutant embryos lack any renal vesicles

in their developing kidneys.

In the present study we used the DNA microarray profiling

technique to identify genes that act downstream of Fgfrl1 signaling

in the regulatory hierarchy of genes required for early nephron

development. We confirmed reduced expression of Wnt4 and Fgf8

in the kidneys of the Fgfrl1 deficient mice. In addition, we

identified more than 50 genes that are expressed at significantly

reduced levels in our mutant mice. Many of these genes are

involved in the Fgf/Fgfr, Wnt/ß-catenin, Bmp, Notch, and Six/

Eya/Dach signaling pathway.

Results

Fgfrl1 is expressed throughout metanephric kidney
development

In a previous study we have used polyclonal antibodies on thin

sections of E15.5 mouse kidneys to demonstrate that Fgfrl1 is

expressed in nephrogenic structures of the cortical zone, with

strong expression in renal vesicles, comma- and s-shaped bodies.

Weaker staining was found in the undifferentiated mesenchyme

and in the ureteric epithelium [9]. To verify these findings and to

gain more information about Fgfrl1 expression during kidney

development, we performed in situ hybridization on thin sections

(SISH) at three developmental stages (Fig. 1). At E12.5, Fgfrl1

mRNA was highly expressed in the metanephric mesenchyme and

in the ureteric bud. At E14.5, strong Fgfrl1 signal was detected in

nascent nephrons and in the metanephric mesenchyme. At E18.5,

Fgfrl1 signal was primarily found in tubules and nephrons. These

results demonstrate that Fgfrl1 is expressed in developing

nephrons and in the ureteric bud throughout kidney development,

thus confirming our previous results obtained by immunohisto-

chemistry.

Transcriptional profiling of Fgfrl1 deficient kidneys
To determine how the absence of Fgfrl1 signaling would affect

kidney development, we used Agilent DNA microarrays and

compared mRNA levels between wildtype and Fgfrl1 deficient

kidneys at E12.5. This time point was chosen because the first

phenotypic differences between wildtype and Fgfrl12/2 kidneys

are observed at E12.5 and because the first nephrogenic structures

become visible at this developmental stage. Our efforts led to the

identification of significant alterations in the transcriptome of the

Fgfrl1 deficient kidneys. Of the ,20,000 genes analyzed, 17 genes

showed an up-regulation $2 fold and 56 genes showed a down-

regulation $2 fold. None of the genes was up-regulated $3 fold

and only 14 genes were down-regulated $3 fold (Fig. 2). Among

the most strongly affected genes (indicated in the scatter plot of

Fig. 2 by gene symbols) were Wnt4, Fgf8, Lhx1 and Fgfrl1, which

had already been discovered as down-regulated markers in our

previous study [9]. Expression of Eya1 and Six2, which define the

uninduced mesenchyme, was barely affected by the absence of

Fgfrl1 (fold change 1.3 and 1.0, respectively). Thus, the microarray

data demonstrate the validity of our approach to identify mRNAs

that may act downstream of Fgfrl1 in the regulatory hierarchy of

genes required for nephron development.

Arbitrarily, we have chosen a minimal fold change .1.9 and a

p-value cutoff ,0.05 to generate a table of the most critical genes

that were down-regulated in Fgfrl1 deficient kidneys (Table 1, for a

list of all genes see GEO Series accession number GSE32013).

This table included all the genes that had previously been found to

be affected in the Fgfrl1 knock-out mouse (indicated in bold in

Tables 1 and 2). Besides Wnt4, Pax8, Fgf8 and Lhx1, our list

included 60 other genes that might contribute to the phenotype of

the Fgfrl1 knock-out mice. Among these hits are many genes that

have previously been described to be essential for normal kidney

development, such as Spry1 [18], Etv4 [19] and Itga8 [20], but

there are also several genes whose function in kidney development

has not been appreciated so far, including Fzd10, Frzb, Il17rd and

Dach1 (Table 1).

Validation by quantitative PCR
In order to confirm the results of the DNA microarray, we

quantified the mRNA levels of selected genes by RT-PCR. For this

purpose, we focused on hits that had yielded large differences

between wildtype and mutant kidneys. In this way, 29 down-

regulated genes, two control genes (Rps9 and Gapdh) and 3 up-

regulated genes were analyzed by qPCR (Table 2). For the

majority of the down-regulated hits, the qPCR results were found

Figure 1. Expression of Fgfrl1 in the developing mouse kidney.
Thin sections of embryonic mouse kidneys at E12.5, E14.5 and E18.5
were hybridized with a digoxigenin-labeled anti-sense RNA probe for
Fgfrl1. After hybridization, the sections were incubated with alkaline
phosphatase-conjugated antibodies against digoxigenin and the signal
was developed with BM purple. Expression of Fgfrl1 was observed in
the ureteric bud and in all nephrogenic structures. The inset of the
panel at E14.5 shows a control section hybridized with the sense probe
for Fgfrl1.
doi:10.1371/journal.pone.0033457.g001

Downstream Targets of Fgfrl1
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to be in good agreement with the microarray data, although the

differences (fold changes) observed by qPCR were larger than

those determined by microarray analysis. Only three genes (Dll1,

Msx2, Hey1) showed a minimal fold change ,1.9 by qPCR,

which had been selected as cutoff above.

In sharp contrast to the down-regulated transcripts, none of the

up-regulated transcripts (Tcfcp2l1, Cxcl12, Col1a1) could be

confirmed by qPCR as the fold changes observed by qPCR were

between 1.0 and 1.4. We may therefore conclude that the lack of

Fgfrl1 expression in the mutant kidneys was barely compensated

for by the up-regulation of other genes. In particular, the classical

receptors Fgfr1-Fgfr4 did not show altered expression in the

mutant kidneys.

For the microarray experiment, we had used E12.5 kidneys

because overt differences in the phenotype between wildtype and

Fgfrl1 deficient kidneys appear at this developmental stage.

However, changes in gene expression may occur prior to the

actual appearance of an altered phenotype and these changes may

or may not persist throughout kidney development. We therefore

analyzed the 29 down-regulated genes, the 3 up-regulated genes

and the two control genes also at three additional time points

during kidney development, one prior to and two after the stage

used for the microarray experiment (E11.5, E14.5, E16.5). These

data are also included in Table 2. Although some of the results

might be difficult to interpret, the majority of the genes can clearly

be grouped into two different categories. One category includes

genes whose fold changes show a bell-shaped curve during

embryonic development (e.g. Slc32a1, Pcp4, Wnt4, Lef1, Itga8,

Egr1). These genes might preferentially be required during the

initial stages of nephron development. The other category includes

genes whose fold changes steadily increase throughout develop-

ment (e.g. Fgf8, Lhx1, Uncx, Osr2, Dkk1, Clec18a, Dll1). It is

likely that these genes are particularly needed at later stages of

nephron development.

Validation by WISH
To further validate our data and to examine the spatial

expression pattern of the genes in the kidney, we performed whole-

mount in situ hybridization experiments (WISH). For this purpose,

we used E14.5 kidneys because samples at this stage revealed a

clearer expression pattern than samples at E12.5 due to the

increased size and the generally stronger gene expression level [9].

We primarily focused on genes, which had shown a difference .3

and which had not yet been annotated in the GUDMAP database

(www.gudmap.org). In total 12 genes were tested, including the

positive control Calb1 (Fig. 3). Calb1 revealed the expected

expression pattern in the ureteric bud and its derivatives, in both

the wildtype and the Fgfrl1 knock-out kidneys. In contrast,

expression of the other 11 genes was significantly reduced or even

absent in the Fgfrl1 deficient kidneys (Fig. 3). Likewise, expression

of the four nephrogenic marker genes Wnt4, Fgf8, Lhx1 and Pax8

that had been analyzed by WISH in our previous study was not

detected in the Fgfrl12/2 kidneys [9]. Thus, our in situ

hybridization data confirmed the microarray and the qPCR

results.

It is of interest to note that most of the genes detected by WISH

in the wildtype kidneys were expressed in the ureteric bud and/or

in developing nephrogenic structures, such as renal vesicles and s-

Figure 2. Identification of transcripts that are differentially expressed in Fgfrl1 deficient kidneys. The scatter plot shows average
normalized signal intensities from three independent experiments using E12.5 kidneys from wildtype and Fgfrl1 knock-out mice. Each dot represents
an individual gene. Dashed lines correspond to a fold change of 2. Transcripts that are down-regulated more than 3-fold are given by their gene
symbol.
doi:10.1371/journal.pone.0033457.g002

Downstream Targets of Fgfrl1
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Table 1. Genes with reduced expression in Fgfrl1 deficient kidneys.

Nr Gene Symbol Gene Description Gene ID pValue Fold Change Verification Method GUDMAP

1 Svopl SV2 related protein homolog-like 320590 0.0022 9.5 qPCR 8950;7412

2 Krt23 keratin 23 94179 0.0014 7.4 qPCR, WISH

3 Slc32a1 solute carrier family 32 member 1 22348 0.0015 7.0 qPCR, WISH 13958

4 Wnt4 wingless-related MMTV integration site 4 22417 0.0013 6.2 qPCR, WISH 8208;11295

5 Dkk1 dickkopf homolog 1 13380 0.0106 5.4 qPCR, WISH 9041

6 Egr1 early growth response 1 13653 0.0077 4.9 qPCR 6106;11301

7 Pcp4 immunoglobulin superfamily member 5 18546 0.0043 4.4 qPCR, WISH

8 Fgf8 fibroblast growth factor 8 14179 0.0015 4.4 qPCR, WISH

9 Lhx1 LIM homeobox protein 1 16869 0.0028 4.1 qPCR, WISH 5384;7928

10 Sp5 trans-acting transcription factor 5 64406 0.0185 3.7 WISH

11 Aldh1a1 aldehyde dehydrogenase family 1, subfamily A1 11668 0.0069 3.5 qPCR

12 Clec18a C-type lectin domain family 18 member A 353287 0.0055 3.4 qPCR, WISH

13 Fgfrl1 fibroblast growth factor receptor-like 1 116701 0.0035 3.1 qPCR, WISH

14 Bhlhb5 basic helix-loop-helix domain containing, class B5 59058 0.0002 3.0 5911

15 Hes5 hairy and enhancer of split 5 15208 0.0011 3.0 5928

16 Fzd10 frizzled homolog 10 93897 0.0180 2.9 8488

17 Gpx6 glutathione peroxidase 6 75512 0.0116 2.9

18 Alx1 ALX homeobox 1 216285 0.0104 2.8 5336

19 Lmcd1 LIM and cysteine-rich domains 1 30937 0.0001 2.7 6340

20 Cck cholecystokinin 12424 0.0247 2.7

21 Amph amphiphysin 218038 0.0158 2.7

22 Aldh1a7 aldehyde dehydrogenase family 1, subfamily A2 26358 0.0164 2.6

23 Galntl2 polypeptideN-acetylgalactosaminyltransferase-like 2 78754 0.0419 2.6

24 Jag1 jagged 1 16449 0.0269 2.5 qPCR 8532;11379

25 Hey1 hairy/enhancer-of-split related with YRPW motif 1 15213 0.0101 2.4 qPCR 5912

26 Dll1 delta-like 1 13388 0.0162 2.4 qPCR 11371

27 Plekhg6 pleckstrin homology domain-containing family G6 213522 0.0065 2.4

28 Akr1b7 aldo-keto reductase family 1, member B7 11997 0.0225 2.4

29 Greb1 gene regulated by estrogen in breast cancer protein 268527 0.0017 2.3 8529;8891

30 Cxcr4 chemokine (C-X-C motif) receptor 4 12767 0.0233 2.3 qPCR

31 Uncx UNC homeobox 22255 0.0060 2.3 qPCR 5729

32 Notum notum pectinacetylesterase homolog 77583 0.0061 2.3

33 Bmp2k BMP2 inducible kinase 140780 0.0434 2.3 qPCR

34 C1qdc2 family with sequence similarity 132, member A 67389 0.0101 2.3 9273

35 Ism1 isthmin 1 homolog 319909 0.0106 2.3

36 Lef1 lymphoid enhancer binding factor 1 16842 0.0071 2.3 qPCR 5539

37 Msx2 homeobox, msh-like 2 17702 0.0358 2.2 qPCR 5365

38 Pax8 paired box gene 8 18510 0.0202 2.2 qPCR, WISH 10742;11179

39 Etv4 ets variant gene 4 (E1A enhancer binding protein) 18612 0.0414 2.2 5486;12534

40 Bmp2 bone morphogenetic protein 2 12156 0.0020 2.2 qPCR 8949

41 B3galt5 beta-1,3-galactosyltransferase 5 93961 0.0131 2.2

42 Apom apolipoprotein M 55938 0.0127 2.1 10784

43 Cxcl14 chemokine (C-X-C motif) ligand 14 57266 0.0175 2.1 8425

44 Ankrd56 mus musculus ankyrin repeat domain 56 78088 0.0165 2.1

45 Frzb frizzled-related protein 20378 0.0102 2.1 qPCR, WISH

46 Naaa N-acylethanolamine acid amidase 67111 0.0077 2.1

47 Osr2 odd-skipped related 2 107587 0.0094 2.0 qPCR 6335;13623

48 Il17rd interleukin 17 receptor D 171463 0.0003 2.0 qPCR, WISH

49 Cpa2 carboxypeptidase A2, pancreatic 232680 0.0072 2.0

50 Lbx2 ladybird homeobox homolog 2 16815 0.0400 2.0 qPCR 6590

Downstream Targets of Fgfrl1
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shaped bodies. These genes included Wnt4, Fgf8, Lhx1 and Pax8

from the previous study and Spry1, Dach1, Dkk1, Il17rd, Frzb,

Krt23, Clec18a and Pcp4 from the present study (Fig. 3). In

contrast, expression of the transcription factor Sp5 and the amino

acid transporter Slc32a1 was rather diffuse, revealing no distinct

pattern. We may therefore conclude that the majority of the

differentially expressed genes identified by microarray analysis and

confirmed by WISH showed expression in renal vesicles and s-

shaped bodies, structures that are missing in our Fgfrl1 deficient

mice.

Discussion

In the present study we demonstrated that Fgfrl1 is expressed in

the ureteric bud and in all nephrogenic structures of wildtype

mice, including renal vesicles and comma- and s-shaped bodies.

Mice lacking the Fgfrl1 gene do not develop any nephrogenic

structures. A careful analysis of the kidney transcriptome from

wildtype and knock-out mice allowed us to identify more than 50

genes that act - directly or indirectly - downstream of Fgfrl1 in the

regulatory cascade of genes required for early nephron develop-

ment. Many of these genes appear to be involved in well-

established signaling pathways. However, it cannot be deduced

from our study whether all these genes are directly involved in the

same signaling pathway as Fgfrl1. Since Fgfrl1 deficient mice do

not develop any renal vesicles it is also possible that some of the

identified mRNAs lack in the Fgfrl1 null mice simply because they

are normal constituents of renal vesicles. To minimize such

‘‘secondary’’ effects, we analyzed kidneys at stage E12.5 where the

first nephrogenic structures become visible and where the first

phenotypic differences between wildtype and Fgfrl12/2 mice are

observed.

FGF signaling pathway
By virtue of our microarray approach, we found five down-

regulated genes (Fgf8, Spry1, Il17rd, Ism1, Etv4) that are involved,

directly or indirectly, in Fgf signaling. Fgf8 is essential for nephron

formation as mice lacking this gene do not progress beyond the

renal vesicle stage [4,5]. Interestingly, Fgf8 is one of the best

ligands for Fgfrl1 as demonstrated by a ligand dot blot assay [14].

Spry1 is an antagonist of Fgf signaling, which is crucial for normal

outgrowth of the ureteric bud as Spry12/2 embryos possess

supernumerous ureteric buds [18]. Il17rd (also termed Sef), Ism1

and Etv4 belong to the Fgf synexpression group [20–22]. This

group comprises several genes that show a similar spatiotemporal

expression pattern and that may serve a similar function during

development. Fgfrl1 [10], Il17rd [21], Spry2 and Spry4 [23] have

been reported to act as negative regulators of Fgf signaling. The

exact function of Fgfrl1 is not yet known, but we have speculated

that it might act as a decoy receptor, which sequesters Fgf ligands

away from the actively signaling receptors, or as a dominant

negative binding partner, which interacts with the other receptors

and inhibits transphosphorylation of the intracellular domains

[13]. If this were true, one would expect up-regulation of genes

that act downstream of FGF signaling, such as Fgfr1, Fgfr2 or

FGF8, resulting in increased numbers of ureteric buds and

nephrogenic structures. In sharp contrast, Fgfrl1 null mice have a

phenotype with renal dysplasia [9] very similar to mice with a

conditional disruption of Fgf8 [4,5] or a compound disruption of

the two receptors Fgfr1 and Fgfr2 [24]. This observation suggests

that Fgfrl1 might act as a positive regulator of FGF signaling

during kidney development and not as a decoy receptor.

WNT signaling pathway
The Wnt signaling pathway is often activated in concert with

Fgf signaling during developmental processes [25]. We found by

our microarray approach at least five genes that have been

implicated in Wnt signaling, namely Wnt4, Fzd10, Frzb, Lef1 and

Sp5. Among these hits, Wnt4 ranked at the top with a 6-fold

expression difference between wildtype and knock-out mice when

measured by microarray and 13-fold when verified by qPCR

experiments. Wnt4 is usually expressed in the metanephric

mesenchyme, where it induces the mesenchymal-to-epithelial

transition. Therefore mice lacking Wnt4 activity show a greatly

reduced number of nascent nephrogenic structures [6].

In a recent study, Valerius & McMahon [26] performed a

transcriptional profiling screen using Wnt4 deficient kidneys. The

authors identified 236 genes with differential expression levels

between wildtype and Wnt42/2 kidneys. Interestingly, several

genes exhibiting reduced expression in their study were also found

Table 1. Cont.

Nr Gene Symbol Gene Description Gene ID pValue Fold Change Verification Method GUDMAP

51 Spry1 sprouty homolog 1 24063 0.0183 2.0 WISH

52 Col13a1 collagen type XIII, alpha 1 12817 0.0034 2.0 8082

53 Dusp2 dual specificity phosphatase 2 13537 0.0003 2.0

54 Rbm20 RNA binding motif protein 20 73713 0.0107 2.0

55 Cdh4 cadherin 4 12561 0.0221 2.0 7763

56 Chrdl2 chordin-like 2 69121 0.0349 2.0

57 Gldc glycine decarboxylase 104174 0.0207 1.9

58 Itga8 integrin alpha 8 241226 0.0062 1.9 qPCR

59 Car4 carbonic anhydrase 4 12351 0.0006 1.9

60 Metap2 methionine aminopeptidase 2 56307 0.0234 1.9

61 Unc93a unc-93 homolog A 381058 0.0076 1.9

62 Gdnf glial cell line derived neurotrophic factor 14573 0.0445 1.9 qPCR

63 Dach1 dachshund 1 13134 0.0062 1.9 qPCR, WISH

64 Hs3st3b1 heparan sulfate(glucosamine)3-O-sulfotransferase3B1 54710 0.0342 1.9 11741

doi:10.1371/journal.pone.0033457.t001

Downstream Targets of Fgfrl1
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to be down-regulated in our study, such as Dll1, Pcp4, Dkk1,

Pax8, Fgf8, Lhx1, Hes5, Hey1 and Egr1. This result can be

explained by the fact that Fgfrl1 acts upstream of Wnt4 in the

cascade of regulatory genes as Fgfrl1 deficient mice lack Wnt4

expression in their kidney rudiments.

The other members of the Wnt signaling cascade that were

significantly down-regulated in our study appear to have diverse

functions. Fzd10 is one of the receptors for Wnt ligands. Frzb is a

secreted, frizzled-related receptor that interferes with Wnt

signaling. Lef1 is a transcription factor participating in Wnt

signaling. Canonical Wnt signaling leads to the stabilization of ß-

catenin, which - after translocation to the nucleus - interacts with

transcription factors of the Lef/Tcf family to induce expression of

target genes [27]. Sp5 is a member of the Sp1 transcription factor

family. It ranks among the ten best hits of our microarray analysis.

Fujimura et al. [28] presented evidence that Sp5 is involved in

Wnt signaling since constitutive activation of the Wnt/ß-catenin

pathway resulted in the up-regulation of Sp5 expression in the

mouse telencephalon.

Bmp signaling
With our microarray, we found reduced expression of Bmp2

and Bmp2k. The Bmps play a key role in the development of the

skeleton, but they are also involved in patterning of the

metanephric kidney [29]. Bmp2 is expressed in the distal renal

vesicle as shown by Georgas et al. [30]. The authors suggested that

Bmp2 might be involved - together with other factors - in the

fusion of the renal vesicle with the ureteric tip. Bmp2k is a serine/

threonine protein kinase whose expression is induced after

addition of Bmp2 to prechondroblastic cells in order to trigger

their differentiation [31]. However, the role of Bmp2k during

nephron formation has not yet been investigated.

Notch signaling pathway
Notch signaling is required to pattern the distal and proximal

tubule of the nephron [32]. In our microarray, the Notch ligands

Jag1 and Dll1 as well as the downstream effector Hey1 were down-

regulated. However, Hey1 and Dll1 showed only mild reduction

when validated by qPCR (1.4- and 1.7-fold, respectively), in

contrast to Jag1, whose expression was reduced 7.4-fold. Jag1 is

known to interact with Notch2 and other Notch receptors [33]. It

regulates ureteric budding and branching by crosstalk with Gdnf/

Ret signaling [34]. It is therefore likely that downregulation of Jag1

in the Fgfrl1 deficient kidneys reduces Notch signaling and hence

interferes with normal nephron development.

Six-Eya-Dach signaling pathway
Six (sine oculis), Eya (eyes absent) and Dach are transcription

factors that constitute the ‘‘retinal determination network’’, whose

loss inhibits eye development and whose forced expression leads to

ectopic eye formation [35]. It is believed that the three factors

form a complex that binds to the promoter region of target genes

to control eye formation in mammals and insects. Besides their

function in eye formation, Six1 and Eya1 are also involved in the

development of the metanephric kidneys of mammals [36] as

targeted deletion of either one of these genes leads to severe kidney

malformation. Targeted disruption of Dach1, however, does not

seem to have any obvious effect on kidney or eye formation,

although mice without Dach1 exhibit postnatal lethality [37].

In our gene array, Six1 and Eya1 were not differentially

expressed (fold change 1.1 and 1.3, respectively). This is in contrast

to Dach1, which was significantly down-regulated (qPCR 6.0-fold,

Table 2). It is therefore likely that Six1 and Eya1 act upstream,

while Dach1 acts downstream of Fgfrl1 in the same regulatory

network of genes that are required for kidney development. As a

matter of fact, the phenotypes of Fgfrl1, Eya1 and Six1 deficient

mice look intriguingly similar. All of them show kidney and bone

malformations [9,38,39]. In addition, Six1 and Fgfrl1 knock-out

mice exhibit defects in the diaphragm [16,40]. Dach1 is expressed

in developing nephrons, primarily in comma- and s-shaped bodies

[41]. This is consistent with our WISH experiments where a

prominent signal for Dach1 was found in the metanephric

mesenchyme surrounding the ureteric tips (Fig. 3). Brunskill et

al. [42] observed strong upregulation of Dach1 during nephron

formation, especially when the stage of the renal vesicle was

compared with that of the s-shaped body (46-fold). It is likely that

Fgfrl1 is involved in this upregulation since our Fgfrl1 deficient

kidneys show strongly reduced Dach1 expression.

Table 2. Verification of differential gene expression by qPCR.

Gene Fold change wt/ko qPCR Fold change wt/ko

E11.5 E12.5 E14.5 E16.5 array E12.5

Slc32a1 0.8 .20 13.4 11.7 7

Krt23 7.5 17.4 1.5 3.6 7.4

Pcp4 2.7 17 6 1 4.4

Wnt4 2.3 13.3 3.8 2.3 6.2

Pax8 1.5 9.6 3.9 4.7 2.2

Svopl 11.1 9.4 10.6 .20 9.5

Fgf8 3.2 9.2 16.4 .20 4.4

Il17rd 2.3 8.5 5.9 4.9 2

Lef1 2.4 8.2 0.8 2.1 2.3

Lhx1 0.7 7.7 12.7 .20 4.1

Jag1 2 7.4 5.7 3.9 2.5

Uncx 1.6 7 10.1 17.2 2.3

Itga8 3.1 6.9 2.6 2.1 1.9

Fgfrl1 .20 6.8 7.5 .20 3

Frzb 2.5 6.1 2.9 3.4 2.1

Dach1 1.7 6 4 5.1 1.9

Bmp2 0.8 5.2 7.9 6.3 2.2

Osr2 2.9 4.8 11.7 .20 2

Egr1 1 4.6 2.1 1.5 4.9

Aldh1a1 9.8 4 6.3 3.7 3.5

Gdnf 3.5 3 3.1 4.1 1.9

Cxcr4 1.7 3.4 3.7 3.1 2.3

Dkk1 2.5 3 13.1 .20 5.4

Clec18a 2.1 2.3 .20 .20 3.4

Lbx2 0.8 2.1 2.1 1.5 2

Bmp2k 1 2 1 1 2.3

Dll1 1.1 1.7 7.4 13.6 2.4

Msx2 0.4 1.6 1.2 0.7 2.2

Hey1 1.6 1.4 3.3 5 2.4

Tcfcp2l1 3.1 1.4 1.2 3.6 0.5

Cxcl12 2.2 1.3 0.7 1.2 0.5

Rps9 1.9 1.2 1.8 2.4 1.1

Gapdh 1 1 1 1 1

Col1a1 0.8 1 0.7 0.5 0.5

doi:10.1371/journal.pone.0033457.t002
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Conclusions
We have identified a number of genes that act downstream of

Fgfrl1 signaling in the regulatory hierarchy of genes required for

early nephron development. Several of these genes are involved in

Fgf/Fgfr, Wnt/ß-catenin, Bmp, Notch, and Six/Eya/Dach

signaling. The downregulation of these genes might be responsible

for the lack of nephrogenesis observed in Fgfrl1 knock-out mice.

For some of the identified genes, a potential involvement in the

development of the metanephric kidneys has not yet been

appreciated (e.g. Fzd10, Frzb, Il17rd and Dach1). Our study

should therefore help to define the minimal set of genes that is

required for normal nephron formation.

Materials and Methods

Animals
All animal work was conducted according to the relevant

national guidelines and was approved by the Amt für Land-

wirtschaft und Natur of Bern (approval number 69/09). The

Fgfrl1 deficient mice have previously been described [9].

Littermates of wildtype and Fgfrl1 knock-out mice were used for

all experiments. For an exactly timed pregnancy, the noon of the

day, at which a vaginal plug was detected, was considered as E0.5.

DNA Microarray analysis
Kidney rudiments were dissected in parallel from wildtype and

Fgfrl1 knock-out mice of stage E12.5. Total RNA was extracted

from pooled kidney rudiments (n = 6–9) with the GeneElute

miniprep kit from Sigma-Aldrich Co. The quality of the RNA was

assessed with an Agilent 2100 Bioanalyser (Agilent Technologies,

Palo Alto, CA, USA). Three individual RNA preparations from

wildtype mice and three individual RNA preparations from Fgfrl1

knock-out mice were separately transcribed into double stranded

cDNA in the presence of RNA poly-A controls (RNA Spike-In

Kit, Agilent 5188-5279). The cDNAs were transcribed with T7

polymerase into cRNA utilizing cyanine 3-CTP (Cy3) for knock-

out and cyanine 5-CTP (Cy5) for wildtype samples, respectively

(Agilent 5190-0444). No amplification step was performed. The

three pairs of fluorescently labeled cRNA were hybridized for 17 h

at 65uC to an Agilent gene expression array (Whole Mouse

Genome Microarray 4644 K, G4122F) according to the instruc-

tions of the manufacturer utilizing reagents from the Gene

Figure 3. Whole mount in situ hybridization (WISH) of selected marker genes in E14.5 kidneys. Kidneys from wildtype and Fgfrl1 knock-
out mice were hybridized with digoxigenin-labeled RNA probes and the probes were detected with alkaline phosphatase conjugated antibodies
against digoxigenin. All probes produced clear expression patterns in the wildtype kidneys. In contrast, the same probes did not display any pattern
in knock-out kidneys, with the exception of Calb1 that was included as a positive control. The white arrows indicate the kidney rudiments of the
knock-out embryos.
doi:10.1371/journal.pone.0033457.g003
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Expression Hybridization Kit (Agilent 5188-5242). The slides were

washed and scanned using an Agilent G2565BA microarray

scanner. Signals were extracted from images using the Agilent

Feature Extraction software version 10. Data analysis was

performed on the R platform for statistical computing with

packages from the Bioconductor project [43]. Gene annotation

and identifier conversions were retrieved from the Mouse Genome

Database (MGD, http://www.informatics.jax.org). All microarray

data were deposited in the GEO database and comply with

MIAME standards (accession number GSE32013).

Quantitative PCR analysis
Quantitative PCR was performed as previously described [9].

In brief, the RNA was transcribed into first strand cDNA with

reverse transcriptase from Moloney Murine Leukemia Virus. The

cDNAs were quantified by real time PCR on an ABI 7500

platform using the primer pairs listed in Table S1.

In situ hybridization
Whole-mount in situ hybridization (WISH) was performed as

described before [9]. Different hybridization probes were

generated by PCR utilizing cDNA prepared from E16.5 kidneys

and the primer pairs listed in Table S2.

In situ hybridization on thin sections (SISH) was performed

according to Koch et al. [44] with minor modifications. Sense and

anti-sense riboprobes for Fgfrl1 were prepared by reverse

transcription from the full-length cDNA cloned into the vector

pcDNA3.1 (+/2) using the digoxigenin RNA labeling kit from

Roche Diagnostics (Rotkreuz, Switzerland). Dissected kidneys

were fixed with paraformaldehyde (4% PFA in PBS, overnight at

4uC) and incubated in a sucrose solution (30% sucrose in PBS,

overnight at 4uC). Equilibrated samples were embedded in Tissue-

Tek, frozen on dry ice and cut to 12 mm sections. Cryosections

were fixed with PFA (4% in PBS, 20 min at RT) and digested with

proteinase K (10 mg/ml, 10 min at RT). After refixation (4% PFA,

20 min), sections were acetylated (0.25% acetic anhydride, 0.1 M

triethanolamine, pH 8.0, 10 min). Acetylated sections were

prehybridized in hybridization buffer (50% formamide, 46 SSC,

26 Denhardt’s solution, 5% dextran sulfate, 100 mg/ml yeast

tRNA, 5 h at RT) and hybridized with the Fgfrl1 probe (overnight

at 68uC with 1 mg/ml of the digoxigenin-labeled riboprobe). After

a series of washing steps (wash 1: 0.26SSC, 30 min at 60uC; wash

2: 50% formamide, 26 SSC, 30 min at RT; wash 3: 0.26 SSC,

10 min at RT; wash 4: 0.1 M maleic acid, 0.15 M NaCl, 0.1%

Tween-20, pH 7.4, 15 min at RT) the sections were blocked with

BSA (3% in Tris buffered saline, 2 h at RT) and incubated with

anti-digoxigenin antibodies (alkaline phosphatase-conjugated Fab

fragments from Roche, diluted 1:2000, overnight at 4uC). The

slides were rinsed and equilibrated with detection buffer (0.1 M

Tris, 0.1 M NaCl, 50 mM MgCl2, pH 9.5). Finally, the

hybridization signal was developed with BM Purple (Roche, 12–

24 h at RT) and the slides were photographed under an Olympus

BX-51 microscope.

Supporting Information

Table S1 Primers used for RT-PCR.

(DOC)

Table S2 Primers used for WISH. Underlined nucleo-
tides indicate restriction sites used for subcloning.

(DOC)
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