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Pregnancy represents a crucial period in which several exposures—and especially maternal diet—might 
shape children’s health. Thus, identifying how maternal dietary intakes early affect biological aging 
in children represents a public health mission. We aimed to assess the relationship between maternal 
intake of nutrients in early pregnancy and telomere length of cell‑free circulating DNA (cfDNA) from 
amniotic fluid. We used data and samples from the ongoing prospective “Mamma & Bambino” study, 
which recruits mother–child pairs from Catania at the first prenatal visit. Maternal nutrient intakes 
were assessed using a Food Frequency Questionnaire, while relative telomere length of cfDNA was 
assessed by real‑time polymerase chain reaction. Our analysis included 174 mother–child pairs. The 
intakes of iron, vitamin B1, and magnesium were positively correlated with relative telomere length 
(p‑values < 0.05). However, only the intake of magnesium was positively associated with relative 
telomere length, after applying a linear regression model (β = 0.002; SE = 0.001; p = 0.024). Magnesium 
deficiency was negatively associated with relative telomere length after adjusting for the same 
covariates (β = −0.467; SE = 0.176; p = 0.009). To our knowledge, this is the first evidence of a positive 
relationship between maternal nutrient intake and telomere length of cfDNA. Further efforts are 
needed for deeply investigating the effect of maternal dietary intakes on telomere length, in order to 
develop effective public health strategies.

Human aging is defined as the dynamic process characterized by the recurrent adaptation to internal and exter-
nal stressors during  lifetime1, which results in a complex mosaic of the interaction between environmental, 
genetic and epigenetic  events2,3. Despite this complexity, several molecular signatures have been proposed to 
reflect the aging process, also in the context of studying the risk for non-communicable  diseases4. Among them, 
the following hallmarks of aging are well investigated: genomic  instability5–8, telomere  attrition9,10, epigenetic 
 alterations11–17, mitochondrial  dysfunction18,19, cellular  senescence20–23, steam cell  exhaustion24 and altered inter-
cellular  communication25,26. In vertebrates, telomeres are repetitive sequence of 5′-(TTA GGG )-3′ at the ends of 
each chromosome, which progressively shorten with cell division giving a partial estimation of the chronological 
age throughout  lifetime27. In particular, telomere shortening has been associated with  aging28 and age-related 
diseases, such as cardiovascular  diseases29,  cancer30, and neurological  disorders31. The contemporary relation-
ship of telomere length with environmental exposures and lifestyles have made it as an interesting molecular 
mechanisms in the epidemiological research on age-related  diseases32.

It is also worth noting that telomere shortening is regulated by epigenetic mechanisms and that telomere 
length is influenced by DNA methyltransferases and histone  methyltransferases33,34.
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In the last decades, as done for DNA methylation and histone  modification35–38, several studies have investi-
gated the association of nutrients, foods, and dietary patterns with telomere length. As summarized by Freitas-
Simoes and colleagues, the intake of antioxidants and the consumption of plant-derived foods help protect against 
telomere shortening, while the intake of saturated fats and the consumption of high-sugar and high-calorie 
products seem to be associated with shorter telomere  length39. It is also important to note that understanding 
what maternal factors—and especially maternal dietary habits—might affect biological aging in children could 
be useful to identify simple strategies for preventing or delaying age-related diseases over the lifetime. In fact, the 
first 1000 days of life—from conception to two years of age—represents a crucial period in which maternal diet 
and other exposures might shape children’s health. For instance, some maternal factors, such as stress, smoking 
and exposure to pollutants, have been associated with shorter telomeres in cord  blood40–42 and  placenta43. In addi-
tion, a recent systematic review by Habibi and colleagues has sought to unravel how the diet of pregnant women 
affects telomere length in their  offspring44. Although some studies reported potential positive (e.g., folate and 
caffeine) or negative (e.g., fat and sodium) associations with telomere length, the authors stated that the evidence 
is currently limited and often  controversial44. Moreover, none of these studies has investigated the effect of mater-
nal dietary factors on telomere length of cell-free circulating DNA (cfDNA) from amniotic  fluid44. In particular, 
cfDNA in plasma and serum has been proposed as an innovative biomarker for prenatal  diagnosis45,46. However, 
since amniotic fluid contains a greater amount of cfDNA than maternal  serum47–50, there is a growing interest 
in investigating the relationship between maternal diet and telomere length of cfDNA from amniotic fluid. To 
achieve this goal, we used data and samples from the “Mamma & Bambino” cohort to evaluate the relationship 
between maternal intake of nutrients in early pregnancy and telomere length of cfDNA from amniotic fluid.

Results
Characteristics of the study population. The current analysis was conducted on 174 women recruited 
at a median gestational week of 14 (IQR = 5) and with a median age of 38 years (IQR = 4). Table 1 summarizes 
the characteristics of the study population. The majority of women (83.3%) reported a high educational level, 
having a secondary or tertiary education. More than half of them (54.0%), instead, were part-time or full-time 
employed. The median pre-gestational BMI was 22.8 kg/m2 (IQR = 4.6) and thus 21.3% women were overweight 

Table 1.  Characteristics of the study population.

Characteristics (n = 174) Median (IQR) or frequency (%)

Age, years 38 (4)

High educational level 145 (83.3%)

Employed 94 (54.0%)

Pre-gestational BMI, Kg/m2 22.8 (4.6)

Overweight/Obese 37 (21.3%)

Non smokers 138 (79.8%)

Calories (kcal) 1661 (634)

Vitamin A (IU) 849.0 (557.7)

Vitamin A deficiency 31 (17.8%)

Vitamin B1 (mg) 1.2 (0.6)

Vitamin B1 deficiency 92 (52.9%)

Vitamin B6 (mg) 1.7 (0.6)

Vitamin B6 deficiency 77 (44.3%)

Vitamin C (mg) 106.4 (120.6)

Vitamin C deficiency 52 (29.9%)

Vitamin D (μg) 3.1 (3.8)

Vitamin D deficiency 166 (95.4%)

Folate (μg) 261.9 (142.4)

Folate deficiency 168 (96.6%)

Calcium (mg) 774.6 (377.3)

Calcium deficiency 94 (54.0%)

Iron (mg) 11.1 (6.4)

Iron deficiency 171 (98.3%)

Magnesium (mg) 248.1 (116.5)

Magnesium deficiency 127 (73.0%)

Zinc (mg) 7.6 (2.7)

Zinc deficiency 140 (80.5%)

Monounsaturated fatty acids (g) 34.9 (18.0)

Polyunsaturated fatty acids (g) 10.8 (4.9)

Saturated fatty acids (g) 19.1 (9.7)
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or obese before pregnancy. With respect to smoking status, nearly 80% of women were non-current smokers. 
Table 1 also reports the median intake of nutrients considered in the current analysis. Overall, women had a total 
energy intake of 1662 kcal (IQR = 634) and their dietary deficiencies varied from 17.8% for vitamin A to 98.3% 
for iron. About one in three women (35%) took multivitamin or multimineral supplements.

The relationship between relative telomere length and nutrient intakes. Overall, median rela-
tive telomere length was 0.73 (IQR = 1), while no differences were evident by maternal age, educational level, 
employment status, pre-gestational BMI, and smoking status (p-values > 0.05). Figure 1 reports the Spearman’s 
rank correlation coefficients between relative telomere length and nutrient intakes. Most of the relationships 
were not significant and only the intakes of magnesium, vitamin B1 and iron were positively but weakly cor-
related with relative telomere length (p-values < 0.05). However, only the correlation with magnesium remained 
significant after adjusting for multiple comparison. Figure 2 shows positive linear relationships of the intakes 
of magnesium, vitamin B1, and iron with relative telomere length. However, only the intake of magnesium was 
positively associated with relative telomere length (β = 0.002; SE = 0.001; p = 0.024), after applying a linear regres-
sion model which included maternal age, smoking, pre-gestational BMI, total energy intake, and supplement 
use. Figure 3 illustrates differences in relative telomere length according to nutrient deficiency. In particular, 
women with magnesium deficiency (73% of the total population) exhibited lower relative telomere length than 
those with adequate dietary intake (p = 0.005). Similarly, women with vitamin B1 deficiency (53% of the total 
population) showed lower values than those with adequate intake (p = 0.040). By contrast, no significant differ-
ence was evident according to iron deficiency (p = 0.240). After adjusting for covariates, however, only magne-
sium deficiency was negatively associated with relative telomere length (β = −0.467; SE = 0.176; p = 0.009).

Discussion
To our knowledge, this is the first evidence of a relationship between maternal nutrient intake and telomere length 
of cfDNA from amniotic fluid. In particular, we found positive but weak correlations of intakes of magnesium, 
vitamin B1 and iron with relative telomere length. While findings on vitamin B1 and iron were not confirmed 
by further statistical analyses, we demonstrated a positive association between magnesium intake and relative 
telomere length. The positive effect observed for magnesium remained significant after adjusting for covariates, 
which hence resulted in shorter telomeres in cfDNA from women with magnesium deficiency. It is worth noting, 
however, that there is a lack of studies investigating the relationship between magnesium intake and telomere 
length of cfDNA from amniotic fluid. Although some of our findings were consistent with previous studies, it 
is important to underline differences in sample types and methods used to perform molecular analyses, which 
discourage a proper comparison. In vitro and in vivo studies showed that long-term exposure to magnesium 
deficiency led to telomere  shortening51,52. In a cross-sectional analysis of the Sister Study, instead, reported a 
positive association between magnesium intake and telomere length of leukocyte DNA from women who did 
not use multivitamin  supplements53. From a biological point of view, magnesium is an important cofactor for the 
catalytic activity of enzymes implicated in DNA replication and  repair54–57, and in RNA  synthesis54. Magnesium 
deficiency is also often associated with oxidative  stress51 and pro-inflammatory  status58, which in turn might 
lead to telomere shortening.

As discussed above, the evidence remained scarce and inconclusive for other nutrients. In fact, our analysis 
suggested positive but weak correlations between relative telomere length of cfDNA and the intakes of vitamin 
B1 and iron. A previous cross-sectional study on Italian subjects failed in demonstrating a relationship between 
telomere length of leukocyte DNA and the intake of vitamin  B159. Moreover, to the best of our knowledge, no 

Figure 1.  Correlations of nutrient intakes with relative telomere length.
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studies were conducted during the periconceptional period. Regarding iron, results from the Sister Study did not 
demonstrate an association between its dietary intake and telomere  length53, however, it has been suggested a 
negative effect of iron  supplementation53,60. Indeed, iron is a prooxidant and its supplementation might increase 
the production of free  radicals61, thus fostering an oxidative  environment60. By contrast, the supplementations 
with multivitamins, which contained less iron than specific supplements, did not produce a negative  effect53. 
The lack of any solid evidence in this field of research, therefore, encourages further efforts to understand the 
influence of maternal dietary factors on biological aging, as determined by telomere length. Furthermore, future 
studies investigating other biomarkers of aging could help resolve this question and to translate the answers into 
effective public health strategies.

The main strength of our study lay on the possibility of investigating the early effect of maternal nutrient 
intake on biological aging of their offspring, by analysing telomere length of cfDNA from amniotic fluid. In 
fact, compared to maternal serum, amniotic fluid contains cfDNA largely uncontaminated by maternal-derived 
nucleic acids. However, as the first study on this topic, our results should be confirmed by further analyses. Our 
work had also some limitations that should be considered when interpreting our results. Firstly, the limited 
sample size did not allow us to perform additional analyses for residual confounders. However, as showed by 
Habibi and colleagues, our study was, at the time of writing, one of the larger in its field. Secondly, the FFQ that 
we used for dietary assessment—although simple, time- and cost-efficient—did not preclude subjective assess-
ment, measurement errors and  inaccuracies62. Moreover, this tool did not consider any changes related to food 
cooking. To partially address these issues, the use of some biomarkers of validation (e.g., serum level of nutri-
ents) could have made the evidence more solid. Thirdly, differences in analysed samples, methods, and kits used 
for DNA extraction and telomere length assessment did not allow a proper comparison with previous studies. 
Although amniotic fluid is considered a relatively pure fetal sample, a low proportion of cfDNA from placenta 
cannot be completely  excluded63. Indeed, placenta could contribute to cfDNA in amniotic fluid, especially in 
women with placental abnormalities and preeclampsia. Accordingly, we excluded from our analysis all women 

Figure 2.  The relationships between relative telomere length and the intake of magnesium (A), vitamin B1 (B), 
and iron (C). Results are reported as β coefficient and SE.
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with pregnancy complications. cfDNA is also inherently degraded and therefore DNA strands are highly frag-
mented if compared with cellular DNA from other samples. Moreover, the extraction kit used in our study was 
not specifically developed for cfDNA from amniotic fluid, even if it was appropriate for body fluids in general. 
Regarding telomere length assessment, the qPCR used in our study had higher assay variability than terminal 
restriction fragment analysis used by previous  studies64. For these reasons, further validation analyses and com-
parative studies—using different samples, as well as alternative methods for DNA extraction and telomere length 
assessment—should be encouraged.

Finally, although we adjusted the analysis for some factors that could influence the observed relationship, we 
cannot completely exclude the effect of unmeasured confounders.

In conclusion, we found a positive association between maternal intake of magnesium and telomere length of 
cfDNA from amniotic fluid, while results on other micronutrients (i.e., vitamin B1 and iron) were marginally sig-
nificant. This is the first evidence of an early effect of maternal magnesium intake on biological aging of offspring. 
Although our approach could help to understand molecular mechanisms underpinning the transgenerational 
effects of maternal diet on biological aging, further research is needed to identify strategies for preventing or 
delaying age-related diseases as early as pregnancy.

Methods
Study design. The “Mamma & Bambino” cohort is a prospective study that recruits pregnant women during 
the prenatal genetic counseling (at 4th–20th gestational week) with planned follow-up of their children at deliv-
ery and up to two years of age. Full details of the study design and procedures are described  elsewhere65–70. In 
brief, the recruitment of women referring to the Azienda Ospedaliero Universitaria Policlinico “G. Rodolico—
San Marco” (Catania, Italy) started in 2015 and the study is still ongoing. Mothers with multiple pregnancy, pre-
existing autoimmune and/or chronic diseases, and complications, such as preeclampsia, gestational hyperten-

Figure 3.  Differences in relative telomere length according to deficiency of magnesium (A), vitamin B1 (B), 
and iron (C). P-values are based on the Mann Whitney U test.
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sion and diabetes, intrauterine fetal death, and congenital malformations, are excluded. Accordingly, the current 
analysis was conducted on 174 women (aged 15 to 48 years), who satisfied inclusion criteria reported above. 
The study is conducted in accordance with the Declaration of Helsinki and its protocol was approved by Ethics 
Committee of the “Azienda Ospedaliero Universitaria Policlinico-Vittorio Emanuele” and by the Ethics Com-
mittee “Catania 1” with the protocol numbers 47/2014/VE, 48/2015/EMPO, 186/2015/EMPO, 197/2016/EMPO, 
213/2017/EMPO, 231/2018/EMPO, and 263/2019/EMPO. All participants or their legal guardian give a written 
informed consent to participate in the study. For the current analysis, we used data and samples from women 
who completed pregnancy and who provided an aliquot of amniotic fluid obtained through  amniocentesis71.

Data collection. For each woman, information on socio-demographic characteristics and lifestyles are col-
lected through structured questionnaires administered by trained epidemiologists. Full details on data collec-
tion and management are reported  elsewhere65–71. In particular, dietary data are collected through a 95-item 
semiquantitative Food Frequency Questionnaire (FFQ) referred to one month before recruitment, as reported 
by previous studies on Sicilian  women66,67,72–78. For each item, information on frequency of consumption and 
portions size are collected to calculate their daily dietary intake. Next, the intakes of calories, minerals (iron, 
calcium, magnesium, and zinc), fatty acids (saturated, monounsaturated, and polyunsaturated), and vitamins 
(A, B1, B6, C, D, and folate) are computed using the U.S. Department of Agriculture (USDA) Food Composition 
Database (http:// ndb. nal. usda. gov/) adapted to typical Italian foods. Nutrient intakes are considered as continu-
ous values or categorized according to the Recommended Dietary Allowance by the Food and Nutrition Board 
of the Institute of  Medicine79. At recruitment, each woman reported her height and weight before pregnancy to 
compute the pre-pregnancy BMI, and hence all women were classified as underweight, normal weight, over-
weight or obese according to WHO  criteria80.

DNA extraction and relative telomere length assessment. Different samples types—including 
maternal blood, amniotic fluid, cord blood and placenta—are collected from mother–child pairs included in the 
Mamma & Bambino cohort. In the current analysis, we used an aliquot of 1 ml amniotic fluid obtained from 
women who underwent amniocentesis, as previously  reported71. In brief, after centrifugation at 12,500 g, the 
cfDNA was extracted using the QIAamp Blood Kit (Qiagen, Milan Italy), which is suitable to extract DNA from 
blood, plasma and serum, cultured cells, swabs, and body fluids. The entire procedure was automatically per-
formed on the QIAcube instrument (Qiagen, Milan, Italy). Quantity and quality of cfDNA were assessed using 
the dsDNA HS Assay Kit (Thermo Fisher Scientific, Carlsbad, CA, USA) on the Qubit 3.0 Fluorometer and the 
NanoDrop 1000 spectrometer. Next, relative telomere length of cfDNA was evaluated real-time quantitative pol-
ymerase chain reaction (qPCR), using the Relative Human Telomere Length Quantification Assay Kit (ScienCell 
Research Laboratories, Carlsbad, CA, USA) on the QuantStudio 7 Flex Real-Time PCR System (Thermo Fisher 
Scientific, Carlsbad, CA, USA). Full details on the qPCR protocol are described  elsewhere81. All reactions were 
run in duplicate and relative telomere length was expressed as telomere/single copy reference (T/S) ratio. The 
procedures described above were conducted according to the manufacturers’ protocols, unless otherwise stated.

Statistical analysis. The characteristics of the study population were described using frequencies (percent-
age, %) for qualitative variables, and using median and interquartile range (IQR) due to the skewness of quan-
titative variables. The correlations between nutrient intakes and relative telomere length were tested using the 
Spearman’s rank correlation test and adjusting for multiple comparisons with Bonferroni correction. For nutri-
ents that showed a significant correlation (p < 0.05), we plotted their continuous value against relative telomere 
length, and then we compared relative telomere length between deficient and not deficient women using the 
Mann Whitney U test. Finally, we tested the association between nutrient intake (as continuous or categorical 
variable) and relative telomere length, adjusting for factors that could influence nutrient intake and/or telomere 
length (i.e., maternal age, smoking status, pregestational BMI, total daily energy intake, and supplement use). 
The adjusted association was reported as β coefficient and its standard error (SE). All the statistical analyses were 
performed using SPSS (version 26), all tests were two-sided and performed at a significance level α = 0.05.

Institutional review board statement. The study was conducted according to the guidelines of the 
Declaration of Helsinki, and approved by the Ethics Committee of Azienda Ospedaliero-Universitaria Poli-
clinico-Vittorio Emanuele” and Ethics Committee “Catania 1″ with the following protocol numbers: 47/2014/
VE; 48/2015/EMPO; 186/2015/EMPO; 197/2016/EMPO; 213/2017/EMPO; 231/2018/EMPO; 263/2019/EMPO.

Informed consent. Informed consent was obtained from all subjects involved in the study.

Data availability
The datasets analyzed during the current study are available from the corresponding author on reasonable 
request.
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