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Abstract Modern electrophysiological recordings simultaneously capture single-unit spiking 
activities of hundreds of neurons spread across large cortical distances. Yet, this parallel activity 
is often confined to relatively low-dimensional manifolds. This implies strong coordination also 
among neurons that are most likely not even connected. Here, we combine in vivo recordings 
with network models and theory to characterize the nature of mesoscopic coordination patterns in 
macaque motor cortex and to expose their origin: We find that heterogeneity in local connectivity 
supports network states with complex long-range cooperation between neurons that arises from 
multi-synaptic, short-range connections. Our theory explains the experimentally observed spatial 
organization of covariances in resting state recordings as well as the behaviorally related modulation 
of covariance patterns during a reach-to-grasp task. The ubiquity of heterogeneity in local cortical 
circuits suggests that the brain uses the described mechanism to flexibly adapt neuronal coordina-
tion to momentary demands.

Editor's evaluation
This is a thorough study showing that long-range correlations in the brain can arise without common 
input drive or long-range anatomical connections. These long-range correlations are modulated by 
the animal's behavioral state, a surprising finding that suggests a computational role for control of 
this kind of correlation. The paper details some analytical methods for modeling this behavior in 
disordered systems. The work will be of broad interest to neuroscientists, computational biologists, 
and biophysicists.

Introduction
Complex brain functions require coordination between large numbers of neurons. Unraveling mech-
anisms of neuronal coordination is therefore a core ingredient towards answering the long-standing 
question of how neuronal activity represents information. Population coding is one classical paradigm 
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(Georgopoulos et al., 1983) in which entire populations of similarly tuned neurons behave coher-
ently, thus leading to positive correlations among their members. The emergence and dynamical 
control of such population-averaged correlations has been studied intensely (Ginzburg and Sompo-
linsky, 1994; Renart et al., 2010; Helias et al., 2014; Rosenbaum and Doiron, 2014). More recently, 
evidence accumulated that neuronal activity often evolves within more complex low-dimensional 
manifolds, which imply more involved ways of neuronal activity coordination (Gallego et al., 2017; 
Gallego, 2018; Gallego et al., 2020): A small number of population-wide activity patterns, the neural 
modes, are thought to explain most variability of neuronal activity. In this case, individual neurons do 
not necessarily follow a stereotypical activity pattern that is identical across all neurons contributing 
to a representation. Instead, the coordination among the members is determined by more complex 
relations. Simulations of recurrent network models indeed indicate that networks trained to perform 
a realistic task exhibit activity organized in low-dimensional manifolds (Sussillo et  al., 2015). The 
dimensionality of such manifolds is determined by the structure of correlations (Abbott et al., 2011; 
Mazzucato et al., 2016) and tightly linked to the complexity of the task the network has to perform 
(Gao, 2017) as well as to the dimensionality of the stimulus (Stringer et al., 2019). Recent work has 
started to decipher how neural modes and the dimensionality of activity are shaped by features of 
network connectivity, such as heterogeneity of connections (Smith et al., 2018; Dahmen et al., 2019), 
block structure (Aljadeff et al., 2015; Aljadeff et al., 2016), and low-rank perturbations (Mastrogi-
useppe and Ostojic, 2018) of connectivity matrices, as well as connectivity motifs (Recanatesi et al., 
2019; Dahmen et al., 2021; Hu and Sompolinsky, 2020). Yet, these works neglected the spatial 
organization of network connectivity (Schnepel et al., 2015) that becomes more and more important 
with current experimental techniques that allow the simultaneous recording of ever more neurons. 
How distant neurons that are likely not connected can still be strongly coordinated to participate in 
the same neural mode is a widely open question.

To answer this question, we combine analyses of parallel spiking data from macaque motor 
cortex with the analytical investigation of a spatially organized neuronal network model. We here 
quantify coordination by Pearson correlation coefficients and pairwise covariances, which measure 
how temporal departures of the neurons’ activities away from their mean firing rate are correlated. 
We show that, even with only unstructured and short-range connections, strong covariances across 
distances of several millimeters emerge naturally in balanced networks if their dynamical state is close 
to an instability within a ‘critical regime’. This critical regime arises from strong heterogeneity in local 
network connections that is abundant in brain networks. Intuitively, it arises because activity prop-
agates over a large number of different indirect paths. Heterogeneity, here in the form of sparse 
random connectivity, is thus essential to provide a rich set of such paths. While mean covariances are 
readily accessible by mean-field techniques and have been shown to be small in balanced networks 
(Renart et al., 2010; Tetzlaff et al., 2012), explaining covariances on the level of individual pairs 
requires methods from statistical physics of disordered systems. With such a theory, here derived for 
spatially organized excitatory-inhibitory networks, we show that large individual covariances arise at 
all distances if the network is close to the critical point. These predictions are confirmed by record-
ings of macaque motor cortex activity. The long-range coordination found in this study is not merely 
determined by the anatomical connectivity, but depends substantially on the network state, which 
is characterized by the individual neurons’ mean firing rates. This allows the network to adjust the 
neuronal coordination pattern in a dynamic fashion, which we demonstrate through simulations and 
by comparing two behavioral epochs of a reach-to-grasp experiment.

Results
Macaque motor cortex shows long-range coordination patterns
We first analyze data from motor cortex of macaques during rest, recorded with ‍4 × 4 mm2‍, 
100-electrode Utah arrays with 400 µm inter-electrode distance (Figure 1A). The resting condition 
of motor cortex in monkeys is ideal to assess intrinsic coordination between neurons during ongoing 
activity. In particular, our analyses focus on true resting state data, devoid of movement-related tran-
sients in neuronal firing (see Materials and methods). Parallel single-unit spiking activity of ‍≈ 130‍ 
neurons per recording session, sorted into putative excitatory and inhibitory cells, shows strong 
spike-count correlations across the entire Utah array, well beyond the typical scale of the underlying 

https://doi.org/10.7554/eLife.68422


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Dahmen, Layer, et al. eLife 2022;11:e68422. DOI: https://doi.org/10.7554/eLife.68422 � 3 of 55

short-range connectivity profiles (Figure 1B and D). Positive and negative correlations form patterns 
in space that are furthermore seemingly unrelated to the neuron types. All populations show a large 
dispersion of both positive and negative correlation values (Figure 1C).

The classical view on pairwise correlations in balanced networks (Ginzburg and Sompolinsky, 
1994; Renart et al., 2010; Pernice et al., 2011; Pernice et al., 2012; Tetzlaff et al., 2012; Helias 
et  al., 2014) focuses on averages across many pairs of cells: average correlations are small if the 
network dynamics is stabilized by an excess of inhibitory feedback; dynamics known as the ‘balanced 
state’ arise (van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997; van Vreeswijk and 

Figure 1. Salt-and-pepper structure of covariances in motor cortex. (A) Sketch of 10 × 10 Utah electrode array recording in motor cortex of macaque 
monkey during rest. (B) Spikes are sorted into putative excitatory (blue triangles) and inhibitory (red circles) single units according to widths of spike 
waveforms (see Appendix 1 Section 2). Resulting spike trains are binned in 1 s bins to obtain spike counts. (C) Population-resolved distribution of 
pairwise spike-count Pearson correlation coefficients in session E2 (E-E: excitatory-excitatory, E-I: excitatory-inhibitory, I-I: inhibitory-inhibitory). (D) 
Pairwise spike-count correlation coefficients with respect to the neuron marked by black triangle in one recording (session E2, see Materials and 
methods). Grid indicates electrodes of a Utah array, triangles and circles correspond to putative excitatory and inhibitory neurons, respectively. Size as 
well as color of markers represent correlation. Neurons within the same square were recorded on the same electrode.

The online version of this article includes the following source data for figure 1:

Source data 1. Code and data.

https://doi.org/10.7554/eLife.68422
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Sompolinsky, 1998): Negative feedback counteracts any coherent increase or decrease of the 
population-averaged activity, preventing the neurons from fluctuating in unison (Tetzlaff et al., 2012). 
Breaking this balance in different ways leads to large correlations (Rosenbaum and Doiron, 2014; 
Darshan et al., 2018; Baker et al., 2019). Can the observation of significant correlations between 
individual cells across large distances be reconciled with the balanced state? In the following, we 
provide a mechanistic explanation.

Multi-synaptic connections determine correlations
Connections mediate interactions between neurons. Many studies therefore directly relate connec-
tivity and correlations (Pernice et al., 2011; Pernice et al., 2012; Trousdale et al., 2012; Brinkman 
et al., 2018; Kobayashi et al., 2019). From direct connectivity, one would expect positive correlations 
between excitatory neurons and negative correlations between inhibitory neurons and a mix of nega-
tive and positive correlations only for excitatory-inhibitory pairs. Likewise, a shared input from inside 
or outside the network only imposes positive correlations between any two neurons (Figure 2A). The 
observations that excitatory neurons may have negative correlations (Figure 1D), as well as the broad 
distribution of correlations covering both positive and negative values (Figure 1C), are not compatible 
with this view. In fact, the sign of correlations appears to be independent of the neuron types. So how 
do negative correlations between excitatory neurons arise?

The view that equates connectivity with correlation implicitly assumes that the effect of a single 
synapse on the receiving neuron is weak. This view, however, regards each synapse in isolation. 
Could there be states in the network where, collectively, many weak synapses cooperate, as perhaps 
required to form low-dimensional neuronal manifolds? In such a state, interactions may not only be 
mediated via direct connections but also via indirect paths through the network (Figure 2B). Such 
effective multi-synaptic connections may explain our observation that far apart neurons that are basi-
cally unconnected display considerable correlation of arbitrary sign.

Let us here illustrate the ideas first and corroborate them in subsequent sections. Direct connec-
tions yield correlations of a predefined sign, leading to correlation distributions with multiple peaks, 
for example a positive peak for excitatory neurons that are connected and a peak at zero for neurons 
that are not connected. Multi-synaptic paths, however, involve both excitatory and inhibitory inter-
mediate neurons, which contribute to the interaction with different signs (Figure 2B). Hence, a single 

Figure 2. Correlations from direct and indirect connections. (A) Positive correlation (green neuron i) follows from direct excitatory connection (top) 
or shared input (middle). (B) Negative correlation (magenta) between two excitatory neurons cannot be explained by direct connections: Neuronal 
interactions are not only mediated via direct connections (‍n = 1‍; sign uniquely determined by presynaptic neuron type) but also via indirect paths of 
different length ‍n > 1‍. The latter may have any sign (positive: green; negative: purple) due to intermediate neurons of arbitrary type (triangle: excitatory, 
circle: inhibitory).

https://doi.org/10.7554/eLife.68422
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indirect path can contribute to the total interaction with arbitrary sign (Pernice et al., 2011). If indirect 
paths dominate the interaction between two neurons, the sign of the resulting correlation becomes 
independent of their type. Given that the connecting paths in the network are different for any two 
neurons, the resulting correlations can fall in a wide range of both positive and negative values, 
giving rise to the broad distributions for all combinations of neuron types in Figure 1C. This provides 
a hypothesis why there may be no qualitative difference between the distribution of correlations for 
excitatory and inhibitory neurons. In fact, their widths are similar and their mean is close to zero (see 
Materials and methods for exact values); the latter being the hallmark of the negative feedback that 
characterizes the balanced state. The subsequent model-based analysis will substantiate this idea and 
show that it also holds for networks with spatially organized heterogeneous connectivity.

To play this hypothesis further, an important consequence of the dominance of multi-synaptic 
connections could be that correlations are not restricted to the spatial range of direct connectivity. 
Through interactions via indirect paths the reach of a single neuron could effectively be increased. But 
the details of the spatial profile of the correlations in principle could be highly complex as it depends 
on the interplay of two antagonistic effects: On the one hand, signal propagation becomes weaker 
with distance, as the signal has to pass several synaptic connections. Along these paths mean firing 
rates of neurons are typically diverse, and so are their signal transmission properties (de la Rocha 
et  al., 2007). On the other hand, the number of contributing indirect paths between any pair of 

Figure 3. Spatially organized E-I network model. (A) Network model: space is divided into cells with four excitatory 
(triangles) and one inhibitory (circle) neuron each. Distance-dependent connection probabilities (shaded areas) are 
defined with respect to cell locations. (B) Eigenvalues λ of effective connectivity matrix for network in dynamically 
balanced critical state. Each dot shows the real part ‍Re(λ)‍ and imaginary part ‍Im(λ)‍ of one complex eigenvalue. 
The spectral bound (dashed vertical line) denotes the right-most edge of the eigenvalue spectrum. (C) Simulation: 
covariances of excitatory neurons over distance ‍x‍ between cells (blue dots: individual pairs; cyan: mean; orange: 
standard deviation; sample of 150 covariances at each of 200 chosen distances). (D) Theory: variance of covariance 
distribution as a function of distance ‍x‍ for different spectral bounds of the effective connectivity matrix. Inset: 
effective decay constant of variances diverges as the spectral bound approaches one. (E) For large spectral 
bounds, the variances of EE, EI, and II covariances decay on a similar length scale. Spectral bound ‍R = 0.95‍. Other 
parameters see Appendix 1—table 3.

The online version of this article includes the following source data for figure 3:

Source data 1. Code and data.

https://doi.org/10.7554/eLife.68422


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Dahmen, Layer, et al. eLife 2022;11:e68422. DOI: https://doi.org/10.7554/eLife.68422 � 6 of 55

neurons proliferates with their distance. With single neurons typically projecting to thousands of other 
neurons in cortex, this leads to involved combinatorics; intuition here ceases to provide a sensible 
hypothesis on what is the effective spatial profile and range of coordination between neurons. Also it 
is unclear which parameters these coordination patterns depend on. The model-driven and analytical 
approach of the next section will provide such a hypothesis.

Networks close to instability show shallow exponential decay of 
covariances
We first note that the large magnitude and dispersion of individual correlations in the data and 
their spatial structure primarily stem from features in the underlying covariances between neuron 
pairs (Appendix  1—figure 1). Given the close relationship between correlations and covariances 
(Appendix 1—figure 1D and E), in the following we analyze covariances, as these are less dependent 
on single neuron properties and thus analytically simpler to treat. To gain an understanding of the 
spatial features of intrinsically generated covariances in balanced critical networks, we investigate a 
network of excitatory and inhibitory neurons on a two-dimensional sheet, where each neuron receives 
external Gaussian white noise input (Figure 3A). We investigate the covariance statistics in this model 
by help of linear-response theory, which has been shown to approximate spiking neuron models well 
(Pernice et al., 2012; Trousdale et al., 2012; Tetzlaff et al., 2012; Helias et al., 2013; Grytskyy 
et al., 2013; Dahmen et al., 2019). To allow for multapses, the connections between two neurons 
are drawn from a binomial distribution, and the connection probability decays with inter-neuronal 
distance on a characteristic length scale ‍d‍ (for more details see Materials and methods). Previous 
studies have used linear-response theory in combination with methods from statistical physics and 
field theory to gain analytic insights into both mean covariances (Ginzburg and Sompolinsky, 1994; 
Lindner et al., 2005; Pernice et al., 2011; Tetzlaff et al., 2012) and the width of the distribution 
of covariances (Dahmen et al., 2019). Field-theoretic approaches, however, were so far restricted 
to purely random networks devoid of any network structure and thus not suitable to study spatial 
features of covariances. To analytically quantify the relation between the spatial ranges of covariances 
and connections, we therefore here develop a theory for spatially organized random networks with 
multiple populations. The randomness in our model is based on the sparseness of connections, which 
is one of the main sources of heterogeneity in cortical networks in that it contributes strongly to the 
variance of connections (see Appendix 1 Section 15).

A distance-resolved histogram of the covariances in the spatially organized E-I network shows that 
the mean covariance is close to zero but the width or variance of the covariance distribution stays 
large, even for large distances (Figure 3C). Analytically, we derive that, despite the complexity of the 
various indirect interactions, both the mean and the variance of covariances follow simple exponential 
laws in the long-distance limit (see Appendix 1 Section 4 - Section 12). These laws are universal in that 
they do not depend on details of the spatial profile of connections. Our theory shows that the associ-
ated length scales are strikingly different for means and variances of covariances. They each depend 
on the reach of direct connections and on specific eigenvalues of the effective connectivity matrix. 
These eigenvalues summarize various aspects of network connectivity and signal transmission into a 
single number: Each eigenvalue belongs to a ‘mode’, a combination of neurons that act collabora-
tively, rather than independently, coordinating neuronal activity within a one-dimensional subspace. 
To start with, there are as many such subspaces as there are neurons. But if the spectral bound in 
Figure 3B is close to one, only a relatively small fraction of them, namely those close to the spectral 
bound, dominate the dynamics; the dynamics is then effectively low-dimensional. Additionally, the 
eigenvalue quantifies how fast a mode decays when transmitted through a network. The eigenvalues 
of the dominating modes are close to one, which implies a long lifetime. The corresponding fluctu-
ations thus still contribute significantly to the overall signal, even if they passed by many synaptic 
connections. Therefore, indirect multi-synaptic connections contribute significantly to covariances if 
the spectral bound is close to one, and in that case we expect to see long-range covariances.

To quantify this idea, for the mean covariance ‍̄c‍ we find that the dominant behavior is an exponen-
tial decay ‍c ∼ exp(−x/d)‍ on a length scale ‍d‍. This length scale is determined by a particular eigenvalue, 
the population eigenvalue, corresponding to the mode in which all neurons are excited simultane-
ously. Its position solely depends on the ratio between excitation and inhibition in the network and 
becomes more negative in more strongly inhibition-dominated networks (Figure 3B). We show in 

https://doi.org/10.7554/eLife.68422
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Appendix 1 Section 9.4 that this leads to a steep decay of mean covariances with distance. The 
variance of covariances, however, predominantly decays exponentially on a length scale deff that is 
determined by the spectral bound ‍R‍, the largest real part among all eigenvalues (Figure 3B and D). 
In inhibition-dominated networks, ‍R‍ is determined by the heterogeneity of connections. For ‍R ≲ 1‍ we 
obtain the effective length scale

	﻿‍
deff
d ∼

√
R2

1−R2 + const. ≫ 1.
‍� (1)

What this means is that precisely at the point where ‍R‍ is close to one, when neural activity occupies a 
low-dimensional manifold, the length scale deff on which covariances decay exceeds the reach of direct 
connections by a large factor (Figure 3D). As the network approaches instability, which corresponds 
to the spectral bound ‍R‍ going to one, the effective decay constant diverges (Figure 3D inset) and so 
does the range of covariances.

Our population-resolved theoretical analysis, furthermore, shows that the larger the spectral bound 
the more similar the decay constants between different populations, with only marginal differences for 

‍R ≲ 1‍ (Figure 3E). This holds strictly if connection weights only depend on the type of the presynaptic 
neuron but not on the type of the postsynaptic neuron. Moreover, we find a relation between the 
squared effective decay constants and the squared anatomical decay constants of the form

	﻿‍
d2

eff,E − d2
eff,I = const. ·

(
d2

E − d2
I

)
.
‍� (2)

This relation is independent of the eigenvalues of the effective connectivity matrix, as the constant of 
order ‍O(1)‍ does only depend on the choice of the connectivity profile. For ‍R ≃ 1‍, this means that even 
though the absolute value of both effective length scales on the left hand side is large, their relative 
difference is small because it equals the small difference of anatomical length scales on the right hand 
side.

4

10−3

10−2

10−1

100

101

102

I-I: 1.00 mm

I-E: 1.21 mm

E-E: 1.31 mm

4

1.029 mm

I-I

I-E

E-E

fitted
recording decay errorb/
session constant errora

[mm]

E1 1.674 1.1157

E2 1.029 1.0055

N1 1.676 1.0097

N2 4.273 1.0049

Figure 4. Long-range covariances in macaque motor cortex. Variance of covariances as a function of distance. (A) Population-specific exponential 
fits (lines) to variances of covariances (dots) in session E2, with fitted decay constants indicated in the legend (I-I: putative inhibitory neuron pairs, I-E: 
inhibitory-excitatory, E-E: excitatory pairs). Dots show the empirical estimate of the variance of the covariance distribution for each distance. Size of the 
dots represents relative count of pairs per distance and was used as weighting factor for the fits to compensate for uncertainty at large distances, where 
variance estimates are based on fewer samples. Mean squared error 2.918. (B) Population-specific exponential fits (lines) analogous to (A), with slopes 
constrained to be identical. This procedure yields a single fitted decay constant of 1.029 mm. Mean squared error 2.934. (C) Table listing decay constants 
fitted as in (B) for all recording sessions and the ratios between mean squared errors of the fits obtained in procedures B and A.

The online version of this article includes the following source data for figure 4:

Source data 1. Code and data.

https://doi.org/10.7554/eLife.68422
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Pairwise covariances in motor cortex decay on a millimeter scale
To check if these predictions are confirmed by the data from macaque motor cortex, we first observe 
that, indeed, covariances in the resting state show a large dispersion over almost all distances on the 
Utah array (Figure 4). Moreover, the variance of covariances agrees well with the predicted expo-
nential law: Performing an exponential fit reveals length constants above 1 mm. These large length 
constants have to be compared to the spatial reach of direct connections, which is about an order of 
magnitude shorter, in the range of 100-400 μm (Schnepel et al., 2015), so below the 400 μm inter-
electrode distance of the Utah array. The shallow decay of the variance of covariances is, next to the 
broad distribution of covariances, a second indication that the network is in the dynamically balanced 
critical regime, in line with the prediction by Equation (1).

The population-resolved fits to the data show a larger length constant for excitatory covariances 
than for inhibitory ones (Figure 4A). This is qualitatively in line with the prediction of Equation (2) 
given the – by tendency – longer reach of excitatory connections compared to inhibitory ones, as 
derived from morphological constraints (Reimann et al., 2017, Fig. S2). In the dynamically balanced 
critical regime, however, the predicted difference in slope for all three fits is practically negligible. 
Therefore, we performed a second fit where the slope of the three exponentials is constrained to be 
identical (Figure 4B). The error of this fit is only marginally larger than the ones of fitting individual 
slopes (Figure 4C). This shows that differences in slopes are hardly detectable given the empirical 
evidence, thus confirming the predictions of the theory given by Equation (1) and Equation (2).

Firing rates alter connectivity-dependent covariance patterns
Since covariances measure the coordination of temporal fluctuations around the individual neurons’ 
mean firing rates, they are determined by how strong a neuron transmits such fluctuations from input 
to output (Abeles, 1991). To leading order this is explained by linear-response theory (Ginzburg and 
Sompolinsky, 1994; Lindner et al., 2005; Pernice et al., 2011; Tetzlaff et al., 2012): How strongly 
a neuron reacts to a small change in its input depends on its dynamical state, foremost the mean and 
variance of its total input, called ‘working point’ in the following. If a neuron receives almost no input, 
a small perturbation in the input will not be able to make the neuron fire. If the neuron receives a large 
input, a small perturbation will not change the firing rate either, as the neuron is already saturated. 
Only in the intermediate regime the neuron is susceptible to small deviations of the input. Mathemat-
ically, this behavior is described by the gain of the neuron, which is the derivative of the input-output 
relation (Abeles, 1991). Due to the non-linearity of the input-output relation, the gain is vanishing for 
very small and very large inputs and non-zero in the intermediate regime. How strongly a perturbation 
in the input to one neuron affects one of the subsequent neurons therefore not only depends on the 
synaptic weight ‍J‍ but also on the gain ‍S‍ and thereby the working point. This relation is captured by 
the effective connectivity ‍W = S · J‍. What is the consequence of the dynamical interaction among 
neurons depending on the working point? Can it be used to reshape the low-dimensional manifold, 
the collective coordination between neurons?

The first part of this study finds that long-range coordination can be achieved in a network with 
short-range random connections if effective connections are sufficiently strong. Alteration of the 
working point, for example by a different external input level, can affect the covariance structure: 
The pattern of coordination between individual neurons can change, even though the anatomical 
connectivity remains the same. In this way, routing of information through the network can be adapted 
dynamically on a mesoscopic scale. This is a crucial difference of such coordination as opposed to 
coordination imprinted by complex but static connection patterns.

Here, we first illustrate this concept by simulations of a network of 2000 sparsely connected 
threshold-linear (ReLU) rate neuron models that receive Gaussian white noise inputs centered around 
neuron-specific non-zero mean values (see Materials and methods and Appendix 1 Section 14 for more 
details). The ReLU activation function thereby acts as a simple model for the vanishing gain for neurons 
with too low input levels. Note that in cortical-like scenarios with low firing rates, neuronal working 
points are far away from the high-input saturation discussed above, which is therefore neglected by 
the choice of the ReLU activation function. For independent and stationary external inputs covari-
ances between neurons are solely generated inside the network via the sparse and random recurrent 
connectivity. External inputs only have an indirect impact on the covariance structure by setting the 
working point of the neurons.

https://doi.org/10.7554/eLife.68422
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We simulate two networks with identical structural connectivity and identical external input fluctu-
ations, but small differences in mean external inputs between corresponding neurons in the two simu-
lations (Figure 5A). These small differences in mean external inputs create different gains and firing 
rates and thereby differences in effective connectivity and covariances. Since mean external inputs 
are drawn from the same distribution in both simulations (Figure 5B), the overall distributions of firing 
rates and covariances across all neurons are very similar (Figure 5E1, F1). But individual neurons’ 
firing rates do differ (Figure 5E2). For the simple ReLU activation used here, we in particular observe 
neurons that switch between non-zero and zero firing rate between the two simulations. This resulting 
change of working points substantially affects the covariance patterns (Figure 5F2): Differences in 
firing rates and covariances between the two simulations are significantly larger than the differences 
across two different epochs of the same simulation (Figure 5C). The larger the spectral bound, the 
more sensitive are the intrinsically generated covariances to the changes in firing rates (Figure 5D). 
Thus, a small offset of individual firing rates is an effective parameter to control network-wide coordi-
nation among neurons. As the input to the local network can be changed momentarily, we predict that 
in the dynamically balanced critical regime coordination patterns should be highly dynamic.

Figure 5. Changes in effective connectivity modify coordination patterns. (A) Visualization of effective connectivity: A sparse random network with given 
structural connectivity (left network sketch) is simulated with two different input levels for each neuron (depicted by insets), resulting in different firing 
rates (grayscale in right network sketches) and therefore different effective connectivities (thickness of connections) in the two simulations. Parameters 
can be found in Appendix 1—table 4. (B1) Histogram of input currents across neurons for the two simulations (N1 and N2). (B2) Scatter plot of inputs 
to subset of 1500 corresponding neurons in the first and the second simulation (Pearson correlation coefficient ‍ρ = 0.90‍). (C) Correlation coefficients 
of rates and of covariances between the two simulations (b, black) and within two epochs of the same simulation (w, gray). (D) Correlation coefficient of 
rates (gray) and covariances (black) between the two simulations as a function of the spectral bound ‍R‍. (E1) Distribution of rates in the two simulations 
(excluding silent neurons with ‍

∣rate∣ < 10−3‍). (E2) Scatter plot of rates in the first compared to the second simulation (Pearson correlation coefficient 

‍ρ = 0.81‍). (F1) Distribution of covariances in the two simulation (excluding silent neurons). (F2) Scatter plot of sample of 5000 covariances in first 
compared to the second simulation (Pearson correlation coefficient ‍ρ = 0.40‍). Here silent neurons are included (accumulation of markers on the axes). 
Other parameters: number of neurons ‍N = 2000‍, connection probability ‍p = 0.1‍, spectral bound for panels B, C, E, F is ‍R = 0.8‍.

The online version of this article includes the following source data for figure 5:

Source data 1. Code and data.

https://doi.org/10.7554/eLife.68422
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Coordination patterns in motor cortex depend on behavioral context
In order to test the theoretical prediction in experimental data, we analyze parallel spiking activity 
from macaque motor cortex, recorded during a reach-to-grasp experiment (Riehle et  al., 2013; 
Brochier et al., 2018). In contrast to the resting state, where the animal was in an idling state, here 
the animal is involved in a complex task with periods of different cognitive and behavioral conditions 
(Figure 6A). We compare two epochs in which the animal is requested to wait and is sitting still but 
which differ in cognitive conditions. The first epoch is a starting period (S), where the monkey has 
self-initiated the behavioral trial and is attentive because it is expecting a cue. The second epoch is a 
preparatory period (P), where the animal has just received partial information about the upcoming trial 
and is waiting for the missing information and the GO signal to initiate the movement.

Within each epoch, S or P, the neuronal firing rates are mostly stationary, likely due to the absence 
of arm movements which create relatively large transient activities in later epochs of the task, which 
are not analyzed here (see Appendix 1 Section 3). The overall distributions of the firing rates are 
comparable for epochs S and P, but the firing rates are distributed differently across the individual 
neurons: Figure  6C shows one example session of monkey N, where the changes in firing rates 
between the two epochs are visible in the spread of markers around the diagonal line in panel C2. To 
assess the extent of these changes, we split each epoch, S and P, into two disjoint sub-periods, S1/S2 
and P1/P2 (Figure 6A). We compute the correlation coefficient between the firing rate vectors of two 
sub-periods of different epochs (‘between’ markers in Figure 6E) and compare it to the correlation 
coefficient between the firing rate vectors of two sub-periods of the same epoch (‘within’ markers): 
Firing rate vectors in S1 are almost perfectly correlated with firing rate vectors in S2 (‍ρ ≈ 1‍ for all of 
the five/eight different recording sessions from different recording days for monkey E/N, similarly 
for P1 and P2), confirming stationarity investigated in Appendix 1 Section 3. Firing rate vectors in S1 
or S2, however, show significantly lower correlation to firing rate vectors in P1 and P2, confirming a 
significant change in network state between epochs S and P (Figure 6E).

The mechanistic model in the previous section shows a qualitatively similar scenario (Figure 5C 
and E). By construction it produces different firing rate patterns in the two simulations. While the 
model is simplistic and in particular not adapted to quantitatively reproduce the experimentally 
observed activity statistics, its simulations and our underlying theory make a general prediction: 
Differences in firing rates impact the effective connectivity between neurons and thereby evoke 
even larger differences in their coordination if the network is operating in the dynamically balanced 
critical regime (Figure 5D). To check this prediction, we repeat the correlation analysis between the 
two epochs, which we described above for the firing rates, but this time for the covariance patterns. 
Despite similar overall distributions of covariances in S and P (Figure 6D1), covariances between 
individual neuron pairs are clearly different between S and P: Figure  6B shows the covariance 
pattern for one representative reference neuron in one example recording session of monkey N. In 
both epochs, this covariance pattern has a salt-and-pepper structure as for the resting state data 
in Figure 1D. Yet, neurons change their individual coordination: a large number of neuron pairs 
even changes from positive covariance values to negative ones and vice versa. These neurons fire 
cooperatively in one epoch of the task while they show antagonistic firing in the other epoch. The 
covariances of all neuron pairs of that particular recording session are shown in Figure 6D2. Markers 
in the upper left and lower right quadrant show neuron pairs that switch the sign of their coordina-
tion (45 % of all neuron pairs). The extent of covariance changes between epochs is again quanti-
fied by correlation coefficients between the covariance patterns of two sub-periods (Figure 6F). As 
for the firing rates, we find rather large correlations between covariance patterns in S1 and S2 as 
well as between covariance patterns in P1 and P2. Note, however, that correlation coefficients are 
around 0.8 rather than 1, presumably since covariance estimates from 200 ms periods are noisier 
than firing rate estimates. The covariance patterns in S1 or S2 are, however, significantly more 
distinct from covariance patterns in P1 and P2, with correlation coefficients around 0.5 (Figure 6F). 
This more pronounced change of covariances compared to firing rates is predicted by a network 
whose effective connectivity has a large spectral bound, in the dynamically balanced critical state. 
In particular, the theory provides a mechanistic explanation for the different coordination patterns 
between neurons on the mesoscopic scale (range of a Utah array), which are observed in the two 
states S and P (Figure 6B). The coordination between neurons is thus considerably reshaped by the 
behavioral condition.

https://doi.org/10.7554/eLife.68422
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Figure 6. Behavioral condition reshapes mesoscopic neuronal coordination. (A) Trial structure of the reach-to-grasp experiment (Brochier et al., 2018). 
Blue segments above the time axis indicate data pieces at trial start (dark blue: S (S1+ S2)) and during the preparatory period (light blue: P (P1+ P2)). 
(B) Salt-and-pepper structure of covariance during two different epochs (S1 and P1) of one recording session of monkey N (151 trials, 106 single units, 
Figure 1 for recording setup). For some neurons, the covariance completely reverses, while in the others it does not change. Inhibitory reference neuron 
indicated by black circle. (C1) Distributions of firing rates during S1 and P1. (C2) Scatter plot comparing firing rates in S1 and P1 (Pearson correlation 
coefficient ‍ρ = 0.69‍). (D1/D2) Same as panels C1/C2, but for covariances (Pearson correlation coefficient ‍ρ = 0.40‍). (E) Correlation coefficient of firing 
rates across neurons in different epochs of a trial for eight recorded sessions. Correlations between sub-periods of the same epoch (S1-S2, P1-P2; within-
epoch, gray) and between sub-periods of different epochs (Sx-Py; between-epochs, black). Data shown in panels B-D is from session 8. Box plots to the 
right of the black dashed line show distributions obtained after pooling across all analyzed recording sessions per monkey. The line in the center of each 
box represents the median, box’s area represents the interquartile range, and the whiskers indicate minimum and maximum of the distribution (outliers 
excluded). Those distributions differ significantly (Student t-test, two-sided, ‍p ≪ 0.001‍). (F) Correlation coefficient of covariances, analogous to panel E. 
The distributions of values pooled across sessions also differ significantly (Student t-test, two-sided, ‍p ≪ 0.001‍). For details of the statistical tests, see 
Materials and methods. Details on number of trials and units in each recording session are provided in Appendix 1—table 1.

The online version of this article includes the following source data for figure 6:

Source data 1. Code and data.

https://doi.org/10.7554/eLife.68422
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Discussion
In this study, we investigate coordination patterns of many neurons across mesoscopic distances in 
macaque motor cortex. We show that these patterns have a salt-and-pepper structure, which can be 
explained by a network model with a spatially dependent random connectivity operating in a dynam-
ically balanced critical state. In this state, cross-covariances are shaped by a large number of parallel, 
multi-synaptic pathways, leading to interactions reaching far beyond the range of direct connections. 
Strikingly, this coordination on the millimeter scale is only visible if covariances are resolved on the 
level of individual neurons; the population mean of covariances quickly decays with distance and is 
overall very small. In contrast, the variance of covariances is large and predominantly decreases expo-
nentially on length scales of up to several millimeters, even though direct connections typically only 
reach a few hundred micrometers.

Since the observed coordination patterns are determined by the effective connectivity of the 
network, they are dynamically controllable by the network state; for example, due to modulations of 
neuronal firing rates. Parallel recordings in macaque motor cortex during resting state and in different 
epochs of a reach-to-grasp task confirm this prediction. Simulations indeed exhibit a high sensitivity 
of coordination patterns to weak modulations of the individual neurons’ firing rates, providing a plau-
sible mechanism for these dynamic changes.

Models of balanced networks have been investigated before (van Vreeswijk and Sompolinsky, 
1996; Brunel, 2000; Renart et al., 2010; Tetzlaff et al., 2012) and experimental evidence for cortical 
networks operating in the balanced state is overwhelming (Okun and Lampl, 2008; Reinhold et al., 
2015; Dehghani et  al., 2016). Excess of inhibition in such networks yields stable and balanced 
population-averaged activities as well as low average covariances (Tetzlaff et al., 2012). Recently, 
the notion of balance has been combined with criticality in the dynamically balanced critical state that 
results from large heterogeneity in the network connectivity (Dahmen et al., 2019). Here, we focus 
on another ubiquitous property of cortical networks, their spatial organization, and study the interplay 
between balance, criticality, and spatial connectivity in networks of excitatory and inhibitory neurons. 
We show that in such networks, heterogeneity generates disperse covariance structures between 
individual neurons on large length-scales with a salt-and-pepper structure.

Spatially organized balanced network models have been investigated before in the limit of infinite 
network size, as well as under strong and potentially correlated external drive, as is the case, for 
example, in primary sensory areas of the brain (Rosenbaum et al., 2017; Baker et al., 2019). In this 
scenario, intrinsically generated contributions to covariances are much smaller than external ones. 
Population-averaged covariances then fulfill a linear equation, called the ‘balance condition’ (van 
Vreeswijk and Sompolinsky, 1996; Hertz, 2010; Renart et  al., 2010; Rosenbaum and Doiron, 
2014), that predicts a non-monotonous change of population-averaged covariances with distance 
(Rosenbaum et al., 2017). In contrast, we here consider covariances on the level of individual cells 
in finite-size networks receiving only weak inputs. While we cannot strictly rule out that the observed 
covariance patterns in motor cortex are a result of very specific external inputs to the recorded local 
network, we believe that the scenario of weak external drive is more suitable for non-sensory brain 
areas, such as, for example, the motor cortex in the resting state conditions studied here. Under 
such conditions, covariances have been shown to be predominantly generated locally rather than 
from external inputs: Helias et al., 2014 investigated intrinsic and extrinsic sources of covariances in 
ongoing activity of balanced networks and found that for realistic sizes of correlated external popula-
tions the major contribution to covariances is generated from local network interactions (Figure 7a in 
Helias et al., 2014). Dahmen et al., 2019 investigated the extreme case, where the correlated external 
population is of the same size as the local population (Fig. S6 in Dahmen et al., 2019). Despite sizable 
external input correlations projected onto the local circuit via potentially strong afferent connections, 
the dependence of the statistics of covariances on the spectral bound of the local recurrent connec-
tivity is predicted well by the theory that neglects correlated external inputs (see supplement section 
3 in Dahmen et al., 2019).

Our analysis of covariances on the single-neuron level goes beyond the balance condition and 
requires the use of field-theoretical techniques to capture the heterogeneity in the network (Dahmen 
et al., 2019; Helias and Dahmen, 2020). It relies on linear-response theory, which has previously been 
shown to faithfully describe correlations in balanced networks of nonlinear (spiking) units (Tetzlaff 
et  al., 2012; Trousdale et  al., 2012; Pernice et  al., 2012; Grytskyy et  al., 2013; Helias et  al., 

https://doi.org/10.7554/eLife.68422
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2013; Dahmen et  al., 2019). These studies mainly investigated population-averaged correlations 
with small spectral bounds of the effective connectivity. Subsequently, Dahmen et al., 2019 showed 
the quantitative agreement of this linear-response theory for covariances between individual neurons 
in networks of spiking neurons for the whole range of spectral bounds, including the dynamically 
balanced critical regime. The long-range coordination studied in the current manuscript requires the 
inclusion of spatially non-homogeneous coupling to analyze excitatory-inhibitory random networks on 
a two-dimensional sheet with spatially decaying connection probabilities. This new theory allows us 
to derive expressions for the spatial decay of the variance of covariances. We primarily evaluate these 
expressions in the long-range limit, which agrees well with simulations for distances ‍x > 2d ∼ O(1 mm)‍, 
which is fulfilled for most distances on the Utah array (Figure 3, Appendix 1—figure 7). For these 
distances, we find that the decay of covariances is dominated by a simple exponential law. Unex-
pectedly, its decay constant is essentially determined by only two measures, the spectral bound of 
the effective connectivity, and the length scale of direct connections. The length scale of covariances 
diverges when approaching the breakdown of linear stability. In this regime, differences in covariances 
induced by differences in length scales of excitatory and inhibitory connections become negligible. 
The predicted emergence of a single length scale of covariances is consistent with our data.

This study focuses on local and isotropic connection profiles to show that long-range coordination 
does not rely on specific connection patterns but can result from the network state alone. Alternative 
explanations for long-range coordination are based on specifically imprinted network structures: Aniso-
tropic local connection profiles have been studied and shown to create spatio-temporal sequences 
(Spreizer et al., 2019). Likewise, embedded excitatory feed-forward motifs and cell assemblies via 
excitatory long-range patchy connections (DeFelipe et al., 1986) can create positive covariances at 
long distances (Diesmann et  al., 1999; Litwin-Kumar and Doiron, 2012). Yet, these connections 
cannot provide an explanation for the large negative covariances between excitatory neurons at long 
distances (see e.g. Figure 1D). Long-range connectivity, for example arising from a salt-and-pepper 
organization of neuronal selectivity with connections preferentially targeting neurons with equal 
selectivity (Ben-Yishai et al., 1995; Hansel and Sompolinsky, 1998; Roxin et al., 2005; Blumenfeld 
et al., 2006), would produce salt-and-pepper covariance patterns even in networks with small spectral 
bounds where interactions are only mediated via direct connections. However, in this scenario, one 
would expect that neurons which have similar selectivity would throughout show positive covariance 
due to their mutual excitatory connections and due to the correlated input they receive. Yet, when 
analyzing two different epochs of the reach-to-grasp task, we find that a large fraction of neuron 
pairs actually switches from being significantly positively correlated to negatively correlated and vice 
versa (see Figure 6D2, upper left and lower right quadrant). This state-dependence of covariances 
is in line with the here suggested mechanism of long-range coordination by indirect interactions: 
Such indirect interactions depend on the effective strengths of various connections and can therefore 
change considerably with network state. In contrast, correlations due to imprinted network struc-
tures are static, so that a change in gain of the neurons will either strengthen or weaken the specific 
activity propagation, but it will not lead to a change of the sign of covariances that we see in our 
data. The static impact of these connectivity structures on covariances could nevertheless in principle 
be included in the presented formalism. Long-range coordination can also be created from short-
range connections with random orientations of anisotropic local connection profiles (Smith et  al., 
2018). This finding can be linked to the emergence of tuning maps in the visual cortex. The mech-
anism is similar to ours in that it uses nearly linearly unstable modes that are determined by spatial 
connectivity structures and heterogeneity. Given the different source of heterogeneity, the modes 
and corresponding covariance patterns are different from the ones discussed here: Starting from fully 
symmetric networks with corresponding symmetric covariance patterns, Smith et al., 2018 found that 
increasing heterogeneity (anisotropy) yields more randomized, but still patchy regions of positive and 
negative covariances that are in line with low-dimensional activity patterns found in visual cortex. In 
motor cortex we instead find salt-and-pepper patterns that can be explained in terms of heteroge-
neity through sparsity. We provide the theoretical basis and explicit link between connectivity eigen-
spectra and covariances and show that heterogeneity through sparsity is sufficient to generate the 
dynamically balanced critical state as a simple explanation for the broad distribution of covariances 
in motor cortex, the salt-and-pepper structure of coordination, its long spatial range, and its sensitive 
dependence on the network state. Note that both mechanisms of long-range coordination, the one 
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studied in Smith et al., 2018 and the one presented here, rely on the effective connectivity for the 
network to reside in the dynamically balanced critical regime. The latter regime is, however, not just 
one single point in parameter space, but an extended region that can be reached via a multitude of 
control mechanisms for the effective connectivity, for example by changing neuronal gains (Salinas 
and Sejnowski, 2001a; Salinas and Sejnowski, 2001b), synaptic strengths (Sompolinsky et  al., 
1988), and network microcircuitry (Dahmen et al., 2021).

What are possible functional implications of the coordination on mesoscopic scales? Recent work 
demonstrated activity in motor cortex to be organized in low-dimensional manifolds (Gallego et al., 
2017; Gallego, 2018; Gallego et al., 2020). Dimensionality reduction techniques, such as PCA or 
GPFA (Yu et al., 2009), employ covariances to expose a dynamical repertoire of motor cortex that 
is comprised of neuronal modes. Previous work started to analyze the relation between the dimen-
sionality of activity and connectivity (Aljadeff et al., 2015; Aljadeff et al., 2016; Mastrogiuseppe 
and Ostojic, 2018; Dahmen et al., 2019; Dahmen et al., 2021; Hu and Sompolinsky, 2020), but 
only in spatially unstructured networks, where each neuron can potentially be connected to any other 
neuron. The majority of connections within cortical areas, however, stems from local axonal arbor-
izations (Schnepel et al., 2015). Here, we add this biological constraint and demonstrate that these 
networks, too, support a dynamically balanced critical state. This state in particular exhibits neural 
modes which are spanned by neurons spread across the experimentally observed large distances. In 
this state a small subset of modes that are close to the point of instability dominates the variability 
of the network activity and thus spans a low-dimensional neuronal manifold. As opposed to specif-
ically designed connectivity spectra via plasticity mechanisms (Hennequin et al., 2014) or low-rank 
structures embedded into the connectivity (Mastrogiuseppe and Ostojic, 2018), the dynamically 
balanced critical state is a mechanism that only relies on the heterogeneity which is inherent to sparse 
connectivity and abundant across all brain areas.

While we here focus on covariance patterns in stationary activity periods, the majority of recent 
works studied transient activity during motor behavior (Gallego et  al., 2017). How are stationary 
and transient activities related? During stationary ongoing activity states, covariances are predom-
inantly generated intrinsically (Helias et al., 2014). Changes in covariance patterns therefore arise 
from changes in the effective connectivity via changes in neuronal gains, as demonstrated here in the 
two periods of the reach-to-grasp experiment and in our simulations for networks close to criticality 
(Figure 5D). During transient activity, on top of gain changes, correlated external inputs may directly 
drive specific neural modes to create different motor outputs, thereby restricting the dynamics to 
certain subspaces of the manifold. In fact, Elsayed et al., 2016 reported that the covariance structures 
during movement preparation and movement execution are unrelated and corresponding to orthog-
onal spaces within a larger manifold. Also, Luczak et al., 2009 studied auditory and somatosensory 
cortices of awake and anesthetized rats during spontaneous and stimulus-evoked conditions and 
found that neural modes of stimulus-evoked activity lie in subspaces of the neural manifold spanned 
by the spontaneous activity. Similarly, visual areas V1 and V2 seem to exploit distinct subspaces for 
processing and communication (Semedo et al., 2019), and motor cortex uses orthogonal subspaces 
capturing communication with somatosensory cortex or behavior-generating dynamics (Perich et al., 
2021). Gallego, 2018 further showed that manifolds are not identical, but to a large extent preserved 
across different motor tasks due to a number of task-independent modes. This leads to the hypoth-
esis that the here described mechanism for long-range cooperation in the dynamically balanced crit-
ical state provides the basis for low-dimensional activity by creating such spatially extended neural 
modes, whereas transient correlated inputs lead to their differential activation for the respective 
target outputs. The spatial spread of the neural modes thereby leads to a distributed representation 
of information that may be beneficial to integrate information into different computations that take 
place in parallel at various locations. Further investigation of these hypotheses is an exciting endeavor 
for the years to come.

Materials and methods
Experimental design and statistical analysis
Two adult macaque monkeys (monkey E - female, and monkey N - male) are recorded in behavioral 
experiments of two types: resting state and reach-to-grasp. The recordings of neuronal activity in 
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motor and pre-motor cortex (hand/arm region) are performed with a chronically implanted ‍4x4 mm2‍ 
Utah array (Blackrock Microsystems). Details on surgery, recordings, spike sorting and classification 
of behavioral states can be found in Riehle et al., 2013; Riehle et al., 2018; Brochier et al., 2018; 
Dąbrowska et al., 2020. All animal procedures were approved by the local ethical committee (C2EA 
71; authorization A1/10/12) and conformed to the European and French government regulations.

Resting state data
During the resting state experiment, the monkey is seated in a primate chair without any task or 
stimulation. Registration of electrophysiological activity is synchronized with a video recording of the 
monkey’s behavior. Based on this, periods of ‘true resting state’ (RS), defined as no movements and 
eyes open, are chosen for the analysis. Eye movements and minor head movements are included. 
Each monkey is recorded twice, with a session lasting approximately 15 and 20 min for monkeys E 
(sessions E1 and E2) and N (sessions N1 and N2), respectively, and the behavior is classified by visual 
inspection with single second precision, resulting in 643 and 652 s of RS data for monkey E and 493 
and 502 s of RS data for monkey N.

Reach-to-grasp data
In the reach-to-grasp experiment, the monkeys are trained to perform an instructed delayed reach-
to-grasp task to obtain a reward. Trials are initiated by a monkey closing a switch (TS, trial start). After 
400 ms a diode is illuminated (WS, warning signal), followed by a cue after another 400 ms(CUE-ON), 
which provides partial information about the upcoming trial. The cue lasts 300 ms and its removal 
(CUE-OFF) initiates a 1 s preparatory period, followed by a second cue, which also serves as GO 
signal. Two epochs, divided into 200 ms sub-periods, within such defined trials are chosen for anal-
ysis: the first 400 ms after TS (starting period, S1 and S2), and the 400 ms directly following CUE-OFF 
(preparatory period, P1 and P2) (Figure 6a). Five selected sessions for monkey E and eight for monkey 
N provide a total of 510 and 1111 correct trials, respectively. For detailed numbers of trials and single 
units per recording session see Appendix 1—table 1.

Separation of putative excitatory and inhibitory neurons
Offline spike-sorted single units (SUs) are separated into putative excitatory (broad-spiking) and puta-
tive inhibitory (narrow-spiking) based on their spike waveform width (Barthó et al., 2004; Kaufman 
et al., 2010; Kaufman et al., 2013; Peyrache, 2012; Peyrache and Destexhe, 2019). The width is 
defined as the time (number of data samples) between the trough and peak of the waveform. Widths 
of all average waveforms from all selected sessions (both resting state and reach-to-grasp) per monkey 
are collected. Thresholds for ‘broadness’ and ‘narrowness’ are chosen based on the monkey-specific 
distribution of widths, such that intermediate values stay unclassified. For monkey E the thresholds 
are 0.33 ms and 0.34 ms and for monkey N 0.40 ms and 0.41 ms. Next, a two-step classification is 
performed session by session. Firstly, the thresholds are applied to average SU waveforms. Secondly, 
the thresholds are applied to SU single waveforms and a percentage of single waveforms pre-classified 
as the same type as the average waveform is calculated. SU for which this percentage is high enough 
are marked classified. All remaining SUs are grouped as unclassified. We verify the robustness of our 
results with respect to changes in the spike sorting procedure in Appendix 1 Section 2.

Synchrofacts, that is, spike-like synchronous events across multiple electrodes at the sampling reso-
lution of the recording system (1/30 ms) (Torre, 2016), are removed. In addition, only SUs with a 
signal-to-noise ratio (Hatsopoulos et al., 2004) of at least 2.5 and a minimal average firing rate of 1 
Hz are considered for the analysis, to ensure enough and clean data for valid statistics.

Statistical analysis
All RS periods per resting state recording are concatenated and binned into 1 s bins. Next, pairwise 
covariances of all pairs of SUs are calculated according to the following formula:

	﻿‍ COV(i, j) = ⟨bi−µi,bj−µj⟩
l−1 ,‍� (3)
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with bi, bj - binned spike trains, ‍µi‍, ‍µj‍ being their mean values, ‍l‍ the number of bins, and ‍⟨x, y⟩‍ the 
scalar product of vectors ‍x‍ and ‍y‍. Obtained values are broadly distributed, but low on average in 
every recorded session: in session E1 E-E pairs: ‍0.19 ± 1.10‍ (M±SD), E-I: ‍0.24 ± 2.31‍, I-I: ‍0.90 ± 4.19‍, in 
session E2 E-E: ‍0.060 ± 1.332‍, E-I ‍0.30 ± 2.35‍, I-I ‍1.0 ± 4.5‍, in session N1 E-E ‍0.24 ± 1.13‍, E-I ‍0.66 ± 2.26‍, 
I-I ‍2.4 ± 4.9‍, in session N2 E-E ‍0.41 ± 1.47‍, E-I ‍1.0 ± 3.1‍, I-I ‍3.9 ± 7.3‍.

To explore the dependence of covariance on the distance between the considered neurons, the 
obtained values are grouped according to distances between electrodes on which the neurons are 
recorded. For each distance the average and variance of the obtained distribution of cross-covariances 
is calculated. The variance is additionally corrected for bias due to a finite number of measurements 
(Dahmen et al., 2019). In most of cases, the correction does not exceed 0.01%.

In the following step, exponential functions ‍y = a e−
x
d‍ are fitted to the obtained distance-resolved 

variances of cross-covariances (‍y‍ corresponding to the variance and ‍x‍ to distance between neurons), 
which yields a pair of values ‍(a, d)‍. The least squares method implemented in the Python scipy.opti-
mize module (SciPy v.1.4.1) is used. Firstly, three independent fits are performed to the data for 
excitatory-excitatory, excitatory-inhibitory, and inhibitory-inhibitory pairs. Secondly, analogous fits are 
performed, with the constraint that the decay constant ‍d‍ should be the same for all three curves.

Covariances in the reach-to-grasp data are calculated analogously but with different time reso-
lution. For each chosen sub-period of a trial, data are concatenated and binned into 200 ms bins, 
meaning that the number of spikes in a single bin corresponds to a single trial. The mean of these 
counts normalized to the bin width gives the average firing rate per SU and sub-period. The pairwise 
covariances are calculated according to Equation (3). To assess the similarity of neuronal activity in 
different periods of a trial, Pearson product-moment correlation coefficients are calculated on vectors 
of SU-resolved rates and pair-resolved covariances. Correlation coefficients from all recording sessions 
per monkey are separated into two groups: using sub-periods of the same epoch (within-epoch), and 
using sub-periods of different epochs of a trial (between-epochs). These groups are tested for differ-
ences with significance level ‍α = 0.05‍. Firstly, to check if the assumptions for parametric tests are met, 
the normality of each obtained distribution is assessed with a Shapiro-Wilk test, and the equality of 
variances with an F-test. Secondly, a t-test is applied to compare within- and between-epochs correla-
tions of rates or covariances. Since there are two within and four between correlation values per 
recording session, the number of degrees of freedom equals: ‍df = (Nsessions · 2 − 1) + (Nsessions · 4 − 1)‍, 
which is 28 for monkey E and 46 for monkey N. To estimate the confidence intervals for obtained 
differences, the mean difference between groups ‍m‍ and their pooled standard deviation ‍s‍ are calcu-
lated for each comparison

	﻿‍
m = mwithin − mbetween , s =

√
(Nwithin − 1)s2

within + (Nbetween − 1)s2
between

Nwithin + Nbetween − 2
,
‍�

with mwithin and mbetween being the mean, swithin and sbetween the standard deviation and ‍Nwithin‍ and ‍Nbetween‍ 
the number of within- and between-epoch correlation coefficient values, respectively.

This results in 95 % confidence intervals ‍m ± t(df) · s‍ of ‍0.192 ± 0.093‍ for rates and ‍0.32 ± 0.14‍ for 
covariances in monkey E and ‍0.19 ± 0.14‍ for rates and ‍0.26 ± 0.17‍ for covariances in monkey N.

For both monkeys the within-epoch rate-correlations distribution does not fulfill the normality 
assumption of the t-test. We therefore perform an additional non-parametric Kolmogorov-Smirnov test 
for the rate comparison. The differences are again significant; for monkey E ‍D = 1.00, p = 6.66 · 10−8

‍; 
for monkey N ‍D = 1.00, p = 8.87 · 10−13

‍.
For all tests we use the implementations from the Python ​scipy.​stats module (SciPy v.1.4.1).

Mean and variance of covariances for a two-dimensional network 
model with excitatory and inhibitory populations
The mean and variance of covariances are calculated for a two-dimensional network consisting of 
one excitatory and one inhibitory population of neurons. The connectivity profile ‍p(x)‍, describing the 
probability of a neuron having a connection to another neuron at distance ‍x,‍ decays with distance. 
We assume periodic boundary conditions and place the neurons on a regular grid (Figure 3A), which 
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imposes translation and permutation symmetries that enable the derivation of closed-form solutions 
for the distance-dependent mean and variance of the covariance distribution. These simplifying 
assumptions are common practice and simulations show that they do not alter the results qualitatively.

Our aim is to find an expression for the mean and variance of covariances as functions of distance 
between two neurons. While the theory in Dahmen et al., 2019 is restricted to homogeneous connec-
tions, understanding the spatial structure of covariances here requires us to take into account the 
spatial structure of connectivity. Field-theoretic methods, combined with linear-response theory, allow 
us to obtain expressions for the mean covariance ‍c‍ and variance of covariance ‍δc2 ‍

	﻿‍
c = [1 − M]−1 D

1 − R2 [1 − M]−T, δc2 = [1 − S]−1
(

D
1 − R2

)2
[1 − S]−T,

‍�
(4)

with identity matrix 1, mean ‍M‍ and variance ‍S‍ of connectivity matrix ‍W ‍, input noise strength ‍D‍, and 
spectral bound ‍R‍. Since ‍M‍ and ‍S‍ have a similar structure, the mean and variance can be derived in the 
same way, which is why we only consider variances in the following.

To simplify Equation (4), we need to find a basis in which ‍S,‍ and therefore also ‍A = 1 − S‍, is diag-
onal. Due to invariance under translation, the translation operators ‍T ‍ and the matrix ‍S‍ have common 
eigenvectors, which can be derived using that translation operators satisfy ‍TN = 1‍, where ‍N ‍ is the 
number of lattice sites in ‍x‍- or ‍y‍-direction (see Appendix 1). Projecting onto a basis of these eigenvec-
tors shows that the eigenvalues ‍sk‍ of ‍S‍ are given by a discrete two-dimensional Fourier transform of 
the connectivity profile‍sk ∝

∑
x p(x)e−ikx .‍

Expressing ‍A−1‍ in the eigenvector basis yields ‍A−1(x) = 1 + B(x)‍, where ‍B(x)‍ is a discrete inverse 
Fourier transform of the kernel ‍sk/(1 − sk)‍. Assuming a large network with respect to the connectivity 
profiles allows us to take the continuum limit

	﻿‍
B(x) = 1

(2π)2

ˆ
d2k s(k)

1 − s(k)
eikx .

‍�

As we are only interested in the long-range behavior, which corresponds to ‍|x| → ∞‍, or ‍|k| → 0‍, 
respectively, we can approximate the Fourier kernel around ‍|k| ≈ 0‍ by a rational function, quadratic 
in the denominator, using a Padé approximation. This allows us to calculate the integral which yields

	﻿‍ B(x) ∝ K0(−|x|/deff) ,‍�

where ‍K0(x)‍ denotes the modified Bessel function of second kind and zeroth order (Olver et  al., 
2010), and the effective decay constant deff is given by Equation (1). In the long-range limit, the modi-
fied Bessel function behaves like

	﻿‍
B(x)

|x|→∞
∝ exp(−|x|/deff)√

|x|
.
‍�

Writing Equation (4) in terms of ‍B(x)‍ gives

	﻿‍
δc2(x) =

(
D

1−R2

)2 [
δ(|x|) + B(x) + (B ∗ ∗B)(x)

]
,
‍�

with the double asterisk denoting a two-dimensional convolution. ‍(B ∗ ∗B)(x)‍ is a function proportional 
to the modified Bessel function of second kind and first order (Olver et al., 2010), which has the long-
range limit

	﻿‍ (B ∗ ∗B)(x)
|x|→∞
∝

√
|x| exp(−|x|/deff) .‍�

Hence, the effective decay constant of the variances is given by deff. Note that further details of the 
above derivation can be found in the Appendix 1 Section 4 - Section 12.

Network model simulation
The explanation of the network state dependence of covariance patterns presented in the main text 
is based on linear-response theory, which has been shown to yield results quantitatively in line with 
non-linear network models, in particular networks of spiking leaky integrate-and-fire neuron models 
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(Tetzlaff et al., 2012; Trousdale et al., 2012; Pernice et al., 2012; Grytskyy et al., 2013; Helias 
et al., 2013; Dahmen et al., 2019). The derived mechanism is thus largely model independent. We 
here chose to illustrate it with a particularly simple non-linear input-output model, the rectified linear 
unit (ReLU). In this model, a shift of the network’s working point can turn some neurons completely 
off, while activating others, thereby leading to changes in the effective connectivity of the network. In 
the following, we describe the details of the network model simulation.

We performed a simulation with the neural simulation tool NEST (Jordan, 2019) using the param-
eters listed in Appendix 1—table 4. We simulated a network of ‍N ‍ inhibitory neurons (threshold_lin_
rate_ipn, Hahne, 2017), which follow the dynamical equation

	﻿‍ τ dzi
dt = −zi +

∑
j Jijνj + µext,i + ξi

√
τσnoise,i ,‍� (5)

where zi is the input to neuron i, ‍ν‍ the output firing rate with (threshold linear activation function)

	﻿‍

ν = ϕ(z) =





0 for z ≤ 0

z for z > 0
,

‍�

time constant ‍τ ‍, connectivity matrix ‍J‍, a constant external input ‍µext,i‍, and uncorrelated Gaussian white 
noise ‍⟨ξi(t)⟩ = 0‍, ‍⟨ξi(s)ξj(t)⟩ = δijδ(s − t)‍, with noise strength ‍

√
τσnoise,i‍. The neurons were connected 

using the fixed_indegree connection rule, with connection probability ‍p‍, indegree ‍K = p · N ‍, and 
delta-synapses (rate_connection_instantaneous) of weight ‍w‍.

The constant external input ‍µext,i‍ to each neuron was normally distributed, with mean ‍µext‍, and 
standard deviation ‍σext‍. It was used to set the firing rates of neurons, which, via the effective connec-
tivity, influence the intrinsically generated covariances in the network. The two parameters ‍µext‍ and 
‍σext‍ were chosen such that, in the stationary state, half of the neurons were expected to be above 
threshold. Which neurons are active depends on the realization of ‍µext,i‍ and is therefore different for 
different networks.

To assess the distribution of firing rates, we first considered the static variability of the network and 
studied the stationary solution of the noise-averaged input ‍⟨z⟩noise‍, which follows from Equation (5) as

	﻿‍ ⟨zi⟩noise =
∑

j Jij
⟨
νj
⟩

noise + µext,i .‍� (6)

Note that ‍
⟨
νj
⟩

noise =
⟨
ϕ(zj)

⟩
noise‍, through the nonlinearity ‍ϕ‍, in principle depends on fluctuations of the 

system. This dependence is, however, small for the chosen threshold linear ‍ϕ‍, which is only nonlinear 
in the point ‍z = 0‍.

The derivation of ‍µext‍ is based on the following mean-field considerations: according to Equation 
(6) the mean input to a neuron in the network is given by the sum of external input and recurrent input

	﻿‍ µ = µext + µrecurrent = µext + KwMean(ν) .‍�

The variance of the input is given by

	﻿‍ σ2 = σ2
ext + σ2

recurrent = σ2
ext + Kw2Var(ν) .‍�

The mean firing rate can be calculated using the diffusion approximation (Tuckwell, 2009; Amit and 
Tsodyks, 2009), which is assuming a normal distribution of inputs due to the central-limit theorem, 
and the fact that a linear threshold neuron only fires if its input is positive

	﻿‍

Mean(ν) =
´∞
−∞ dν P

(
µ,σ2, ν

)
ν

=
´∞
−∞ dzN

(
µ,σ2, z

)
ϕ(z)

=
´∞

0 dzN
(
µ,σ2, z

)
z

= σ√
2π

exp
(
− µ2

2σ2

)
+ µ

2

[
1 + erf

(
µ√
2σ

)]
,
‍�

where ‍P ‍ denotes the probability density of the firing rate ‍ν‍. The variance of the firing rates is given by
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	﻿‍

Var(ν) = Mean(ν2) − Mean(ν)2

= µ2

4

[
1 − erf2

(
µ√
2σ

)]
+ σ2

2

[
1 − 1

π exp
(
−µ2

σ2

)
+ erf

(
µ√
2σ

)]
+ µσ√

2π
erf

(
µ√
2σ

)
.
‍�

The number of active neurons is the number of neurons with a positive input, which we set to be equal 
to ‍N/2‍

	﻿‍

N
2

!= N
ˆ ∞

0
dzN

(
µ,σ2, z

)
= N

2

[
1 + erf

(
µ√
2σ

)]
,
‍�

which is only fulfilled for ‍µ = 0‍. Inserting this condition simplifies the equations above and leads to

	﻿‍
µext = −Kwσ√

2π
.
‍�

For the purpose of relating synaptic weight ‍w‍ and spectral bound ‍R‍, we can view the nonlinear 
network as an effective linear network with half the population size (only the active neurons). In the 
latter case, we obtain

	﻿‍
w = − R√

N
2 p(1−p)

.
‍�

For a given spectral bound ‍R‍, this relation allows us to derive the value

	﻿‍
µext =

√
Np

π(1−p)−(π−1)R2

√
σ2

extR ,
‍� (7)

that, for a arbitrarily fixed ‍σext‍ (here ‍σext = 1‍), makes half of the population being active. We were aiming 
for an effective connectivity with only weak fluctuations in the stationary state. Therefore, we fixed the noise 
strength for all neurons to the small value ‍σnoise = 0.1 ≪ σext‍ compared to the external input, such that the 
noise fluctuations did not have a large influence on the calculation above that determines which neurons 
were active.

To show the effect of a change in the effective connectivity on the covariances, we simulated two 
networks with identical connectivity, but supplied them with slightly different external inputs. This was real-
ized by choosing

	﻿‍ µ(α)
ext,i = µext,i + µ(α)

ext,i ,‍�

with

	﻿‍
µext,i ∼ N

(
µext,

[
1 − ϵ

]
σ2

ext
)

, µ(α)
ext,i ∼ N

(
0, ϵσ2

ext
)

,
‍�

‍ϵ ≪ 1‍, and ‍α ∈
{

1, 2
}
‍ indexing the two networks. The main component ‍µext,i‍ of the external input 

was the same for both networks. But, the small component ‍µ
(α)
ext,i‍ was drawn independently for the 

two networks. This choice ensures that the two networks have a similar external input distribution 
(Figure 5B1), but with the external inputs distributed differently across the single neurons (Figure 5B2). 
How similar the external inputs are distributed across the single neurons is determined by ‍ϵ‍.

The two networks have a very similar firing rate distribution (Figure 5E1), but, akin to the external 
inputs, the way the firing rates are distributed across the single neurons differs between the two 
networks (Figure 5E2). As the effective connectivity depends on the firing rates

	﻿‍ Wij = Jijϕ
′(νj) ,‍�

this leads to a difference in the effective connectivities of the two networks and therefore to different 
covariance patterns, as discussed in Figure 5.

We performed the simulation for spectral bounds ranging from 0.1 to 0.9 in increments of 0.1. 
We calculated the correlation coefficient of firing rates and the correlation coefficient of time-lag 
integrated covariances between ‍Nsample‍ neurons in the two networks (Figure 5D) and studied the 
dependence on the spectral bound.
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To check whether the simulation was long enough to yield a reliable estimate of the rates and 
covariances, we split each simulation into two halves, and calculate the correlation coefficient between 
the rates and covariances from the first half of the simulation with the rates and covariances from the 
second half. They were almost perfectly correlated (Figure  5C). Then, we calculated the correla-
tion coefficients comparing all halves of the first simulation with all halves of the second simulation, 
showing that the covariance patterns changed much more than the rate patterns (Figure 5C).
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Appendix 1

1 Correlations and covariances
A typical measure for the strength of neuronal coordination is the Pearson correlation coefficient, 
here applied to spike counts in ‍1 s‍ bins. Correlation coefficients, however, comprise features of 
both auto- and cross-covariances. From a theoretical point of view, it is simpler to study cross-
covariances separately. Indeed, linear-response theory has been shown to faithfully predict 
cross-covariances in spiking leaky integrate-and-fire networks (Tetzlaff et al., 2012; Pernice 
et al., 2012; Trousdale et al., 2012; Helias et al., 2013; Dahmen et al., 2019; Grytskyy et al., 
2013). Appendix 1—figure 1 justifies the investigation of cross-covariances instead of correlation 
coefficients for the purpose of this study. It shows that the spatial organization of correlations 
closely matches the spatial organization of cross-covariances.

Appendix 1—figure 1. Correlations and covariances. The shown data is taken from session E2. 
(E-E: excitatory-excitatory, E-I: excitatory-inhibitory, I-I: inhibitory-inhibitory). (A) Population-resolved 
distribution of pairwise spike-count Pearson correlation coefficients. Same data as in Figure 1C. 
(B) Population-resolved distribution of pairwise spike-count covariances. (C) Population-resolved 
distribution of variances. (D) Pairwise spike-count correlation coefficients with respect to the neuron 
marked by black triangle. Grid indicates electrodes of a Utah array, triangles and circles correspond 
to putative excitatory and inhibitory neurons, respectively. Size as well as color of markers represent 
correlation. Neurons within the same square were recorded on the same electrode. Same data as in 
Figure 1D. (E) Pairwise spike-count covariances with respect to the neuron marked by black triangle.

2 Robustness to E/I separation
The analysis of the experimental data involves a number of preprocessing steps, which may affect 
the resulting statistics. In our study one such critical step is the separation of putative excitatory 
and inhibitory units, which is partially based on setting thresholds on the widths of spike waveform, 

https://doi.org/10.7554/eLife.68422
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as described in the Methods section. We tested the robustness of our conclusions with respect to 
these thresholds.

As mentioned in the Methods, two thresholds for the width of a spike waveform are chosen, 
based on all SU average waveforms: A width larger than the ‘‘broadness’’ threshold indicates a 
putative excitatory neuron. A width lower than the ‘‘narrowness’’ threshold indicates a putative 
inhibitory neuron. Units with intermediate widths are unclassified. Additionally, to increase the 
reliability of the classification, we perform it in two steps: first on the SU’s average waveform, and 
second on all its single waveforms. We calculate the percentage of single waveforms classified as 
either type. Finally, only SUs showing a high enough percentage of single waveforms classified 
the same as the average waveform are sorted as the respective type. The minimal percentage 
required, referred to as consistency ‍c‍, is initially set to the lowest value which ensures no 
contradictions between average- and single-waveform thresholding results. While the ‘‘broadness’’ 
and ‘‘narrowness’’ thresholds are chosen based on all available data for a given monkey, the 
required consistency is determined separately for each recording session. For monkey N ‍c‍ is set 
to 0.6 in all but one sessions: In resting state session N1 it is increased to 0.62. For monkey E the 
values of ‍c‍ equals 0.6 in the resting state recordings and take the following values in five analyzed 
reach-to-grasp sessions: 0.6, 0.89, 0.65, 0.61, 0.64.

The only step of our analysis for which the separation of putative excitatory and inhibitory 
neurons is crucial is the fitting of exponentials to the distance-resolved covariances. This step only 
involves resting state data. To test the robustness of our conclusions, we manipulate the required 
consistency value for sessions E1, E2, N1, and N2 by setting it to 0.75. Appendix 1—figure 2 and 
Appendix 1—table 1 summarize the resulting fits.

https://doi.org/10.7554/eLife.68422
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Appendix 1—figure 2. Distance-resolved variance of covariance: robustness of decay constant 
estimation. Exponential fits (lines) to variances of covariances (dots) analogous to Figure 4A and B 
in the main text (columns 1&3 and 2&4, respectively) for all analyzed resting state sessions. The two 
sets of plots differ in E/I separation consistency values chosen during data preprocessing. Panels A-H: 
default (lowest) required consistency (~0.6), used throughout the main analysis; panels I-P: ‍c = 0.75‍ 
The values of the obtained decay constants are listed in Appendix 1—table 1.

It turns out that increasing ‍c‍ to 0.75, which implies disregarding about 20-25 percent of all 
data, does not have a strong effect on the fitting results. The obtained decay constants are smaller 
than for a lower ‍c‍ value, but they stay in a range about an order of magnitude larger than the 
anatomical connectivity. We furthermore see that fitting individual slopes to different populations 
in some sessions leads to unreliable results (cf. yellow lines in Appendix 1—figure 2A, I and blue 
lines in Appendix 1—figure 2C,D,K,L). Therefore, the data is not sufficient to detect differences 
in decay constants for different neuronal populations. Fitting instead a single decay constant yields 
trustworthy results (cf. yellow lines in Appendix 1—figure 2E,M and blue lines in Appendix 1—
figure 2G,H,O,P). Our data thus clearly expose that decay constants of covariances are in the 
millimeter range.

https://doi.org/10.7554/eLife.68422
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Appendix 1—table 1. Summary of exponential fits to distance-resolved variance of covariance.
For each value of E/I separation consistency ‍c‍ the numbers of sorted putative neurons and the 
percentages of unclassified units, and therefore not considered for fitting SUs, are listed per resting 
state session, along with the resulting fits (Figure 4 in the main text)

C E1 E2 N1 N2

0.6 (default)

#exc/#inh 56/50 67/56 76/45 78/62

unclassified 0.078 0.075 0.069 0.091

relative error 1.1157 1.0055 1.0097 1.0049

1-slope fit 1.674 1.029 1.676 4.273

I-I 1.919 0.996 1.647 4.156

I-E 0.537 1.206 2.738 96100.688

E-E 1.642 1.308 80308.482 94096.871

0.75

#exc/#inh 45/42 47/48 70/36 74/48

unclassified 0.24 0.28 0.18 0.21

relative error 1.1778 1.0141 1.0102 1.0090

1-slope fit 1.357 0.874 1.420 2.587

I-I 1.794 0.809 1.394 2.550

I-E 0.496 1.123 3.682 40.852

E-E 1.390 1.199 80548.500 10310.780

3 Stationarity of behavioral data
The linear-response theory, with the aid of which we develop our predictions about the covariance 
structure in the network, assumes that the processes under examination are stationary in time. 
However, this assumption is not necessarily met in experimental data, especially in motor cortex 
during active behavioral tasks. For this reason we analyzed the stationarity of average single 
unit firing rate and pairwise zero time-lag covariance throughout a reach-to-grasp trial, similarly 
to Dahmen et al., 2019. Although the spiking activity becomes highly non-stationary during 
the movement, those epochs that are chosen for the analysis in our study (S and P) show only 
moderate variability in time (Appendix 1—figure 3). An analysis on the level of single-unit 
resolved activity also shows that the majority of neurons has stationary activity statistics within the 
relevant epochs S and P, especially when comparing to their whole dynamic range that is explored 
during movement transients towards the end of the task (Appendix 1—figure 5). Appendix 1—
figure 6 shows that there are, however, a few exceptions (e.g. units 11, 84 in this session) that 
show moderate transients also within an epoch. Nevertheless, these transients are small compared 
to changes between the two epochs S and P.

https://doi.org/10.7554/eLife.68422
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Appendix 1—figure 3. Rate and covariance stationarity during a reach-to-grasp trial: monkey E. 
Black line indicates population mean and gray area +/- 1 population standard deviation of single unit 
firing rate (left column) and pairwise zero time-lag covariance (right column) during trial of a given 
session (row). Blue bars indicate starting (S) and preparatory (P) periods used in the analysis (Figure 6 
in the main text). First, second and fourth dashed lines indicate visual signals lighting up and the third 
dashed line indicates the removal of a visual cue and beginning of a waiting period.

Appendix 1—figure 4. Rate and covariance stationarity during a reach-to-grasp trial: monkey N. 
Analogous to Appendix 1—figure 3.

https://doi.org/10.7554/eLife.68422
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Appendix 1—figure 5. Stationarity of single-unit activity during a reach-to-grasp trial (monkey N, 
session i140627-001). Black lines indicate mean and gray areas +/- 1 standard deviation across trials 
of single unit activity in each panel (sliding window analysis with 5 ms step size and 100 ms window 
length). Blue bars indicate starting (S) and preparatory (P) periods used in the analysis (Figure 6 in the 
main text). First, second and fourth dashed lines (marked with stars) indicate visual signals lighting up 
and the third dashed line indicates the removal of a visual cue and beginning of a waiting period.

https://doi.org/10.7554/eLife.68422
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Appendix 1—figure 6. Stationarity of single-unit activity during a reach-to-grasp trial (monkey N, 
session i140704-001). Analogous to Appendix 1—figure 5.

Thus both the population-level and single-unit level analyses are in line with the second test for 
stationarity that we show in Figure 6. There we compare the firing rate and covariance changes 
between two 200 ms segments of the same epoch to the firing rate and covariance changes 
between two 200 ms segments of different epochs. If the neural activity was not stationary within 
an epoch then we would not obtain correlation coefficients of almost one between firing rates in 
Figure 6E and correlation coefficients up to 0.9 between covariance patterns within one epoch in 
Figure 6F. In summary, the analyses together make us confident that assuming stationarity within 
an epoch is a good approximation to show that there are significant behaviorally related changes 
in covariances across epochs of the reach-to-grasp experiment.

Appendix 1—table 2. Numbers of trials and single units per reach-to-grasp recording session.
Session names starting with “e” correspond to monkey E and session names starting with “i” to 
monkey N.

Session Ntrials Nsingle units

e161212-002 108 129

e61214-001 99 118

Appendix 1—table 2 Continued on next page
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Session Ntrials Nsingle units

e161222-002 102 118

e170105-002 101 116

e170106-001 100 113

i140613-001 93 137

i140617-001 129 155

i140627-001 138 145

i140702-001 157 134

i140703-001 142 142

i140704-001 141 124

i140721-002 160 96

i140725-002 151 106

4 Network model
We are considering neuronal network models with isotropic and distance-dependent connection 
profiles. Ultimately, we are interested in describing cortical networks with two-dimensional 
sheet-like structure. But, for developing the theory, we first consider the simpler case of a one-
dimensional ring and subsequently develop the theory on a two-dimensional torus, ensuring 
periodic boundary conditions in both cases. ‍N ‍ equidistantly distributed neurons form a grid on 
these manifolds. The position of neuron ‍i ∈ {1, ..., N}‍ is described by the vector ‍ri ∈ RD

‍, with 
‍D ∈ {1, 2}‍. The connections ‍Wij‍ from neuron ‍j‍ to neuron i are drawn randomly with a connection 
probability that decays with distance between neurons ‍

∣∣ri − rj
∣∣
‍, described by the normalized 

connectivity profile ‍p(r)‍, ‍
´

p(r) dDr = 1‍, which we assume to obey radial symmetry. The connection 
probability decays on a characteristic length scale ‍d‍. As we are working on discrete lattices, we 
introduce the probability of two neurons being connected ‍pij‍, which is defined by the relation 

‍p(ri − rj) = lima→0 pij/a‍, with lattice spacing ‍a‍. We set the synaptic weights for connections 
of a single type to a fixed value ‍w‍, but allow for multiple connections between neurons, that 
is ‍Wij ∈ {0, w, 2w, ...} = nij · w‍ for all sending neurons ‍j‍ of a given type, where ‍nij‍ is binomially 
distributed. Such multapses are required to simultaneously meet biological constraints on neuronal 
indegrees, neuron densities, and spatial ranges of connections. If instead one assumed Bernoulli 
connectivity, an analysis analogous to Eq. 7 of Senk et al., 2018 would yield a connection 
probability exceeding unity.

We introduce two populations of neurons, excitatory (E) and inhibitory (I) neurons. The 
number of neurons of a given population ‍a ∈ {E, I}‍ is ‍Na‍, and their ratio is ‍q = NE/NI‍, which, 
for convenience, we assume to be an even number (see permutation symmetry below). The 
connection from population ‍b‍ to population ‍a‍ has the synaptic weight ‍wab‍ and characteristic decay 
length of the connectivity profile ‍dab‍. The average number of inputs drawn per neuron is fixed to 

‍Kab‍. In order to preserve translation symmetry, ‍q‍ excitatory neurons and one inhibitory neuron are 
put onto the same lattice point, as shown in Figure 3A in the main text.

Linear-response theory has been shown to faithfully capture the statistics of fluctuations in 
asynchronous irregular network states (Lindner et al., 2005). Here we follow Grytskyy et al., 
2013, who show that different types of neuronal network models can be mapped to an Ornstein-
Uhlenbeck process and that the low-frequency limit of this simple rate model describes spike 
count covariances of spiking models well (Tetzlaff et al., 2012). In particular, Dahmen et al., 
2019 showed quantitative agreement of linear-response predictions for the statistics of spike-
count covariances in leaky integrate-and-fire networks for the full range of spectral bounds 

‍R ∈ [0, 1)‍. Therefore, we consider a network of linear rate neurons, whose activity ‍x ∈ RN ‍ is 
described by

	﻿‍ τ ddtx = −x+Wx+ ξ ,‍�

Appendix 1—table 2 Continued
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with uncorrelated Gaussian white noise ‍ξ‍, ‍
⟨
ξi(t)

⟩
= 0‍, ‍⟨ξi(s)ξj(t)⟩ = Diδijδ(s − t)‍. The solution to this 

differential equation can be found by multiplying the whole equation with the left eigenvectors ‍uα‍ 
of ‍W ‍

	﻿‍ τ d
dt yα = −yα + λαyα + ξα ,‍� (8)

where ‍yα = uα · x‍, ‍ξα = uα · ξ‍, and ‍λα‍ is denoting the corresponding eigenvalue of ‍W ‍. Neglecting 
the noise term, the solutions are given by

	﻿‍ yα(t) ∝ Θ(t) exp[− t
τ (1 − λα)] ,‍� (9)

with Heaviside function ‍Θ(t)‍. These are the eigenmodes of the linear system and they are linear 
combinations of the individual neuronal rates

	﻿‍ yα =
∑N

i=1
(
uα

)
i xi .‍�

Note that the weights ‍
(
uα

)
i‍ of these linear combinations depend on the details of the effective 

connectivity matrix ‍W ‍. The stability of an eigenmode is determined by the corresponding 
eigenvalue ‍λα‍. If ‍Re

(
λα

)
< 1‍, the eigenmode is stable and decays exponentially. If ‍Re

(
λα

)
> 1‍, 

the eigenmode is unstable and grows exponentially. If ‍Im
(
λα

)
̸= 0,‍ the eigenmode is oscillatory 

with an exponential envelope. ‍Re
(
λα

)
= 1‍ is here referred to as the critical point. This type of 

stability is also called linear stability to stress that these considerations are only valid in the linear 
approximation. Realistic neurons have a saturation at high rates, which prevents activity from 
diverging indefinitely. A network is called linearly stable if all modes are stable. This is determined 
by the real part of the largest eigenvalue of ‍W ‍, called spectral bound ‍R.‍ In inhibition-dominated 
networks, the spectral bound is determined by the heterogeneity in connections and ‍R ⪅ 1‍ defines 
the dynamically balanced critical state (Dahmen et al., 2019).

The different noise components ‍ξα‍ excite the corresponding eigenmodes of the system and act 
as a driving force. A noise vector ‍ξ‍ that is not parallel to a single eigenvector ‍uα‍ excites several 
eigenmodes, each with the corresponding strength ‍ξα‍.

Note that the different eigenmodes do not interact, which is why the total activity ‍x‍ is given by 
a linear combination, or superposition, of the eigenmodes

	﻿‍ x =
∑N

α=1 yαvα ,‍�

where ‍vα‍ denotes the α-th right eigenvector of the connectivity matrix ‍W ‍.

5 Covariances
Time-lag integrated covariances ‍cij =

´
dτ

⟨
xi(t)xj(t + τ )

⟩
− ⟨xi(t)⟩

⟨
xj(t + τ )

⟩
‍ can be computed 

analytically for the linear dynamics (Gallego et al., 2020). They follow from the connectivity ‍W ‍ 
and the noise strength ‍D‍ as (Pernice et al., 2011; Trousdale et al., 2012; Grytskyy et al., 2013; 
Lindner et al., 2005)

	﻿‍ c = [1 − W]−1D[1 − W]−T ,‍� (10)

with identity matrix 1. These covariances are equivalent to covariances of spike counts in large 
time windows, given by the zero-frequency component of the Fourier transform of ‍x‍ (sometimes 
referred to as Wiener-Khinchin theorem Gardiner, 1985; even though the theorem proper applies 
in cases where the Fourier transforms of the signals ‍x‍ do not exist). Spike count covariances 
(Figure 1B in the main text) can be computed from trial-resolved spiking data (Dahmen et al., 
2019). This equivalence allow us to directly relate theoretical predictions for covariances to the 
experimentally observed ones.

While Equation (10) provides the full information on covariances between any two neurons 
in the network, this information is not available in the experimental data. Only a small subset of 
neuronal activities can be recorded such that inference of connectivity parameters from Equation 
10 is unfeasible. We recently proposed in Dahmen et al., 2019 to instead consider the statistics 
of covariances as the basis for comparison between models and data. Using Equation 8 and 
Equation 10 as a starting point, field theoretical techniques allow the derivation of equations for 
the mean ‍c‍ and variance ‍δc2 ‍ of cross-covariances in relation to the mean ‍M‍ and variance ‍S‍ of the 
connectivity matrix ‍W ‍ (Dahmen et al., 2019):

https://doi.org/10.7554/eLife.68422
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	﻿‍ c = [1 − M]−1Dr[1 − M]−T ,‍� (11)

	﻿‍ δc2 = [1 − S]−1D2
r [1 − S]−T .‍� (12)

‍M‍and ‍S‍ are defined in the subsequent section. The renormalized input noise strength is given by

	﻿‍
Dr = D + diag

[
D
(
1 − S

)−1 S · I
]

,
‍� (13)

with input noise covariance ‍D‍, and the all-ones vector ‍I = (1, . . . , 1)T ∈ RN
‍. Note that Equation 

(12) only holds for cross-covariances (‍i ̸= j‍). The diagonal terms 
‍

[
δc2

]
ii‍
, that is the variance of auto-

covariances, do get a second contribution, which is negligible for the cross-covariances considered 
here.

6 Cumulant generating function of connectivity matrix
For calculating the mean and variance of the covariances of the network activity ((11) and (12)) 
we need mean ‍M‍ and variance ‍S‍ of connectivity ‍W ‍. In the following, we derive the cumulant 
generating function (Gardiner, 1985) of ‍Wij‍.

The number of connections ‍n‍ from neuron ‍j‍ to neuron i is a binomial random variable with ‍K ‍ 
trials with the probability of success given by ‍pij‍ (in the following, for brevity, we ignore the index i, 

‍pij ≡ pj‍)

	﻿‍
Probj(n) =

(
K
n

)
pn

j
(
1 − pj

)K−n .
‍�

The average number of connections from neuron ‍j‍ to neuron i is ‍Kj = pjK ‍, which assures the 
correct average total indegree

	﻿‍
∑

j Kj = K
∑

j pj = K .‍�

The moment generating function of a connectivity matrix element ‍Wj ≡ Wij ∈
{

0, w, 2w, ...
}
‍ is given 

by

	﻿‍
ZWj

(
k
)

=
K∑

n=0

(
K
n

)
pn

j
(
1 − pj

)K−n enwk .
‍�

In a realistic network, ‍K ‍ is very large. In the limit ‍K → ∞‍, while keeping ‍Kp = const.‍, the binomial 
distribution converges to a Poisson distribution and we can write

	﻿‍

ZWj (k) ≈
∑K

n=0
Kn

j
n! e−Kj enwk

=
∑K

n=0

(
Kjewk

)n

n! e−Kj

K→∞−−−−→ exp
[
Kj

(
ewk − 1

)]
.
‍�

Taking the logarithm leads to the cumulant generating function

	﻿‍
GWj

(
k
)
≈ pjK

(
ewk − 1

)
,
‍�

and the first two cumulants

	﻿‍

Mij = ∂

∂k
GWj

(
k
)����

k=0
= pjKw = p

(��xi − xj
��)Kw ,

Sij = ∂2

∂k2 GWj

(
k
)���

k=0
= pjKw2 = p

(��xi − xj
��)Kw2 .

‍�

7 Note on derivation of variance of covariances
Note that ‍M‍ and ‍S‍ have an identical structure determined by the connectivity profile and the 
structure of the covariance equation is identical for the mean Equation (11) and variance Equation 
(12) as well. This is why in the following we only derive the results for the mean of covariances. 

https://doi.org/10.7554/eLife.68422


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Dahmen, Layer, et al. eLife 2022;11:e68422. DOI: https://doi.org/10.7554/eLife.68422 � 35 of 55

The results for the variance of covariances is obtained by substituting ‍w‍ by ‍w2‍ and ‍Dr‍ by ‍D2
r ‍. 

As we show, divergences in expressions related to the mean covariances arise if the population 
eigenvalue ‍λ0‍ of the effective connectivity matrix approaches one. In expressions related to 
the variance of covariances, the divergences are caused by the squared spectral bound ‍R2‍ 
being close to one. In general expressions, we sometimes write ‍ζ‍ in order to denote either the 
population eigenvalue or the spectral bound, corresponding to the context of mean or variance of 
covariances.

8 Utilizing symmetries to reduce dimensionality
For real neuronal networks, the anatomical connectivity is never known completely, let alone 
the effective connectivity. This is why we are considering disorder-averaged systems. They are 
described by the mean ‍M‍ and variance ‍S‍ of the connectivity. The latter inherit the underlying 
symmetries of the network, like for example the same radially symmetric connectivity profile for all 
neurons of one type. As neuronal networks are high dimensional systems, calculating covariances 
from Equation (11) and Equation (12) first seems like a daunting task. But, leveraging the 
aforementioned symmetries similarly as in Kriener et al., 2013 allows for an effective reduction of 
the dimensionality of the system, thereby rendering the problem manageable.

As a demonstrative example of how this is done, consider a random network of ‍N ‍ neurons on a 
one-dimensional ring, in which a neuron can form a connection with weight ‍w‍ to any other neuron 
with probability p0. In that case, ‍M‍ is a homogeneous matrix, with all entries given by the same 
average connectivity weight

	﻿‍

M =




p0w p0w . . . p0w

p0w p0w . . . p0w
...

...
. . .

...

p0w p0w . . . p0w




.

‍�

This corresponds to an all-to-all connected ring network. Due to the symmetry of the system, 
moving all neurons by one lattice constant does not change the system. The translation operator 
‍T ‍, representing this operation mathematically, is defined via its effect on the vector of neuron 
activity ‍x‍

	﻿‍

Tx = T




x1

x2
...

xN




= T




xN

x1
...

xN−1




.

‍�

Applying ‍T ‍ ‍N ‍-times yields the identity operation

	﻿‍ TN = 1 .‍�

Hence, its eigenvalues are given by complex roots of one

	﻿‍ e−i2πl/N = e−i2πla/L = e−ikla , l ∈ {0, 1, ..., N − 1} ,‍�

with ‍L = Na‍ denoting the circumference of the ring. This shows that ‍T ‍ has ‍N ‍ one-dimensional 
eigenspaces. Since the system is invariant under translation, ‍M‍ is invariant under the 
transformation ‍TMT−1 = M ,‍ and thus ‍M‍ and ‍T ‍ commute. As ‍M‍ leaves eigenspaces of ‍T ‍ invariant 
(if ‍v‍ is an eigenvector of ‍T ‍, ‍Mv‍ is an eigenvector with the same eigenvalue, so they need to be 
multiples of each other), all eigenvectors of ‍T ‍ must be eigenvectors of ‍M‍. Accordingly, knowing 
the eigenvectors of ‍T ‍ allows diagonalizing ‍M‍. The normalized (left and right) eigenvectors of ‍T ‍ are 
given by

https://doi.org/10.7554/eLife.68422
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	﻿‍

vkl = 1√
N




1

eikla

ei2kla

...

ei(N−1)kla




.

‍�

We get the eigenvalues of ‍M‍ by multiplying it with the eigenvectors of‍T ‍

	﻿‍

mkl = v†kl
Mvkl

= 1
N p0wv†kl

·




∑N−1
j=0 eiklaj

∑N−1
j=0 eiklaj

...
∑N−1

j=0 eiklaj




,

‍�

which is always zero, except for ‍l = 0‍, which corresponds to the population eigenvalue 

‍λ0 := mk0 = Np0w‍ of ‍W ‍ (Figure 3C in the main text). Now, we can simply write down the 
diagonalized form of ‍M‍

	﻿‍




λ0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0




,

‍�

and we effectively reduced the ‍N ‍-dimensional to a one dimensional problem. Inverting 
‍A := 1 − M‍ in Equation (11) is straightforward now, since it is diagonal in the new basis. Its 
eigenvalues can be written as ‍ak = 1 − mk ,‍ where we suppressed the index ‍l‍. Therefore its inverse 
is given by

	﻿‍

A−1
ij =

∑
k a−1

k
(
vk
)

i

(
v†k
)

j

= 1
N
∑

k
1

1−mk
eik(xi−xj)

= 1
N
∑

k

(
1 + mk

1−mk

)
eik(xi−xj)

= δij + 1
N

λ0
1−λ0

. ‍�

The renormalized noise can be evaluated using that the all-ones vector occurring in equation 
Equation (13) is the eigenvector ‍v0‍ of ‍S‍. After identifying the eigenvalue s0 with the squared 
spectral bound ‍R2‍, we find

	﻿‍
Dr = diag

(
D

1−R2

)
,
‍�

which allows us to express the mean cross-covariances ‍c‍ (see Equation (11)) and the variance of 
cross-covariances ‍δc2 ‍ (see Equation (12)) in terms of the eigenvectors of ‍M‍ and ‍S‍ respectively

	﻿‍
c = D

1−R2

{
2λ0

N
(

1−λ0
) +

[
λ0

N
(

1−λ0
)
]2

N
}

,
‍�

	﻿‍
δc2 =

(
D

1−R2

)2
{

2R2

N
(

1−R2
) +

[
R2

N
(

1−R2
)
]2

N
}

.
‍�

9 One-dimensional network with one population
The simplest network with spatial connectivity is a one-dimensional ring of neurons with one 
population of neurons. Following section Section 6, the mean connectivity matrix has the form

https://doi.org/10.7554/eLife.68422
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	﻿‍

M = Kw




p11 p12 . . . p1N

p21 p22 . . . p2N
...

...
. . .

...

pN1 pN2 . . . pNN




.

‍�

As ‍pij‍ only depends on the distance of two neurons, the rows in ‍M‍ are identical, but shifted by one 
index.

9.1 Dimensionality reduction
We follow the procedure developed in Section 8, as the system is invariant under translation as 
well. Suppressing the subscripts of ‍k‍, we get the eigenvalues of ‍M‍

	﻿‍

mk = 1
N Kw

(
1, e−ika, ..., e−i(N−1)ka

)




∑N−1
j=0 p1(j+1)eikaj

∑N−1
j=0 p2(j+1)eikaj

...
∑N−1

j=0 pN(j+1)eikaj




= Kw
∑N−1

j=0 p(j+1)eikaj

= Kwa
∑

x p(x)e−ikx , ‍�

where the sum over ‍x‍ denotes a sum over all lattice sites. We used the translational symmetry from 
the first to the second line. The change of sign in the exponential from line two to three is due to 
the fact that we are summing over the second index of ‍pij.‍ Thus, the eigenvalues are effectively 
given by the discrete Fourier transform of the connectivity profile. Expressing ‍A−1‍ using the 
eigenvectors ‍vk‍ of ‍M‍ leads to

	﻿‍

A−1
ij = 1

N
∑

k
1

1−mk
eik(xi−xj)

= 1
N
∑

k

(
1 + mk

1−mk

)
eik(xi−xj)

= δij + 1
N
∑

k
mk

1−mk
eik(xi−xj)

≡ δij + µij , ‍�

(14)

where we extracted an identity for later convenience, and we defined ‍µij‍.
Next, we consider the renormalized noise, which is given by Equation (13). Using that the all-

ones vector ‍I‍ in the second term is the eigenvector of ‍S‍ corresponding to ‍k = 0‍, we get

	﻿‍
D
(
1 − S

)−1 S · v0 = D s0
1 − s0

.
‍�

Again, we identify s0 with the spectral bound ‍R2‍, and find

	﻿‍
Dr = D + D R2

1 − R2 = D
1 − R2 .

‍�
(15)

Inserting Equation (14) and Equation 15 into Equation (11) yields

	﻿‍
cij = D

1 − R2

(
δij + 2µij +

∑
k

µikµkj

)
.
‍�

9.2 Continuum limit
As we assume the lattice constant to be small, we know that the connectivity profile is sampled 
densely, and we are allowed to take the continuum limit. Therefore, we write

https://doi.org/10.7554/eLife.68422
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	﻿‍

mk = Kw
∑

j p(j+1)eikaj

= Kw
∑

j a p(j+1)
a eikaj

a→0−−−→ Kw
´ L/2
−L/2 dx p(−x)eikx

= Kw
´ L/2
−L/2 dx p(x)e−ikx . ‍�

Note that ‍lima→0
∑

j pj/a = lima→0
∑

j p(xi − xj)/a =
´

dx p(−x)‍, because we are summing over the 
second index ‍j‍. If the decay constant ‍d‍ of the connectivity profile is small compared to the size of 
the network ‍L‍, we can take ‍L‍ to infinity and finally end up with

	﻿‍
m(k) = Kw

ˆ
dx p(x)e−ikx .

‍�
(16)

Analogously, we find

	﻿‍
A−1(x) = δ(x) + 1

2π

ˆ
dk m(k)

1 − m(k)
eikx ≡ δ(x) + µ(x) ,

‍�
(17)

where we defined

	﻿‍
µ(x) = 1

2π

ˆ
dkµ(k)eikx ,

‍�
(18)

with

	﻿‍
µ(k) = m(k)

1 − m(k)
.
‍�

(19)

Finally, we get

	﻿‍
c(x) = D

1 − R2
[
δ(x) + 2µ(x) +

(
µ ∗ µ

)
(x)

]
,
‍�

(20)

where the asterisk denotes the convolution.

9.3 Prediction of exponential decay of covariance statistics
Note that the integral in equation Equation 18 can be interpreted as an integral in the complex 
plane. According to the residue theorem, the solution to this integral is a weighted sum of 
exponentials, evaluated at the poles of ‍

[
1 − m(k)

]−1
‍. As ‍µ(x)‍ appears in the equation for the 

mean covariances, and the convolution of two exponentials is an exponential with the prefactor 
‍(const. + |x|)‍, we expect the dominant behavior to be an exponential decay in the long-range limit, 
with decay constants given by the inverse imaginary part of the poles. The poles which are closest 
to zero are the ones which lead to the most shallow and thereby dominant decay. A real part of the 
poles leads to oscillations in ‍µ(x)‍.

9.4 Long-range limit
We cannot expect to solve the integral in Equation 17 for arbitrary connectivity profiles. To 
continue our analysis, we make use of the Padé method, which approximates arbitrary functions 
as rational functions (Basdevant, 1972). We approximate ‍µ(k)‍ around ‍k = 0‍ using a Padé 
approximation of order (0,2)

	﻿‍
µ(k) ≈ m(0)

1 − m(0) − m′′(0)
2m(0) k2

,
‍�

with

	﻿‍

m(0) = Kw
ˆ

dx p(x) = Kw = λ0 ,

m′′(0) = −Kw
´

dx x2p(x) = −Kw < x2 > .‍� (21)

This allows us to calculate the approximate poles of ‍µ(k)‍
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	﻿‍
k0 = ±

√
2m(0)
m′′(0)

[
1 − m(0)

]
.
‍�

(22)

As ‍2m(0)/m′′(0)‍ will be negative, due to factor ‍i2‍ from the second derivative of the Fourier integral, 
we write

	﻿‍
k0 = ±i

√
− 2m(0)

m′′(0)
[
1 − m(0)

]
.
‍�

Closing the integral contour in Equation 18 in the upper half plane for ‍x > 0‍, and in the lower half 
plane for ‍x < 0‍, we get

	﻿‍

µ(x) = − m(0)2

m′′(0)

√
−m′′(0)

2m(0)
1

1 − m(0)
exp


−

�x�√
−m′′(0)

2m(0)
1

1−m(0)


 ≡ − m(0)2

m′′(0)
deff,µ exp

(
−

�x�
deff,µ

)
,

‍�

where we defined the effective decay constant for the mean covariances

	﻿‍
d =

√
−m′′(0)

2m(0)
1

1 − m(0)
=

√⟨
x2
⟩

2
1

1 − λ0
,
‍�

with ‍m(0) = λ0‍ and ‍m
′′(0) = λ0⟨x2⟩‍, since ‍m(k)‍ is the Fourier transform of the connectivity profile 

Equation (16). Note that ‍λ0 = Kw‍ again is the population eigenvalue of the effective connectivity 
matrix ‍W.‍ For evaluating Equation (11) and Equation (12), we need to calculate the convolution of 
μ with itself

	﻿‍

(
µ ∗ µ

)
(x) =

ˆ
dyµ(x − y)µ(y) = m(0)4

m′′(0)2 d2 (d + �x�) exp
(
−
�x�
d

)
.
‍�

The final expression for the mean covariances is

	﻿‍
c(x) = D

1 − R2

{
δ(x) +

[(
m(0)4

m′′(0)2 d2 − 2 m(0)2

m′′(0)

)
d + m(0)4

m′′(0)2 d2 �x�
]

exp
(
−
�x�
d

)}
.
‍�

Equivalently, for the variance of covariances we obtain the final result

	﻿‍
δc2(x) =

(
D

1 − R2

)2
{
δ(x) +

[(
s(0)4

s′′(0)2 d2
eff − 2 s(0)2

s′′(0)

)
deff + s(0)4

s′′(0)2 d2
eff

�x�
]

exp
(
−

�x�
deff

)}
,
‍�

where

	﻿‍
s(k) = Kw2

ˆ
dx p(x)e−ikx .

‍�

 

Note that the quality of the Padé approximation depends on the outlier eigenvalue and the 
spectral bound. For the variances, the approximation works best for spectral bounds ‍R‍ close to 1. 
The reason for this is that we are approximating the position of the poles in the complex integral 
Equation (18). We make an approximation around ‍k = 0‍ and Equation (22) shows that the position 
of the complex poles moves closer to ‍k = 0‍ as ‍s(0) ≡ R2 → 1‍.

General results:
Using Equation (21)

	﻿‍
m(0) = Kw = λ0 , m′′(0) = −Kw

⟨
x2
⟩

,
‍�

we find
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	﻿‍
c(x) = D

1 − R2

{
δ(x) +

[
Kw

(
1 − 3Kw

)

2
⟨
x2
⟩ (

1 − Kw
)d +

(
Kw

)2

⟨
x2
⟩2 d2 �x�

]
exp

(
−
�x�
d

)}
,
‍�

with

	﻿‍
d̄ =

√��� ⟨x2⟩
2

1
1−λ0

���.
‍�

For the variance we use

	﻿‍
s(0) = Kw2 = R2 , s′′(0) = −Kw2

⟨
x2
⟩

,
‍�

to get

	﻿‍

δc2(x) = D2

(1 − R2)2




δ(x) +




Kw2
(

1 − 3Kw2
)

2
⟨
x2
⟩ (

1 − Kw2
) deff +

(
Kw2

)2

⟨
x2
⟩2 d2

eff
�x�


 exp

(
−

�x�
deff

)




,

‍�

with

	﻿‍
deff =

����
�����
⟨
x2
⟩

2
1

1 − R2

����� .
‍�

Exponential connectivity profile:
Using an exponential connectivity profile given by

	﻿‍ p(x) = 1
2d e−|x|/d ,‍�

we find 
‍

⟨
x2
⟩

= 2d2
‍
 and

	﻿‍
d =

√����
1

1 − λ0

����d, deff =

√����
1

1 − R2

����d ,
‍�

with ‍λ0 = Kw‍ for the mean, and ‍R2 = Kw2‍ for the variance.
Gaussian connectivity profile:
Analogously, using a Gaussian connectivity profile given by

	﻿‍
p(x) = 1√

2πd2 e−x2/(2d2) ,
‍�

we find 
‍

⟨
x2
⟩

= d2
‍
, and get

	﻿‍
d =

√����
1
2

1
1 − λ0

����d , deff =

√����
1
2

1
1 − R2

����d .
‍�

(23)

10 One-dimensional network with two populations
Realistic neuronal network consist of excitatory and inhibitory neurons. So we need to introduce 
a second population to our network. Typically, there are more excitatory than inhibitory neurons 
in the brain. Therefore, we introduce ‍q‍ excitatory neurons for each inhibitory neuron. We place ‍q‍ 
excitatory neurons and one inhibitory neuron together in one cell. The cells are distributed equally 
along the ring. For convenience, we define ‍N ≡ NI‍.

The structure of the connectivity matrix depends on the choice of the activity vector ‍x‍. For later 
convenience we choose

https://doi.org/10.7554/eLife.68422


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Dahmen, Layer, et al. eLife 2022;11:e68422. DOI: https://doi.org/10.7554/eLife.68422 � 41 of 55

	﻿‍

x =




x(E)
1

x(I)
1

x(E)
2

x(I)
2
...

x(E)
N

x(I)
N




,

‍�

where ‍x
(E)
i ‍ is a ‍q‍-dimensional vector denoting the activity of the ‍q‍ excitatory neurons in cell i. ‍M‍ is 

a ‍(q + 1)N × (q + 1)N ‍-matrix, which qualitatively has the structure

	﻿‍

M=




EE11 EI11 EE12 EI12 · · · EE1N EI1N

IE11 II11 IE12 II12 · · · IE1N II1N

EE21 EI21 EE22 EI22 · · · EE2N EI2N

IE21 II21 IE22 II22 · · · IE2N II2N
...

...
...

...
. . .

...
...

EEN1 EIN1 EEN2 EIN2 · · · EENN EINN

IEN1 IIN1 IEN2 IIN2 · · · IENN IINN




.

‍�

(24)

Note that ‍EEij‍ are ‍q × q‍ matrices, ‍EIij‍ are ‍q × 1‍ matrices, ‍IEij‍ are ‍1 × q‍ matrices and ‍IIij‍ are ‍1 × 1‍ 
matrices. The entries ‍abij‍ describe the connectivities from population ‍b‍ in cell ‍j‍ to population ‍a‍ in 
cell i. The entries are given by

	﻿‍

abij =





1
q wabKab

(
pab

)
ij if b = E

wabKab
(
pab

)
ij if b = I

.

‍�

The difference stems from the fact that we have ‍q‍ times as many excitatory neurons. As the 
total number of indegrees from excitatory neurons should be given by ‍KaE‍, we need to introduce a 
reducing factor of ‍1/q‍, as the connection probability is normalized to one.

10.1 Dimensionality reduction
In the following, we will reduce the dimensionality of ‍M‍ as done before in the case with one 
population. First, we make use of the symmetry within the cells. All entries in ‍M‍ corresponding 
to connections coming from excitatory neurons of the same cell need to be the same. For that 
reason, we change the basis to

	﻿‍

e(E)
i = 1

√q




0

0
...

I
...

0




, e(I)
i =




0

0
...

1
...

0




,

‍�

(25)

where ‍I‍ denotes a ‍q‍-dimensional vector containing only ones. For a full basis, we need to include 
all the vectors with ‍I‍ being replaced by a vector containing all possible permutations of equal 
numbers of ±1. In this basis ‍M‍ is block diagonal

	﻿‍


M′ 0

0 0


 ,

‍�
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and ‍M′‍ is an ‍2N × 2N ‍ matrix, which has the same qualitative structure as shown in Equation (24), 
but the submatrices ‍

(
ab
)

ij‍ are replaced by

	﻿‍

abij =





wEEKEE
(
pEE

)
ij if ab = EE

√qwEIKEI
(
pEI

)
ij if ab = EI

wIEKIE
(
pIE

)
ij /√q if ab = IE

wIIKII
(
pII

)
ij if ab = II

.

‍�

Next, we use translational symmetry of the cells. The translation operator is defined by

	﻿‍

Tx = T




x(E)
1

x(I)
1

x(E)
2

x(I)
2
...

x(E)
N

x(I)
N




=




x(E)
N

x(I)
N

x(E)
1

x(I)
1
...

x(E)
N−1

x(I)
N−1




.

‍�

As the system is invariant under moving each cell to the next lattice site, ‍M′‍ is invariant under the 
transformation

	﻿‍ TM′T−1 = M′ .‍�

Again, the eigenvalues of ‍T ‍ can be determined using ‍TN = 1‍ and they are the same as in the case 
of one population. But, note that here the eigenspaces corresponding to the single eigenvalues 
are two dimensional. The eigenvectors

	﻿‍

v(E)
k = 1√

N




1

0

eika

0
...

ei(N−1)ka

0




, v(I)
k = 1√

N




0

1

0

eika

...

0

ei(N−1)ka




,

‍�

belong to the same eigenvalue. In this basis, ‍M′‍ is block diagonal, with each block consisting of 
a 2×2 matrix, corresponding to one value of ‍kl = 2πl

L ‍,‍l ∈ {0, ..., N − 1}‍

	﻿‍

M′ =




Mk0 0 · · · 0

0 Mk1 · · · 0
...

...
. . .

...

0 0 · · · MkN−1




.

‍�

Since all block matrices can be treated equally, we further reduced the problem to diagonalizing a 
2×2 matrix. The submatrices take the form

	﻿‍

Mk =


 mEE(k) √qmEI(k)

mIE(k)/√q mII(k)


 ,

‍�
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with the discrete Fourier transform

	﻿‍
mab(k) = Kabwab

Na/2∑
x=−Na/2

pab(x)e−ikx .
‍�

(26)

Note that ‍x‍ and ‍k‍ are still discrete here, but we could take the continuum limit at this point. The 
eigenvalues of ‍Mk‍ are given by

	﻿‍
m±(k) = 1

2
(mEE(k) + mII(k)) ± 1

2
√

mEE(k)2 + mII(k)2 − 2mEE(k)mII(k) + 4mEI(k)mIE(k) .
‍�

(27)

The corresponding eigenvectors are

	﻿‍

v1,2(k) = N±




√qmEI(k)

m±(k) − mEE(k)


 ,

‍�
(28)

with normalization ‍N±‍. The eigenvectors written in the Fourier basis are given by

	﻿‍
v±(k) = N±

[√
qmEI(k)v(E)

k +
(
m±(k) − mEE(k)

)
v(I)

k

]
,
‍� (29)

and we can get the eigenvectors ‍̃v±(k)‍ in the basis we started with by extending ‍v
(E)
k ‍ and ‍v

(I)
k ‍ to 

vectors similar to Equation (25), where the elements corresponding to excitatory neurons are 
repeated ‍q‍-times. Note that the normalization of the original basis leads to an additional factor 

‍1/√q‍ in the first term of Equation (29).
Analogously, we can find the left eigenvectors of ‍M‍ by conducting the same steps with the 

transpose of ‍M‍

	﻿‍
u±(k) = N±

[
mIE(k)v(E)

k
†/
√

q +
(
m±(k) − mEE(k)

)
v(I)

k
†
]

,
‍� (30)

and the vectors in the original basis ‍̃u±(k)‍ are obtained similarly to the right eigenvectors. The 
normalization ‍N±‍ is chosen such that

	﻿‍

ũ+(k) · ṽ+(k) = 1 ,

ũ+(k) · ṽ−(k) = 0 ,

ũ−(k) · ṽ+(k) = 0 ,

ũ−(k) · ṽ−(k) = 1 ,‍�

which leads to

	﻿‍ N± =
√

mEI(k)mIE(k) −
(
m±(k) − mEE(k)

)2 .‍�

Now, we can express ‍A−1‍ in terms of the eigenvalues and eigenvectors of ‍M‍

	﻿‍
A−1 = 1 +

∑
k

(
m+(k)

1 − m+(k)
ṽ+(k) · ũ+(k) + m−(k)

1 − m−(k)
ṽ−(k) · ũ−(k)

)
,
‍�

(31)

which leads to

	﻿‍
A−1

ij = δij + 1
N
∑

k
µij(k)eik

∣∣xi−xj
∣∣

,
‍�

(32)

where we defined ‍µ(k)‍ similar to Equation (19). Let ‍E‍ and ‍I ‍ be the sets of indices referring to 
excitatory or inhibitory neurons respectively. We find
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	﻿‍

µij(k) ≡





µEE(k) for i, j ∈ E

µEI(k) for i ∈ E, j ∈ I

µIE(k) for i ∈ E, j ∈ I

µII(k) for i, j ∈ I

,

‍�

with

	﻿‍

µEE(k) = 1
q

mEE(k)+mIE(k)mEI(k)−mEE(k)mII(k)
1−ζ(k) ,

µEI(k) = mEI(k)
1−ζ(k) ,

µIE(k) = 1
q

mIE(k)
1−ζ(k) ,

µII(k) = mII(k)+mIE(k)mEI(k)−mEE(k)mII(k)
1−ζ(k) , ‍�

(33)

and

	﻿‍ ζ(k) = mEE(k) + mII(k) + mEI(k)mIE(k) − mEE(k)mII(k) .‍�

10.2 General results
The renormalized noise is evaluated using the same trick as in the one population case. We express 
the all-ones vector using eigenvectors of the variance matrix ‍S‍

	﻿‍ I = aṽ+(0) + bṽ−(0) .‍�

Evaluating the coefficients ‍a‍ and ‍b‍ and inserting the corresponding solutions into Equation (13) 
yields

	﻿‍

Dr = diag




D(E)
r , . . . , D(E)

r︸ ︷︷ ︸
q−times

, D(I)
r , D(E)

r , . . . , D(E)
r︸ ︷︷ ︸

q−times

, D(I)
r , . . . , D(E)

r , . . . , D(E)
r︸ ︷︷ ︸

q−times

, D(I)
r

︸ ︷︷ ︸
N
(

q+1
)
−entries




,

‍�

(34)

with

	﻿‍

D(E)
r = D

[
1 + sEE(0)+sEI(0)+sEI(0)sIE(0)−sEE(0)sII(0)

1−R2

]
,

D(I)
r = D

[
1 + sIE(0)+sII(0)+sEI(0)sIE(0)−sEE(0)sII(0)

1−R2

]
,
‍�

with the eigenvalues ‍sab(k)‍ of ‍S‍. We again identified the spectral bound

	﻿‍ R2 = sEE(0) + sII(0) + sEI(0)sIE(0) − sEE(0)sII(0) .‍� (35)

The mean covariances can be written as

	﻿‍ c = Dr + µDr + Drµ
T + µDrµ

T ,‍�

where ‍µ = µ(x)‍. We can distinguish three different kinds of covariances depending on the type of 
neurons involved

	﻿‍

cij ≡





cEE(x) for i, j ∈ E

cEI(x) for i ∈ E , j ∈ I or i ∈ E, j ∈ I

cII(x) for i, j ∈ I

.

‍�

with
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	﻿‍

cEE(x) = D(E)
r δ(x) + 2D(E)

r µEE(x) + D(E)
r q

(
µEE ∗ µEE

)
(x) + D(I)

r
(
µEI ∗ µEI

)
(x) ,

cEI(x) = D(E)
r µIE(x) + D(I)

r µEI(x) + D(E)
r q

(
µEE ∗ µIE

)
(x) + D(I)

r
(
µII ∗ µEI

)
(x) ,

cII(x) = D(I)
r δ(x) + 2D(I)

r µII(x) + D(E)
r q

(
µIE ∗ µIE

)
(x) + D(I)

r
(
µII ∗ µII

)
(x) . ‍�

10.3 Long-range limit
From here on, we consider the special case in which the synaptic connections only depend on 
the type of the presynaptic neuron and not on the type of the postsynaptic neuron. This is in 
agreement with network parameters used in established cortical network models (Potjans and 
Diesmann, 2014; Senk et al., 2018), in which the connection probabilities to both types of target 
neurons in the same layer are usually of the same order of magnitude. In that case, all expressions 
become independent of the first population index ‍Aab ≡ Ab‍, and the only expressions we need to 
evaluate become

	﻿‍
µa(k) = γa

ma(k)
1 − ζ(k)

,
‍�

with

	﻿‍ ζ(k) = mE(k) + mI(k) ,‍�

and

	﻿‍

γa =





1 if a = I

1/q if a = E
.

‍�

(36)

After taking the continuum limit, we can make a (0,2)-Padé approximation again

	﻿‍

µa(k) ≈ γama(0)

1 − ζ(0) −
[
ζ′′(0)

2 +
(
1 − ζ(0)

) m′′
a (0)

2ma(0)

]
k2

,

‍�

which leads to the poles

	﻿‍
k0 = ±

√[
ζ′′(0)
2ζ(0)

ζ(0)
1 − ζ(0)

+ m′′
a (0)

2ma(0)

]−1
,
‍�

or the effective decay constant of the mean covariances

	﻿‍
da = Im(k0)−1 =

√
−ζ′′(0)

2ζ(0)
ζ(0)

1 − ζ(0)
− m′′

a (0)
2ma(0)

.
‍�

Using

	﻿‍

ζ ≡ ζ(0) = wEKE + wIKI ,

ζ′′ ≡ ζ′′(0) = −wEKE⟨x2⟩E − wIKI⟨x2⟩I ,

ma(0) = waKa ,

m′′
a (0) = −waKa⟨x2⟩a , ‍�

we get

	﻿‍
da =

√
wEKE

⟨
x2
⟩

E + wIKI
⟨
x2
⟩

I
wEKE + wIKI

ζ

1 − ζ
+

⟨
x2
⟩

a
2

=

√(
ωκη̃2 + 1

)
ωκ + 1

ζ

1 − ζ

⟨
x2
⟩

I
2

+
⟨
x2
⟩

a
2

,
‍�

after introducing relative parameters
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	﻿‍
ω = wE

wI
, κ = KE

KI
, η̃2 =

⟨
x2
⟩

E⟨
x2
⟩

I
, η = λE

λI
.
‍�

The renormalized noise in Equation (13) reduces to

	﻿‍
Dr = D

1 − R2 .
‍�

(37)

The mean covariances are

	﻿‍

cEE(x) = Dr
[
δ(x) + 2µE(x) + q

(
µE ∗ µE

)
(x) +

(
µI ∗ µI

)
(x)

]
,

cEI(x) = Dr
[
µE(x) + µI(x) + q

(
µE ∗ µE

)
(x) +

(
µI ∗ µI

)
(x)

]
,

cII(x) = Dr
[
δ(x) + 2µI(x) + q

(
µE ∗ µE

)
(x) +

(
µI ∗ µI

)
(x)

]
, ‍�

with

	﻿‍
µa(x) = γa

ma(0)
2(1 − ζ)da

exp
(
−
�x�
da

)
,
‍�

and

	﻿‍

(
µa ∗ µa

)
(x) =

(
γa

m(0)
2
(
1 − ζ

)
da

)2 (
da + �x�) exp

(
−
�x�
da

)
.
‍�

Note that expressions coming from both populations contribute to each kind of covariance. 
Therefore, all mean covariances contain a part that decays with either of the decay constants we 
just determined. If, for example, the inhibitory decay constant is much larger than the excitatory 
one, ‍cEI(x)‍ will decay with the largest decay constant in the long-range limit

Exponential connectivity profile:
Just as in Section 9.4 we get

	﻿‍
da =

√(
ωκη2 + 1

)
ωκ + 1

λ0
1 − λ0

d2
I + d2

a , deff,a =

√(
ω2κη2 + 1

)

ω2κ + 1
R2

1 − R2 d2
I + d2

a ,
‍�

with ‍λ0 = wEKE + wIKI‍ for the decay constant of the mean covariances, and ‍R
2 = w2

EKE + w2
I KI‍ for 

the decay constant of the variances.
Gaussian connectivity profile:
And similar to Section 9.4 we get

	﻿‍
da =

√(
ωκη2 + 1

)
ωκ + 1

λ0
1 − λ0

d2
I

2
+ d2

a
2

, deff,a =

√(
ωκη2 + 1

)
ωκ + 1

λ0
1 − λ0

d2
I

2
+ d2

a
2

.
‍�

11 Two-dimensional network with one population
In the following, we are considering two-dimensional networks, which are supposed to mimic a 
single-layered cortical network. Neurons are positioned on a two-dimensional lattice (‍Nx × Ny‍ grid) 
with periodic boundary conditions in both dimensions (a torus). We define the activity vector to be 
of the form

https://doi.org/10.7554/eLife.68422
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	﻿‍

x =




x1,1

x1,2
...

x1,Ny

x2,1
...

x2,Ny

...

xNx,1
...

xNx,Ny




.

‍�

The connectivity matrix is defined correspondingly.

11.1 Dimensionality reduction
In two dimensions we have to define two translation operators that move all neurons either one 
step in the ‍x‍-direction, or the ‍y‍-direction, respectively. They are defined via their action on ‍x‍

	﻿‍

Txx =




xNx,1

xNx,2
...

xNx,Ny

x1,1
...

x1,Ny

...

xNx−1,1
...

xNx−1,Ny




, Tyx =




x1,Ny

x1,1
...

x1,Ny−1

x2,Ny

...

x2,Ny−1
...

xNx,Ny

...

xNx,Ny−1




.

‍�

(38)

Similar reasoning as in one dimension leads to the eigenvalues

	﻿‍
e−ik(x)

l a , k(x)
l = 2π

Lx
l , l ∈

{
0, 1, ..., Nx − 1

}
,
‍�

and similar for the ‍y‍-direction. The eigenvectors can be inferred from the recursion relations

	﻿‍

Txv = e−ik(x)
l av ⇒ v(α+1)β = eik(x)

l avαβ ,

Tyv = e−ik(y)
l av ⇒ vα(β+1) = eik(y)

l avαβ ,‍�

where entries ‍vαβ‍ of the vector ‍v‍ are defined analogously to Equation (38). The eigenvectors are 
given by
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	﻿‍

vk = 1√
NxNy




v(x)

eik(y)av(x)

...

e−ik(y)av(x)




, v(x) =




1

eik(x)a

...

ei Nx−1
2 k(x)a

e−i Nx−1
2 k(x)a

...

e−ik(x)a




,

‍�

where we suppressed the subscripts of ‍k(x)‍ and ‍k(y)‍ again. Using that these eigenvectors are 
eigenvectors of ‍M‍ as well, yields the eigenvalues of ‍M‍

	﻿‍
mk = v†kMvk = Kw

∑
x

∑
y

p(�x�)e−ik·x .
‍�

In the continuum limit, this becomes the two-dimensional Fourier transform

	﻿‍
m(k) = Kw

ˆ
d2x p(x)e−ik·x.

‍�
(39)

The inverse of A is given by

	﻿‍ A−1(x) = δ(x) + µ(x) ,‍� (40)

with the inverse two-dimensional Fourier transform

	﻿‍
µ(x) = 1

(2π)2

ˆ
d2k m(k)

1 − m(k)
eik·x .

‍�
(41)

The expression for the renormalized noise is the same as in the one-dimensional case with one 
population. Hence, the mean covariances are given by

	﻿‍
c(x) = D

1 − R2
[
δ(x) + 2µ(x) +

(
µ ∗ ∗µ

)
(x)

]
,
‍�

(42)

which is the one-dimensional expression, except for the convolution, which is replaced by its two-
dimensional analogon denoted here by the double asterisk.

11.2 Long-range limit
Employing the symmetry of the connectivity kernel, we rewrite the integral in ‍µ(x)‍ using polar 
coordinates

	﻿‍
µ(x) = 1

(2π)2

ˆ ∞

0
dk
ˆ 2π

0
dφ k m(k)

1 − m(k)
eikr cos(φ) ,

‍�
(43)

with ‍r = |x|‍, and make a Padé approximation of order (0,2) of the integration kernel

	﻿‍
µ(x) = 1

(2π)2

ˆ ∞

0
dk
ˆ 2π

0
dφ k m(0)

1 − m(0) − m′′(0)
2m(0) k2

eikr cos(φ) .
‍�

(44)

Following (Goldenfeld, 1992, p.160f), we can interpret this as calculating the Green’s function of 
the heat equation

	﻿‍

[
1 − m(0) + m′′(0)

2m(0)
∇2

]
µ(x) = m(0)δ(r) ,

‍� (45)

which can be solved, using the fact that ‍µ(x)‍ can only be a function of the radial distance ‍r‍, due to 
the given symmetry of the kernel. Rewriting leads to
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	﻿‍

[
− 1

r
d
dr

(
r d

dr

)
+ d−2]

µ(r) = Γδ(r) ,
‍�

with the effective decay constant

	﻿‍
d =

√
−m′′(0)

2m(0)
1

1 − m(0)
,
‍�

(46)

and ‍Γ = −2m(0)2/m′′(0)‍. Defining ‍ρ ≡ r/d‍, ‍̃µ(ρ) ≡ µ(r/d)‍, and using ‍δ(ρd) = d−2
δ(ρ)‍, we get

	﻿‍

[
− 1

ρ
d

dρ

(
ρ d

dρ

)
+ 1

]
µ̃(ρ) = Γδ(ρ) .

‍�

The solution to this equation is given by the modified Bessel function of second kind and zeroth 
order K0

	﻿‍ µ̃(ρ) = Γ
2π K0(ρ) .‍�

Reinserting the defined variables yields

	﻿‍
µ(r) = − m(0)2

πm′′(0)
K0

(
r
d

)
.
‍�

(47)

Note that the modified Bessel functions of second kind decay exponentially for long distances

	﻿‍
Ki

(
r
d

)
r→∞−−−−→

√
πd
2r

e−r/d .
‍�

(48)

But, consider that the inverse square root of the distance appears in front of the exponential. 
Formally, this is the one-dimensional result. The only difference here is, that ‍m(k)‍ is a two-
dimensional Fourier transform instead of a one-dimensional one and ‍µ(r)‍ contains modified Bessel 
functions of second kind instead of exponentials.

In order to evaluate the expression for the mean covariances Equation 42, one needs to 
calculate the two-dimensional convolution of a modified Bessel function of second kind with itself, 
for which we use the following trick

	﻿‍

(
K0 ∗ ∗K0

)( r
d

)
= F−1 [K̃0 · K̃0

] ( r
d

)

= 1
2πH

−1
[

1(
β+k2

)2

] (√
βr

)

= − 1
2π

d
dβH

−1
[

1
β+k2

] (√
βr

)

= − 1
2π

d
dβ K0

(√
βr

)

= deff,µr
4π K1

(
r
d

)
,

‍�

where ‍F ‍ denotes the Fourier transform, ‍H‍ denotes the Hankel transform, and ‍β = d−2
‍. The last 

step can be found in Abramowitz and Stegun, 1964, 9.6.27.
The mean covariances are given by

	﻿‍

c(r) = D
1−R2

[
δ(r) − 2 m(0)2

πm′′(0) K0

(
r
d

)
+ m(0)4

m′′(0)2
dr

4π3 K1

(
r
d

)]

r→∞−−−−→ D
1−R2

[
δ(r) − m(0)2

m′′(0)

√
2d
πr e−r/d + m(0)4

m′′(0)2

√
d3r

32π5 e−r/d
]

.
‍�

Using

	﻿‍
m(0) = Kw ≡ ζ , m′′(0) = −Kw

⟨
r2
⟩

,
‍� (49)

we get the effective decay constant
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	﻿‍
d =

√
1

1 − ζ

⟨
r2
⟩

2
d .

‍�
(50)

Exponential connectivity profile:
Using a two-dimensional exponential connectivity profile

	﻿‍ p(x) = 1
2πd2 e−|x|/d ,‍�

leads to 
‍

⟨
r2
⟩

= 6d2
‍
, and we get

	﻿‍
d =

√
3

1 − λ0
d , deff =

√
3

1 − R2 d ,
‍�

with ‍λ0 = Kw‍, and ‍R2 = Kw2‍.
Gaussian connectivity profile:
Using a two-dimensional Gaussian connectivity profile

	﻿‍ p(x) = 1
2πd2 e−x2/(2d2) ,‍�

leads to 
‍

⟨
r2
⟩

= 2d2
‍
, and we get

	﻿‍
d =

√
1

1 − λ0
d , deff =

√
1

1 − R2 d .
‍�

11.3 Note on higher order approximation
While the (0,2)-Padé approximation seems to yield good results for the one-dimensional cases, in 
two dimensions the results only coincide for large spectral radii (Appendix 1—figure 7). One can 
extract a higher order approximation of the poles of the integration kernel of ‍µ(x)‍ and thereby the 
effective decay constant deff using the DLog-Padé-method, for which one calculates an ‍(n, n + 1)‍-
Padé approximation of the logarithmic derivative of the integration kernel around zero (Pelizzola, 
1994). Using a (1,2)-Padé approximation leads to

	﻿‍ d =
√

− 3(2m(0)−1)m′′(0)2+(1−m(0))m(0)m′′′′(0)
6m′′(0)m(0)(1−m(0)) ,‍�

which coincides with our previous results in the limit ‍m(0) → 1‍, and thus for large spectral radii. 
Note that this expression contains the fourth moment of the connectivity kernel ‍m

′′′′(0) = wK⟨x4⟩‍.

12 Two-dimensional network with two populations
Finally, we consider a two-dimensional network with two populations of neurons. As in the one 
dimensional case, the neurons are gathered in cells, which contain one inhibitory and ‍q‍ excitatory 
neurons. Again, they are placed on a two-dimensional lattice with periodic boundary conditions. 
The activity vector takes the form

https://doi.org/10.7554/eLife.68422
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	﻿‍

x =




x(E)
1,1

x(I)
1,1

x(E)
1,2

x(I)
1,2
...

x(E)
1,Ny

x(I)
1,Ny

x(E)
2,1

x(I)
2,1
...

x(E)
Nx,Ny

x(I)
Nx,Ny




,

‍�

(51)

where ‍x
(E)
i,j ‍ denotes a ‍q‍-dimensional vector.

12.1 Dimensionality reduction
We apply the procedure developed so far, which leads to the results we found in the one-
dimensional case with two populations, with Fourier transforms and convolutions replaced by their 
two-dimensional analogons and modified Bessel functions of second kind instead of exponentials. 
So, we end up with

	﻿‍

cEE(x) = D(E)
r δ(x) + 2D(E)

r µEE(x) + D(E)
r q

(
µEE ∗ ∗µEE

)
(x) + D(I)

r
(
µEI ∗ ∗µEI

)
(x) ,

cEI(x) = D(E)
r µIE(x) + D(I)

r µEI(x) + D(E)
r q

(
µEE ∗ ∗µIE

)
(x) + D(I)

r
(
µII ∗ ∗µEI

)
(x) ,

cII(x) = D(I)
r δ(x) + 2D(I)

r µII(x) + D(E)
r q

(
µIE ∗ ∗µIE

)
(x) + D(I)

r
(
µII ∗ ∗µII

)
(x) , ‍�

and ‍µab(x)‍ given by (33) and the two-dimensional Fourier transform

	﻿‍ mab(k) = Kabwab
´

d2x pab(x)e−ik·x .‍�

The renormalized noise is given by Equation 34 with spectral bound Equation 35, with the 
eigenvalues ‍sab(k)‍ replaced by the two-dimensional Fourier transforms ‍sab(k)‍.

12.2 Long-range limit
Again, considering the special case in which the synaptic connections only depend on the type of 
the presynaptic neuron and not on the type of the postsynaptic neuron, the expressions simplify to

	﻿‍
µa(k) = ma(k)

1 − ζ(k)
,
‍�

(52)

with

	﻿‍ ζ(k) = mE(k) + mI(k) .‍�

Padé approximation of the Fourier kernel, integration using (Goldenfeld, 1992, p.160f) and 
suppressing the zero arguments of ‍ζ‍ and ‍ma‍ leads to

	﻿‍

µa(r) = − γawaKa

2π
(

1−ζ
)

d2
a
K0

(
r

da

)

r→∞−−−−→ −γawaKa(
1−ζ

)
√

1
8πrd3

a
e−r/da

‍�

(53)

with
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	﻿‍
da =

√
−ζ′′

2ζ
ζ

1 − ζ
− m′′

a
2ma

.
‍�

After introducing the same relative parameters as in Section 10.3, we find

	﻿‍
da =

√(
ωκη̃2 + 1

)
ωκ + 1

ζ

1 − ζ

⟨
x2
⟩

I
2

+
⟨
x2
⟩

a
2

.
‍�

(54)

The two-dimensional convolutions are given by

	﻿‍

(
µa ∗ ∗µa

)
(r) =

[
γawaKa
4
(

1−ζ
)
]2 1

π3d3
a
K1

(
r

da

)

r→∞−−−−→
[
γawaKa
4
(

1−ζ
)
]2 √ 1

2π5d5
ar

e−r/da .
‍�

(55)

The renormalized noise simplifies to Equation 37. The mean covariances are given by

	﻿‍

cEE(x) = Dr
[
δ(x) + 2µE(x) + q

(
µE ∗ ∗µE

)
(x) +

(
µI ∗ ∗µI

)
(x)

]
,

cEI(x) = Dr
[
µE(x) + µI(x) + q

(
µE ∗ ∗µE

)
(x) +

(
µI ∗ ∗µI

)
(x)

]
,

cII(x) = Dr
[
δ(x) + 2µI(x) + q

(
µE ∗ ∗µE

)
(x) +

(
µI ∗ ∗µI

)
(x)

]
. ‍�

(56)

Remember that the result for the variances of the covariances is obtained by substituting ‍Dr‍ by its 
square, and ‍wa‍, or ‍ω‍ respectively, by its square, and setting ‍ζ = R2

‍.
Equation (2) in the main text can be proven by inserting the result for

	﻿‍ d2
E − d2

I = ⟨x2⟩E
2 − ⟨x2⟩I

2 = const. · (d2
E − d2

I ) .‍�

Using an exponential connectivity profile yields ‍const. = 3‍, a Gaussian connectivity profile yields 
‍const. = 1‍.

Exponential connectivity profile:
Using the results from 11.2, we find

	﻿‍
da =

����3

[(
ωκη2 + 1

)
ωκ + 1

λ0
1 − λ0

dI + da

]
, deff,a =

����3

[(
ω2κη2 + 1

)

ω2κ + 1
R2

1 − R2 dI + da

]
,
‍�

with ‍λ0 = wEKE + wIKI‍, and ‍R
2 = w2

EKE + w2
I KI‍.

Gaussian connectivity profile:
Using the results from 11.2, we find

	﻿‍
da =

√(
ωκη2 + 1

)
ωκ + 1

λ0
1 − λ0

dI + da , deff,a =

√(
ω2κη2 + 1

)

ω2κ + 1
R2

1 − R2 dI + da .
‍�

12.3 Higher order approximation
Using a (1,2)-DLog-Padé method as in Section 11.3 yields

	﻿‍
da =

√
− (1−ζ)2

(
mam′′′′

a −3m′′2
a

)
+m2

a
[
(1−ζ)ζ′′′′+3ζ′′2

]
6ma(1−ζ)

[
(1−ζ)m′′

a +mζ′′
] ,

‍�
(57)

which again contains the fourth moments of the connectivity kernels.
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13 Validation of theory

Appendix 1—figure 7. Comparison of simulation and theory. (A) Variance of EE, EI, and II 
covariances as a function of distance. Darker dots are the results of the simulation. Lighter ones 
are the prediction of the discrete theory. (B) Variance of EE covariances as a function of distance 
(Equation (56) for variances). The lightest blue dots are the predictions of the discrete theory (‍µa‍ 
replaced by the discrete Fourier transform of Equation (52), taking into account Section 7), the 
medium blue line is the (0,2)-Padé prediction (‍µa‍ replaced by its Padé approximation Equation (53), 
taking into account Section 7), and the dark blue line is the higher order (1,2)-DLog-Padé prediction 
(‍µa‍ replaced by its Padé approximation Equation (53), using Equation (57), and taking into account 
Section 7). (C) Fitted slope of linear regions in panel B for different spectral bounds ‍R‍ (light blue: 
discrete theory, medium blue: Padé approximation, dark blue: higher order Padé approximation).

In order to validate our results, we performed simulations, in which an effective connectivity 
matrix ‍W ‍ of a two-dimensional network was drawn randomly, and covariances were calculated 
using the result from Pernice et al., 2011, Trousdale et al., 2012, and Lindner et al., 2005

	﻿‍ c(W) =
(
1 − W

)−1 D
(
1 − W

)−T .‍�

The elements of the different components ‍Wab‍ of the effective connectivity matrix, similar to 
Equation (24), were drawn from a binomial distribution with ‍Kb‍ trials and a success probability of 
‍γbpb(|x|)‍, with ‍γb‍ given by Equation (36) and ‍|x|‍ denoting the distance between the neurons.

We compared the results to the predictions by our discrete theory, continuum theory, and the 
long-range limit. We did this for all cases presented above: one dimension with one population, 
one dimension with two populations, two dimensions with one population, and two dimensions 
with two populations. In the cases of two populations we solely considered the special case of 
synaptic connections only depending on the type of the presynaptic neuron. The first three cases 
are not reported here. We simulated several sets of parameters, varying the number of neurons, 
the number of inputs, the decay constants and the spectral bound, of which we only report the one 
using the parameters listed in Appendix 1—table 3, because the results do not differ qualitatively. 
Using

	﻿‍ R2 = s(0) = KEw2
E + KIw2

I ,‍�

and choosing

	﻿‍
wI
wE

= −NE
NI

= −q ,‍�

we calculated the synaptic weights

	﻿‍
wE = R√

KE+q2KI
, wI = − qR√

KE+q2KI
.
‍�

The comparison of simulation and discrete theory is shown in Appendix 1—figure 7a. 
Simulation and theory match almost perfectly. The continuum theory, which is shown in 
Figure 3D,E of the main text, matches as well as the discrete theory (not shown here). The slight 
shift in y-direction in Appendix 1—figure 7a is due to the fact that in the random realization of 
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the network the spectral bound is not exactly matching the desired value, but is slightly different 
for each realization and distributed around the chosen value. This jittering around the real spectral 
bound is more pronounced as ‍R → 1‍. Note that the simulated networks were small compared to 
the decay constant of the connectivity profile, in order to keep simulation times reasonable. This 
is why the variances do not fall off linearly in the semi-log plot. The kink and the related spreading 
starting around ‍x/d = 1.5‍ is a finite size effect due to periodic boundary conditions: The maximal 
distance of two neurons along the axes in units of spatial decay constants is ‍(N/2)/d ≈ 1.5‍. Because 
of the periodic boundary conditions, the covariances between two neurons increases once the 
distance between them exceeds the maximal distance along an axis. This, together with the fact 
that the curve is the result of the discrete Fourier transform of Equation 52, implies a zero slope at 
the boundary. This holds for any direction in the two dimensional plane, but the maximal distances 
between two neurons is longer for directions not aligned with any axis and depends on the precise 
direction, which explains the observed spreading.

In order to validate the long-range limit, we compared our discrete theory with the result from 
the Padé approximation at large distances (Appendix 1—figure 7b). We do not expect the Padé 
approximation to hold at small distances. We are mainly interested in the slope of the variance 
of covariances, because the slope determines how fast typical pairwise covariances decay with 
increasing inter-neuronal distance. The slope at large distances for the (0,2)-Padé approximation is 
smaller than the prediction by our theory, but the higher order approximation matches our theory 
very well (Appendix 1—figure 7C). In the limit ‍R → 1‍ both Padé predictions yield similar results. 
The absolute value of the covariances in the Padé approximation can be obtained from a residue 
analysis. The (0,2)-Pade approximation yields absolute values with a small offset, analogous to 
the slope results. Calculating the residues for the (1,2)-DLog Padé approximation would lead to a 
better approximation. Note that for plotting the higher order prediction in Appendix 1—figure 
7b, we just inserted Equation (57) into Equation (53) and Equation (55).

Appendix 1—table 3. Parameters used to create theory figures. Decay constants in units of lattice 
constant ‍a‍.

Figure 3B, C Figure 3D, E App 1—fig 7A App 1—fig 7B

‍Nx‍ 61 201 61 1,001
Number of neurons in x-
direction

‍Ny‍ 61 201 61 1,001
Number of neurons in y-
direction

‍q‍ 4 4 4 4
Ratio of excitatory to 
inhibitory neurons

‍KE‍ 100 100 100 100
Number of excitatory 
inputs per neuron

‍KI‍ 50 50 50 50
Number of inhibitory inputs 
per neuron

‍dE‍ 20 20 20 20

Decay constant of 
excitatory connectivity 
profile

‍dI‍ 10 10 10 10

Decay constant of 
inhibitory connectivity 
profile

‍D‍ 1 1 1 1 Squared noise amplitude

‍R‍ 0.95 0.95 0.8 0.95 Spectral bound

exponential exponential exponential exponential Connectivity kernel
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14 Parameters of NEST simulation

Appendix 1—table 4. Parameters used for NEST simulation and subsequent analysis.

Network parameters

‍N ‍ 2000 Number of neurons

‍p‍ 0.1 Connection probability

‍τ ‍ ‍1 ms‍ Time constant

‍σµ‍ ‍1 Hz‍ Standard deviation of external input

‍σnoise‍ ‍0.1 Hz‍ Standard deviation of noise

‍R‍ ‍[0.1, 0.2, ..., 0.9]‍ Spectral bound

‍ϵ‍ 0.1 Parameter controlling difference of two network simulations

Simulation Parameters

‍dt‍ ‍0.1 ms‍ Simulation step size

tinit ‍100 ms‍ Initialization time

tsim ‍2000000 ms‍ Simulation time without initialization time

tsample ‍1 ms‍ Sample resolution at which rates where recorded

Analysis Parameters

‍Nsample‍ 200 Sample size

‍T ‍ ‍100 ms‍ Correlation time window

15 Sources of heterogeneity
Sparseness of connections is a large source of heterogeneity in cortical networks. It contributes 
strongly to the variance of effective connection weights that determines the spectral bound, the 
quantity that controls stability of balanced networks (Sompolinsky et al., 1988; Dahmen et al., 
2019): Consider the following simple model ‍Wij = Wijζij‍ for the effective connection weights ‍Wij‍, 
where ‍ζij ∈ {0, 1}‍ are independent Bernoulli numbers, which are 1 with probability ‍p‍ and 0 with 
probability ‍1 − p‍, and ‍Wij‍ are independently distributed amplitudes. The ‍ζij‍ encode the sparseness 
of connections and the ‍Wij‍ encode the experimentally observed distributions of synaptic 
amplitudes and single neuron heterogeneities that lead to different neuronal gains. Since ‍Wij‍ and 

‍ζij‍ are independent, the variance of ‍Wij‍ is

	﻿‍ Var(Wij) = p · Var(Wij) + p(1 − p) · Mean(Wij)2 .‍�

For low connection probabilities as observed in cortex (‍p(1 − p) ≈ p‍), assessing the different 
contributions to the variance thus amounts to comparing the mean and standard deviation of ‍Wij‍. 
Even though synaptic amplitudes are broadly distributed in cortical networks, one typically finds 
that their mean and standard deviation are of the same magnitude (see e.g. Sayer et al., 1990, 
Tab 1; Feldmeyer et al., 1999, Tab 1; Song et al., 2005, Fig.1; Lefort et al., 2009, Tab 2; Ikegaya 
et al., 2013, Fig.1; Loewenstein et al., 2011, Fig. 2). Sparseness of connections (second term on 
the right hand side) is thus one of the dominant contributors to the variance of connections. For 
simplicity, the other sources, in particular the distribution of synaptic amplitudes, are left out in this 
study. They can, however, be straight-forwardly added in the model and the theoretical formalism, 
because it only depends on ‍Var(Wij)‍.
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