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Our group has recently developed the GlycoTyper assay which is a streamlined antibody
capture slide array approach to directly profile N-glycans of captured serum glycoproteins
including immunoglobulin G (IgG). This method needs only a few microliters of serum and
utilizes a simplified processing protocol that requires no purification or sugar modifications
prior to analysis. In this method, antibody captured glycoproteins are treated with peptide
N-glycosidase F (PNGase F) to release N-glycans for detection by MALDI imaging mass
spectrometry (IMS). As alterations in N-linked glycans have been reported for IgG from
large patient cohorts with fibrosis and cirrhosis, we utilized this novel method to examine
the glycosylation of total IgG, as well as IgG1, IgG2, IgG3 and IgG4, which have never
been examined before, in a cohort of 106 patients with biopsy confirmed liver fibrosis.
Patients were classified as either having no evidence of fibrosis (41 patients with no liver
disease or stage 0 fibrosis), early stage fibrosis (10 METAVIR stage 1 and 18 METAVIR
stage 2) or late stage fibrosis (6 patients with METAVIR stage 3 fibrosis and 37 patients
with METAVIR stage 4 fibrosis (cirrhosis)). Several major alterations in glycosylation were
observed that classify patients as having no fibrosis (sensitivity of 92% and a specificity of
90%), early fibrosis (sensitivity of 84%with 90% specificity) or significant fibrosis (sensitivity
of 94% with 90% specificity).

Keywords: glycosylation, immunoglobulin, fibrosis, cirrhosis, biomarker
INTRODUCTION

Cirrhosis is the result of chronic liver injury and leads to replacement of the normal liver
architecture by fibrotic scar tissue, and is associated with a concomitant decline of liver function
and devastating clinical complications (1). Many different underlying processes cause cirrhosis:
chronic viral infection by hepatitis B virus (HBV) and/or hepatitis C virus (HCV) have been
org February 2022 | Volume 13 | Article 7974601
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historically among the most common etiologies, but non-
alcoholic fatty liver disease and ethanol are currently emerging
as the leading causes of chronic liver disease worldwide.

For HBV and/or HCV infected patients, treatment decisions
are based upon a variety of factors, including elevated levels of
hepatic transaminases which may reflect the degree of hepatic
inflammation and perhaps fibrosis when combined with other
features such as platelet count (2, 3). Historically, in individuals
with HBV or HCV, advanced fibrosis and cirrhosis are considered
justifications to begin antiviral therapy (2, 4, 5). More importantly,
the determination of hepatic fibrosis is critical to stage the severity
of the liver disease and has been associated with prognosis (6).
Therefore, it is extremely important to determine the presence of
significant fibrosis and cirrhosis. Although liver biopsy has been
historically the gold standard for assessment of fibrosis (7)
noninvasive assessment of fibrosis is less intrusive and will allow
for routine clinical monitoring.

Analysis of disease associated changes in total N-glycan
compositions of serum and plasma in large patient cohorts has
been previously reported (8, 9). There has also been extensive
evaluation of disease-associated alterations of immunoglobin G N-
linked glycans in large sample cohorts in patients with rheumatoid
arthritis, digestive diseases, heart disease, cancer and liver fibrosis
(10–34). In the case of liver fibrosis, two analytical methods have
identified alterations in N-linked glycosylation on both total IgG
populations and on specific IgG molecules. Both methods can
detect cirrhosis with a high degree of accuracy and are also able to
detect intermediate levels of fibrosis (11, 16). However, both
analytical methods have drawbacks. One approach utilizes a
capillary electrophoresis-based analysis of N-linked glycans on
total serum following release of glycans using PNGase F, labeling
of the released glycans using a fluorescent dye, and electrophoresis
of the released glycans for peak identification (11). While this
method works well, it is both time and labor intensive. Another
method for liver fibrosis identification from serum utilizes a plate-
based ELISA format to detect altered glycosylation using a sugar
binding protein called a lectin (16). This test is hampered by the
poor specificity of lectins and the limited readout (i.e. binding
or not). Both of these methods require specialized sample
handling resources, extensive processing and purification
prior to analysis, and are expensive in regard to reagents
and processing.
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Our group has recently developed the GlycoTyper, a
streamlined antibody capture slide array approach to directly
profile N-glycans of captured serum glycoproteins like IgG. The
method needs only a few microliters of serum and utilizes
simplified processing workflows that requires no purification or
sugar derivatizations as a part of the analysis. In this method, N-
linked glycans are released from antibody captured glycoproteins
and are directly analyzed byMALDI IMS, building on the utility of
MALDIMS glycan imaging developed in our laboratories (35–48).
Here, we have used the GlycoTyper to demonstrate its ability to
measure changes in the N-linked glycans on IgG subtypes and
serve as a surrogate marker of liver disease.
MATERIALS AND METHODS

Patients
Samples were from two main sources. The first was from the
University of California at San Diego and the second from the
Medical University of South Carolina. In both cases, the study
protocol was approved by the appropriate Institutional Review
Board and written informed consent was obtained from each
subject. Demographic and clinical information was obtained, and
a blood sample was collected from each subject. All liver biopsies
were graded using the METAVIR scoring system (49). The
etiology of the liver disease for the patients without viral
infection was determined as previously described (50) and
cirrhosis was determined based on histologic and/or clinical
findings (i.e., clinical features of portal hypertension, with no
alternative cause of portal hypertension). Details on all patients
are provided in Table 1. A group of individuals with no history of
liver disease, alcohol consumption less than 40 g a week, and no
risk factors for viral hepatitis were utilized as controls. All
subjects in this control group were documented to have
normal liver biochemistry and negative HCV antibodies or HBV.

Antibody Array Preparation
The serum assay used a 24-well slide module (Grace -Bio Labs,
Bend, OR) that was mounted to a nitrocellulose-coated
microscope slides (Grace-Bio Labs, Bend, OR). Antibodies: anti-
human (IgG (Bethyl Labs, Montgomery, TX) anti-IgG1 (Abcam,
Cambridge, UK), anti-IgG2, anti IgG-3, and anti-IgG 4 (Bio-Rad,
TABLE 1 | Description of control patients and those with liver fibrosis.

Stage of Fibrosis (METAVIR)1

Variables Controls 0 1 2 3 4

Sample Size 38 3 10 18 6 37
Age2 51 ± 11 56 ± 7 50 ± 6 51 ± 4 51 ± 7 55 ± 8
% NHW/AA/H/Asian3 NA 100/0/0/0 98/1/1/0 96/2/1/1 100/0/0/0 98/0/1/0
ALT (IU/mL)4 NA 75 ± 7 71 ± 11 78 ± 9 72 ± 12 85 ± 26
AST (IU/mL)5 NA 73 ± 5 69 ± 8 77 ± 10 78 ± 13 108 ± 24
Total Bilirubin (mg/dL) NA 0.3 ± 0.2 0.3 ± 0.4 0.5 ± 0.4 0.9 ± 1.2 1.2 ± 1.3
February 2
022 | Volume 13 | Artic
1Fibrosis staging based upon METAVIR scoring system. 2Mean age in years. 3NHW, non-Hispanic White; AA, African American; H, Hispanic; 4ALT, alanine aminotransferase; 5AST,
aspartate aminotransferase.
NA, not applicable.
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Hercules, CA), were diluted in PBS and manually spotted in wells
at 200 ng per 1.5 mL spot. Spots were then left to adhere overnight
at 4°C in a humidity chamber made from cell culture dishes lined
with a Wypall X 60 paper towel and two rolled KimWipes
saturated with distilled water. Slides were then placed in a
vacuum desiccator to dry at room temperature and rinsed for 1
minute with 200 µL 0.1% octyl-b-D- glucopyranoside in PBS
(referred to as PBS-OGS) per well to remove any unbound protein
from the slide. More detail on slide preparation and the general
GlycoTyper method can be found in (41, 42).

Sample Capture and N-Glycan Release
Antibody spots were blocked with 200 mL of 2% BSA (prepared in
PBS-OGS) per well for 1 h with gentle shaking, washed with 200
mL PBS (3 min × 2) and 200 mL double distilled water (1 min × 1)
per well and dried in a desiccator. Pure protein (0.5mg in 100 mL)
or serum samples (diluted 1:100 in PBS to a total volume of 100
µL) were added to wells and incubated at room temperature for 2
hours in a humidity chamber with gentle shaking. Pure proteins:
human IgG (Jackson ImmunoResearch Laboratories, West Grove,
PA), human IgG1, IgG2, IgG3 and IgG4 (Abcam, Cambridge,
UK). Wells were then serially washed with 200 mL of PBS-OGS (1
min ×2), 200mL PBS (3 min ×2), 200 mL double distilled water (1
min ×2), and dried. The well module was removed, and slides were
dried in a vacuum desiccator. PNGase F Prime PRIME-LY (N-
Zyme Scientifics, Doylestown, PA) (0.1 mg/mL in HPLC grade
water) was applied to the slides using an automated sprayer (M5
TM-Sprayer, HTX Technologies, Chapel Hill, NC). Spatial
localization to each capture spot was accomplished using
spraying parameters of 15 passes at 45°C, 10 psi, flow rate of 25
mL/min, and 1200 mm/min velocity. Slides were incubated
overnight at 37°C in humidity chambers made in cell culture
dishes with Wypall X 60 paper towels and two rolled KimWipes
saturated with distilled water.

MALDI MS Preparation and Imaging
MALDI matrix a-cyano-4-hydroxycinnamic acid (CHCA, 7 mg/
mL in 50% acetonitrile/0.1% trifluoroacetic acid) (Cayman
Chemical, Ann Arbor, MI) was applied to slides using the
same automated sprayer. Matrix was sprayed for two passes at
77°C, 10 psi, 1300 mm/min velocity, and flow rate of 100 mL/
min. MALDI IMS data were acquired on a solariX Legacy 7T FT-
ICR mass spectrometer (Bruker, Billerica, MA) equipped with a
SmartBeam II laser operating at 2000 Hz and pixel dimension of
25 mm. Images were collected using a smartwalk pattern at a 300
mm raster with 200 laser shots per pixel. Samples were analyzed
in positive ion with a mass range of 500−5000 m/z using a 512k
word time domain. An on-slide resolving power of 58,000 at m/z
1501 was calculated.

Data Analysis
N-Glycan localization and intensity were visualized using
FlexImaging v5.0 (Bruker), with data imported at a 0.98 ICR
reduction noise threshold. Images were normalized to total ion
current, and N-glycan peaks were selected manually based on
their theoretical mass values. For quantification of peaks at
individual spots, spectra were imported into SCiLS Lab
Frontiers in Immunology | www.frontiersin.org 3
software 2017a (Bruker). Each spot was designated a unique
region, and area under monoisotopic peak values were exported
from each region and quantified by mean peak intensity. In all
cases, glycan peaks (specific m/z values) were given a relative
percentile of the total glycan profile. Glycan names are provided
using the Oxford Nomenclature (51).

Statistical Analysis
Patients were grouped as those: i) without any liver disease
(healthy and stage 0), ii) with early to moderate fibrosis (stage 1
&2), and iii) with advanced fibrosis or cirrhosis (stage 3&4).
One-way ANOVA and Post hoc tests were applied to inference
any statistical difference among these three stages. Glycans with
no statistical difference among stages (p>0.05, F-test) were
discarded from further model development.

Subsequently, we applied the supervised learning algorithm
random forest to determine the relative importance of the
remaining features (glycans). Simultaneously, we applied
variable clustering to perform a hierarchical cluster analysis,
which is based on the similarity matrix that contains pairwise
Hoeffding D statistics (52). From the variable clustering output,
the most highly correlated two features were identified. These
two features’ relative importance were derived from random
forest analysis. We discarded one of these pairs with lower
importance. Then we utilized the remaining features in
Apparent Cross-Validation, Leave-One-Out Cross-Validation,
3-Fold Random Subsampling Cross-Validation, and Repeated
3-Fold Cross-Validation to valuate predictive performance of the
current random forest model (simulation 200 times for 3-Fold
Random Subsampling Cross-Validation and Repeated 3-Fold
Cross-Validation). Predictive accuracy (%), related sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV) were criteria of model selection. The
entire procedure (random forest, variable clustering; cross-
validations) was iterated until the removal of any additional
features resulted in the predictive ability of the model to
consistently and dramatically deteriorated. The final model had
the best predictive ability with the fewest features and was
composed of glycans (features) from four of the IgG subtypes.
These were A2G2F and A2BG0F on IgG, A2G1F and A2G2S1 on
IgG1, A2G1F and A2G0F on IgG2 and A2BG1F on IgG3.

Finally, we evaluated our final model’s discriminating ability
between the following groups: no fibrosis vs moderate fibrosis,
moderate vs later fibrosis, and no fibrosis vs later fibrosis. Four
Cross-Validations listed above was applied and the corresponding
AUCs (area under the curve), specificities, sensitivities, PPVs, and
NPVs were derived.

More detail on feature selection, cross validation and model
development can be found in the Supplementary Evidence File.
RESULTS

The basic GlycoTyper workflow for the glycan analysis of
antibody captured glycoproteins is shown in Figure 1.
Briefly, the first step is the creation of the antibody array
using the desired antibodies immobilized on nitrocellulose
February 2022 | Volume 13 | Article 797460
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coated slides (Figure 1A). Subsequently, the antibody array is
incubated with either diluted serum or pure protein as shown
in Figure 1B. Slides are washed after protein capture using a
mass spectrometry compatible detergent before glycans are
released by application of a thin coating of recombinant
PNGase F PRIME™ to the slide (Figure 1C). This step is
identical to what is performed in tissue glycan imaging (35, 42).
Lastly, MALDI matrix is applied to the slide and is imaged
using a MALDI Mass Spectrometer (Figures 1D, E).
Importantly, the spatial localization provided by the IMS
data link the detected glycans to their corresponding
captured glycoproteins.

In initial studies, we examined the glycans on IgG, IgG1, IgG2,
IgG3 and IgG4 captured via antibody from pure proteins spiked
into PBS or from healthy serum diluted in PBS. As Figure 2
shows for all proteins, the glycan observed from the pure protein
was similar to that observed from captured human serum, with
little difference in the glycosylation observed on the pure protein
and that observed from the serum captured protein (with a single
exception). The major exception was a glycan at m/z 1976.7822,
which matches by accurate mass to a bi-antennary glycan with a
single sialic acid (A2G2S1). In all cases, the level of this glycan was
lower in the pure protein than that observed in human serum. In
addition, a glycan at a glycan at m/z 1809.73273, which matches
by accurate mass to a bi-antennary glycan with a single fucose
residue was also varied in IgG2 and IgG3. Supplementary Table
S1 shows all the glycans found associated with IgG, IgG1, IgG2,
Frontiers in Immunology | www.frontiersin.org 4
IgG3 or IgG4 and Supplementary Figure S1 shows a column
chart of the data in Figure 1.

The major glycan observed for each immunoglobulin subtype
was a fucosylated biantennary glycan with single or double
galactose residues, with or without a bisecting N-acetyl
glucosamine (Figure 2). It is noted that the glycan profile
observed from both samples was consistent with the glycan
profile observed by other methods for these proteins (16, 53–59).
Simultaneous Analysis of the Glycans on
IgG, IgG1, IgG2, IgG3 and IgG4 in Patients
With Liver Fibrosis
As previously reported, the glycosylation of IgG is altered with the
development of liver fibrosis and cirrhosis and therefore can be
used as a non-invasive measure of liver disease (11, 16, 18, 20, 30).
Thus, the GlycoTyper method described in Figure 1 was used for
the analysis of a cohort of patients with biopsy confirmed fibrosis
(Table 1). In total, 38 healthy individuals with no evidence of liver
disease, 3 patients with stage 0 fibrosis (METAVIR), 10 patients
with stage 1 fibrosis (METAVIR), 18 patients with stage 2 fibrosis
(METAVIR), 6 patients with stage 3 fibrosis (METAVIR) and 37
patients with stage 4 fibrosis (METAVIR) were analyzed using
this method. Because of the limited patient number, we grouped
samples into three categories: i) those who are healthy with no
fibrosis (healthy & METAVIR stage 0; n=41), ii) those with early
to moderate fibrosis (METAVIR stages 1&2, n=28), and iii) those
FIGURE 1 | GlycoTyper workflow for the glycan analysis of antibody captured glycoproteins. The first step is the creation of the antibody array using the desired
antibodies immobilized on nitrocellulose coated slides (A). Subsequently, the antibody array is incubated with either diluted serum or any other protein mixture (B).
Slides are washed after protein capture using a mass spectrometry compatible detergent before glycan are released by application of a thin coating of recombinant
PNGase F to the slide (C). MALDI matrix is applied to the tissue and the slide imaged using a MALDI-Mass spectrometer (D, E).
February 2022 | Volume 13 | Article 797460

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Scott et al. GlycoFibrotyper Method for IgG Glycan Analysis

Frontiers in Immunology | www.frontiersin.org 5
with severe fibrosis and cirrhosis (METAVIR stage 3&4; n=43).
Table 2 lists those glycans that were statistically different (p<0.05)
between the three patient groups. Glycans are classified as those
that were altered in early-stage fibrosis only (as compared to
healthy or stage 0 fibrosis) and do not alter further with fibrosis
progression, glycans which alter only with the progression to
significant fibrosis, and those glycans that are altered with both
the development of early fibrosis and again with more significant
fibrosis. Figure 3 shows examples of three glycans that were
altered on IgG, IgG1 and IgG3. One of the glycans with the
greatest changes included a core fucosylated agalactosylated bi-
antennary glycan with a bisecting N-acetyl glucosamine
(A2BG0F, Figures 3A, B). As Figure 3A shows, this glycan was
found at low levels in either healthy patients or patients with stage
0 fibrosis but increased dramatically in those with cirrhosis
(Figure 3B). A2BG0F was found to increase in abundance in
those patients with significant fibrosis/cirrhosis (Group 2), on
both total IgG (Figures 3A, B) and to a lesser degree IgG1 and
IgG3 (data not shown). In contrast, the A2G1F, a core fucosylated
bi-antennary glycan with a single galactose residue found on
IgG1, decreased in those patients with fibrosis (Figures 3C, D).
Similarly, A2BG1F, a core fucosylated bi-antennary glycan with a
single galactose residue and a bisecting N-acetyl glucosamine,
found on IgG3 also decreased in those patients with fibrosis
TABLE 2 | Glycans that differentiate either early fibrosis from healthy, late fibrosis
from early fibrosis or both.

Early Late Early and Later

G4.A2G0F G4.A2BG2F G4.A2BG0F
G4.A2G1 G.A2BG2F G.A2G0F
G4.A2G1F G1.A2G0F G.A2BG0F
G4.A2G2F G3.A2G2F G.A2BG2F
G. A2BG0F G1.A2BG0F
G1.A2G2F G3.A2BG0F
G2.A2G0F
G2.A2G0F
G2.A2G1
G2.A2G1F
G2.A2G2F
G2.A2BG1F
G2.A2BG2F
G3.A2G0F
G3.A2G1F
G3.A2G2F
For glycan names, the Oxford notation is used (51). All N-glycans have two core
GlcNAcs and three mannose residues that make up the trimannosyl core; F indicates a
core fucose; Ax, where x- number of antenna (GlcNAc) on the trimannosyl core; Gx,
where x- number of linked galactose on antenna; Sx, where x- number of sialic acids
linked to galactose. Using the G4.A2BG0F glycan as an example, G4 refers to IgG4, A2
indicates a bi-antennary glycan, the G0 indicates zero galactose residues, B represents
the presence of a bisecting N-acetylglucosamine (GlcNAc), and the F indicated the
presence of a fucose.
FIGURE 2 | Glycan analysis of antibody captured IgG, IgG1, IgG2, IgG3 and IgG4 from either purchased purified protein (top) or from normal human serum (bottom).
Glycans are presented as a function of the total glycan profile. For glycans, the Oxford notation is based on building up N-glycan structures and it can be used to denote
all glycans (51). All N-glycans have two core GlcNAcs and three mannose residues that make up the trimannosyl core; F indicates a core fucose; Ax, where x- number of
antenna (GlcNAc) on the trimannosyl core; Gx, where x- number of linked galactose on antenna; Sx, where x- number of sialic acids linked to galactose.
February 2022 | Volume 13 | Article 797460
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(Figures 3E, F). As Figures 3E, F demonstrate, this glycan was
found at high levels in either healthy patients or patients with
stage 0 fibrosis but was reduced dramatically in those with
cirrhosis (Figure 3F).

The expression levels of both of these glycans also varied
within the larger patient groups. In the case of IgG, the A2BG0F
glycan increased from Group 1 to Group 2 and was the highest in
Group 3, showing increased levels with increased fibrosis
(Figure 3G). In contrast, IgG1 associated A2G1F glycan was
reduced in patients with both limited and severe fibrosis and did
not correlate with the state offibrosis (Figure 3H). Other glycans
such as the A2BG1F glycan on IgG3, was only reduced in
patients with more significant fibrosis (Group 3, Figure 3I). A
complete list of glycans that were altered in both those with mild
to moderate fibrosis and those glycans altered with more
significant fibrosis are shown in Table 2.

Development of a Model to Determine the
Level of Liver Fibrosis in Individuals Based
Upon the IgG Glycan Profile
Based on our previous algorithm development work for the early
detection of HCC (34, 60–62), we developed a random forest
algorithm that could be used to differentiate individuals with early
fibrosis (Group 2) from healthy controls (Group 1) as well as
identify late fibrosis patients (Group 3) from those with early
Frontiers in Immunology | www.frontiersin.org 6
fibrosis (Group 2). Supplementary Table S2 shows the glycans
that were found to be associated with IgG, IgG1, IgG2, IgG3 or
IgG4 in all patient groups along with the results following
ANOVA analysis. Although there were 50 glycans on the five
subtypes of IgG that were altered with the development of liver
fibrosis, many of these were associated and thus, only seven
glycans on four glycoproteins were used to build and test the
model. These are shown in Supplementary Tables S3, S4 and
include, A2G2F and A2BG0F on IgG, A2G1F and A2G2S1 on
IgG1, A2G1F and A2G0F on IgG2 and A2BG1F on IgG3.
Figure 4A shows the AUC (area under the curve) of the model
following leave one out cross validation (LOOCV) when
differentiating Group 1 (healthy and stage 0) from those with
early or moderate fibrosis (Group 2; METAVIR stage 1 or 2). The
AUC was 0.9530 (95%CI: 0.9008-1.0) for differentiating these two
groups with a sensitivity of 94% at 90% specificity. Similar results
were obtained using three-fold cross validation (3CV) (data not
shown). When we compared those with early to moderate fibrosis
(stage 1&2) to those with severe fibrosis or cirrhosis (stage 3 & 4),
the AUC was 0.9377 (95%CI: 0.8819-0.9935) with a sensitivity of
84% at 90% specificity (Figure 4B). A further comparison was
made to demonstrate that the AUC for differentiating those with
no liver disease from those with significant fibrosis/cirrhosis
(Figure 4C) and in this case, the AUC was 0.9745 (95%CI:
0.9415-1) with 98% sensitivity at 90% specificity. The
A B

C D

E F

G H I

FIGURE 3 | Glycan alterations on immunoglobulins correlate with the level of liver fibrosis. Panels A and B show the imaging analysis for the A2BG0F glycan on IgG
from either Group 1 patients (A) or Group 3 patients (B). (C, D) show the imaging analysis for the A2G1F glycan on IgG1 from either Group 1 patients (C) or Group
2 patients (D). (E, F) show the imaging analysis for the A2BG1F glycan on IgG3 from either Group 1 patients (E) or Group 3 patients (F). Panels G, H, and I show
box and whiskers plots of the IgG A2BG0F glycan (G), the IgG1 A2G1F glycan (H), or the IgG3 A2BG1F (I) glycan in all patients from all three groups.
February 2022 | Volume 13 | Article 797460
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sensitivity, specificity, positive and negative predictive values of
the assay for differentiating the different groups are shown in
Supplementary Tables S5–S7. In addition, a comparison between
our assay and other noninvasive assays for the detection of liver
fibrosis is shown in Supplementary Table S8. It is noted that in
Supplementary Table S8 the assay performance for the detection
of ≥2 fibrosis or ≥4 fibrosis is compared, as these are the data most
often presented for other markers.

We also examined the ability of these glycans (Supplementary
Figure S1) to differentiate different groups of patients, specifically,
those with no or early fibrosis (healthy and stage 0&1) from those
with moderate to significant fibrosis (stage 2&3) and those with
cirrhosis (stage 4) from those with moderate to significant fibrosis
(stage 2&3). The AUC was 0.8464 (95%CI: 0.7576- 0.9352) for
differentiating those with no or early fibrosis (healthy versus stage
0&1) from those with moderate to significant fibrosis (stage 2&3)
but 0.9673 (95%CI: 0.93-1.0) when differentiating cirrhosis from
moderate to significant fibrosis. These findings highlight that
changes in IgG glycosylation can be observed via the
GlycoTyper method and used to determine the level of liver
fibrosis in individuals with liver disease.
DISCUSSION

The GlycoTyper is an imaging mass spectrometry platform for the
multiplexed detection of N-glycans from individual glycoproteins.
This method is suitable for the analysis of immunoglobulin
molecules from a wide variety of biological samples. The
development of this technique was based on a well-established
protocol for enzymatic release of N-glycans from tissue sections for
MALDI IMS (63). In this platform, antibodies are essential for the
specific capture of glycoprotein targets from a complex biological
mixture, similar to an ELISA. However, unlike an ELISA, no
secondary antibody or lectin is needed for this methodology as
mass spectrometry provides sensitive and molecular specific
detection of distinct N-glycans. Antibody capture also negates the
Frontiers in Immunology | www.frontiersin.org 7
need for sample cleanup prior to MS analysis, which can be
extensive (64).

We applied the GlycoTyper platform to the analysis of IgG
glycans from patients with liver disease. As stated, changes in the
glycosylation of immunoglobulins have been associated with
liver fibrosis and cirrhosis previously and in many cases, those
changes were detected with lectins or other indirect or laborious
methods (16, 56). The results presented here show that these
changes can be observed via the GlycoTyper method and
furthermore, that these can be used to determine the level of
liver fibrosis in individuals with liver disease. One of the major
changes observed was an increase in the level of IgG associated
glycans devoid of terminal galactose residues (Figure 3). This is a
change that has been observed before and exploited with lectins
(16). However, this was only one of numerous subtype specific
glycan changes that were observed (Figure 3). These subtype
specific glycan changes were used to create a diagnostic
algorithm that could classify the level of fibrosis in individuals
with high accuracy and specificity. It is noted that other
glycoproteins have altered glycans in liver fibrosis and the
methods described here could easily be applied to the analysis
of those glycoproteins as well (65–69).

Our study was limited in part by the relatively small number
of patients with histologically proven early stage liver disease
(Table 1). This required clustering multiple patient groups
together for further analysis. Consequently, patients were
grouped into those with no fibrosis (Group 1), those with early
to moderate fibrosis (Group 2) or late-stage fibrosis or cirrhosis
(Group 3). We also attempted to classify patients into those with
no to early fibrosis (healthy, stage 0&1), moderate to severe
fibrosis (stage 2&3) and cirrhosis (stage 4). However, as shown in
Supplementary Figure S2, diagnostic performance was poor in
differentiating those with zero to early fibrosis from those with
moderate to severe fibrosis. This was primarily the result of the
stage 1 patients having an immunoglobulin glycan profile that
was more similar to stage 2 patients than to stage 0 or healthy
patients. This is an important point and clearly indicates that the
A B C

FIGURE 4 | A Diagnostic algorithm based upon IgG glycans can identify the degree of fibrosis in patients with liver disease. AUROC for the differentiation of (A)
group 1 (no fibrosis) versus group 2 (early to moderate fibrosis); (B) group 2 versus group 3 (significant fibrosis or cirrhosis); or (C) group 1 versus group 3.
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changes in glycosylation observed on immunoglobulins occurs
early in fibrosis development. It is also noted that excellent
discriminatory ability was observed between those with
moderate to severe fibrosis and cirrhosis. However, this is most
likely driven by the small number of patients with severe fibrosis
(n=6) and the large glycan difference observed in patients with
cirrhosis and moderate fibrosis. Larger, more diverse studies that
include patients with different types of clinical liver diseases and
a direct comparison to other non-invasive tests for cirrhosis
required (3, 11, 70–73)

In conclusion, this study establishes a clinical rationale for
integrating direct analysis of IgG glycans for the active
management of people with liver disease. The diagnostic
performance of this method was dramatically greater than other
non-invasive tests for liver fibrosis (Supplementary Table S8),
such as FIB4, APRI and even tests that look at IgG glycans (11, 16,
74). One reason for this is the ability to not just look at total IgG but
also the specific IgG sub-classes, which has not been performed
before, as such studies were not technically feasible for large patient
cohorts. Thus, the methods described here are not only useful as a
research tool for the analysis of protein specific glycosylation but
also represents a new diagnostic platform that will allow for the true
diagnostic potential of N-linked glycans to be developed.
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