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Abstract

To gain a greater understanding of oral squamous cell carcinoma (OSCC) we investigated

the actions of all-trans-retinoic acid (RA; a retinoid), bexarotene (a pan-RXR agonist), and

forkhead box (FOX) transcription factors in human OSCC-derived cell lines. RA and bexaro-

tene have been shown to limit several oncogenic pathways in many cell types. FOXO pro-

teins typically are associated with tumor suppressive activities, whereas FOXM1 acts as an

oncogene when overexpressed in several cancers. RA and/or bexarotene increased the

transcript levels of FOXO1, FOXO3A, and TRAIL receptors; reduced the transcript levels of

FOXM1, Aurora kinase B (AURKB), and vascular endothelial growth factor A (VEGFA); and

decreased the proliferation of OSCC-derived cell lines. Also, RA and/or bexarotene influ-

enced the recruitment of FOXO3A and FOXM1 to target genes. Additionally, FOXM1 deple-

tion reduced cell proliferation, decreased transcript levels of downstream targets of FOXM1,

and increased transcript levels of TRAIL receptors. Overexpression of FOXO3A decreased

proliferation and increased binding of histone deacetylases (HDACs) 1 and 2 at the FOXM1,

AURKB, and VEGFA promoters. This research suggests novel influences of the drugs RA

and bexarotene on the expression of FOXM1 and FOXO3A in transcriptional regulatory

pathways of human OSCC.

Introduction

Oral squamous cell carcinomas (OSCCs) are a heterogeneous group of cancers that develop in

the epithelial tissues of the tongue, hard and soft palate, retromolar trigone, gums, buccal

mucosa, and lip [1]. At the end of 2017, the estimated new cases and deaths resulting from

OSCC world-wide were 1,688,780 and 600,920, respectively [2]. The 5-year survival rate of

OSCC has not significantly changed over the past few decades, despite advances in surgery,

chemotherapy, and radiation [3, 4]. Initiation and development of OSCC have been linked to

high consumption of tobacco and alcohol, viral infection, and poor oral hygiene [5, 6]. Thus,
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understanding the molecular signaling mechanisms that lead to OSCC is critical for the devel-

opment of new therapies for OSCC.

The human forkhead box (FOX) gene family encodes transcription factors that are involved

in multiple cellular processes, such as cell renewal and differentiation, cell proliferation, angio-

genesis, immune regulation, DNA repair, and epigenetic modifications [7]. The members of

this family have been categorized into 19 subgroups, based on homology outside and within

the forkhead DNA-binding domain, and various family members are associated with the

induction or suppression of several oncogenic signaling pathways [7, 8]. For instance, overex-

pression of FOXM1 was reported in cancers of the breast, prostate, and lung [8]. We and oth-

ers have shown increased FOXM1 transcript and protein levels in the oral cavity during the

development and progression of OSCC in both murine carcinogenesis models and human

patient samples [9–13]. Additionally, FOXM1 is a prognostic factor for oral [14] and esoph-

ageal squamous cell carcinoma [15, 16]. The oncogenic effects of FOXM1 generally are medi-

ated through the phosphorylation of cyclin E-CDK2 and Raf-MEK-ERK signaling cascades

that cause the nuclear translocation of FOXM1 [17, 18]. In the nucleus, FOXM1 can trigger

the expression of several genes that are involved in tumor initiation processes such as angio-

genesis, cell proliferation, cellular migration and invasion, and epithelial-mesenchymal transi-

tion [7]. FOXM1 also synergizes with the canonical Wnt signaling pathway (often activated

during tumorigenesis) by directing the nuclear translocation of β-catenin to induce transcrip-

tion of several oncogenes [19]. Additionally, increased FOXM1 expression induces changes in

the methylation status similar to the epigenome in OSCC [13]. Thus, FOXM1 is a relevant tar-

get for further characterization because FOXM1 regulates the expression of many genes and

affects epigenetic controls that are involved in multiple oncogenic cellular processes.

In contrast to FOXM1, the members of the FOXO (FOXO1, FOXO3A, FOXO4, and

FOXO6) gene family are considered to be negative regulators of the cellular events leading to

tumorigenesis [20, 21]. Increased expression of FOXO3A reduces the oncogenic properties of

cancers of the liver [22], lung [23], prostate [24], and oral cavity [25]. Molecular pathways

implicated in cancer initiation that are inhibited by FOXO3A are similar to those increased by

FOXM1 [26]. One mechanism by which FOXO3A exhibits its tumor suppressive properties is

by transcriptionally antagonizing FOXM1 [7, 27]. “Gain of function” p53 mutations induce

FOXM1 expression by inhibiting FOXO3A tumor suppressive signaling cascades [28]. Both

FOXM1 and FOXO3A can alter transcription of target genes by binding to forkhead response

elements (FHREs) on target promoters, which can result in opposing transcriptional outputs

[29]. Additionally, differences among domains outside of the forkhead DNA binding domain

in FOXM1 and FOXO3A result in recruitment of other proteins involved in modifying tran-

scriptional events [7].

Retinoids (e.g. vitamin A, retinol) and derivatives (e.g. all-trans-retinoic acid, RA) are sig-

naling molecules that regulate cell proliferation and differentiation [30]. RA alters cellular

responses by binding to retinoic acid receptors α, β, or γ (RARs); the RARs and retinoid X

receptors α, β, or γ (RXRs) form heterodimers that bind at retinoic acid response elements

(RAREs) on target promoters [31, 32]. Various retinoids can also induce apoptosis in acute

promyelocytic leukemia, T-cell acute lymphoblastic leukemia, myeloid leukemia, neoplastic

epidermal keratinocytes, and breast cancer cells [33]. Bexarotene (Targretin, LGD1069), a pan

RXR agonist, has been approved by the FDA for treatment of cutaneous T-cell lymphoma [34]

and currently is in clinical trials for the treatment of metastatic breast cancer (Phase II) and

non-small cell lung cancer (Phase II and III) [35].

Here, we analyzed the molecular actions of FOXM1 and FOXO3A in regulating gene ex-

pression, modifying oncogenic signaling pathways, and recruiting histone deacetylases

(HDACs) in human OSCC cell lines. We also characterized the biological and molecular effects

Retinoids induce FOXO3A in OSCC

PLOS ONE | https://doi.org/10.1371/journal.pone.0215234 April 12, 2019 2 / 21

https://doi.org/10.1371/journal.pone.0215234


of RA and bexarotene on the proliferation of OSCC lines, the expression of FOX transcription

factors, and the recruitment of FOXM1 and FOXO3A to FHREs on target promoters.

Results

Retinoic acid and bexarotene alter the mRNA levels of forkhead box genes

and their downstream targets

To determine if retinoic acid (RA), bexarotene (Bex), or the co-administration of RA plus bex-

arotene (RA+Bex) changed the transcript levels of various FOX transcription factors, we quan-

tified the changes in FOXO1, FOXO3A, and FOXM1 in the SCC-25 and SCC-4 human cell

lines by QRT-PCR (Fig 1). We measured 3.5 to 5.8 fold increases (p<0.0001) in the FOXO1
transcript levels in RA, Bex, and RA+Bex treated SCC-25 (Fig 1A) and SCC-4 (Fig 1B) cells

compared to untreated (Untr) cells. We observed similar increases in the FOXO3A transcript

levels in SCC-25 (Fig 1C) and SCC-4 (Fig 1D) treated with RA, Bex, and RA+Bex. In contrast,

we detected >50% decreases (p<0.001) in FOXM1 mRNA in both SCC-25 (Fig 1E) and SCC-4

lines (Fig 1F) in all three (RA, Bex, and RA+Bex) groups. We did not observe any synergistic

effects with the co-administration of both drugs (Fig 1).

We next measured the transcript levels of well-characterized downstream targets of FOXO

and FOXM1 transcription factors. We focused on the FOXO3 subfamily because FOXO3A

was shown to regulate the transcription of FOXO1 in human OSCC, suggesting that FOXO1 is

downstream of FOXO3 signaling [36]. Downstream targets of FOXM1 and FOXO3A include

Aurora kinase B (AURKB), vascular endothelial growth factor A (VEGFA), and TNF-related

apoptosis-inducing ligand (TRAIL) receptors 1 and 2 [7, 37] in SCC-25 (Fig 2A–2D) and SCC-

4 (Fig 2E–2H). We measured 2–4 fold decreases in the AURKB transcript levels (p<0.01) in

SCC-25 and SCC-4 cells treated with RA and RA+Bex, but not with bexarotene alone (Fig 2A

and 2E), suggesting that the changes in the AURKB transcript levels are mediated by RA. We

found decreases (�50%) in VEGFA transcripts in RA (p<0.01), Bex (p<0.01), and RA+Bex

(p<0.001) treated SCC-25 cells compared to the untreated group (Fig 2B). We also detected

decreases in VEGFA transcript levels in the RA (p<0.01) and RA+Bex (p<0.01) treatment

groups in SCC-4 (Fig 2F). The transcript levels of TRAIL receptors 1 and 2 were substantially

increased (>3-fold, >2-fold, respectively) in SCC-25 (Fig 2C and 2D) and SCC-4 (Fig 2G and

2H) cells. We did not observe additive effects when comparing RA or Bex treatment groups to

the RA+Bex group (Fig 2).

Bexarotene and RA reduce cell proliferation in SCC-25 and SCC-4 cells

Bex and RA+Bex reduced the proliferation of both the SCC-25 and SCC-4 lines (Fig 3). At day

10 (the final time point for the cell proliferation assay), there were ~5.0x105 SCC-25 cells in the

Bex (p<0.01) and in the RA+Bex (p<0.01) groups, compared to ~1.5x106 SCC-25 cells in the

untreated group. In the SCC-4 cells, Bex (~2.5x105 cells) and RA+Bex (~2.0x105 cells) caused a

smaller but statistically significant reduction in proliferation (p<0.05) versus untreated cells

(~3.0x105 cells) (Fig 3). In summary, RA plus bexarotene, compared to sole administration of

RA or Bex, demonstrated a greater reduction in the proliferation of both OSCC-derived cell

lines.

Overexpression of exogenous FOXO3A and reduced expression of FOXM1

have similar effects on cell proliferation and target gene expression

Several studies have demonstrated a connection linking the expression of microRNAs (miR-

NAs), the inhibition of FOXO3A, and the increased proliferation of cancer-derived cells:
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hepatocellular carcinoma (HCC)/miR-155 [38], HCC/miR-182-5p [39], and glioma/miR-155

[40]. Since reduced levels of FOXO3A increased cell proliferation in these cancer-derived cell

lines, we wanted to determine if FOXO3A overexpression would reduce cell proliferation in

an OSCC-derived cell line. After generating several SCC-25 cell clones with stable expression

of exogenous FOXO3A or just with the empty vector pcDNA3.1 (S1A Fig), we found a minor

reduction (p<0.01) in proliferation mediated by the SCC-25 FOXO3A #3 clone compared to

the parental SCC-25 line (Fig 4A).

Since FOXM1 overexpression induces neoplastic transformation of breast epithelia [41],

prostate epithelia [42], non-small cell lung cancer-derived cells [43], and oral cavity and esoph-

ageal epithelia [11, 14], we silenced FOXM1 expression by introducing FOXM1-targeting

Fig 1. Retinoic acid (RA) and bexarotene (Bex) alter mRNA levels of FOXO1, FOXO3A, and FOXM1 in human

OSCC cell lines. SCC-25 (A, C, and E) and SCC-4 (B, D, and F) cells were treated with nothing (Untr), 0.1% DMSO4

vehicle, either RA or Bex (final concentration of 1 μM and 10 μM, respectively), or the combination of RA plus Bex

(RA+Bex). Quantitative Real-Time PCR (QRT-PCR) analysis was used to determine the transcript levels of FOXO1 (A,

B), FOXO3A (C, D), and FOXM1 (E, F). The bars represent the means of five independent experiments ± SEM where
���, p<0.001 and ����, p<0.0001.

https://doi.org/10.1371/journal.pone.0215234.g001

Fig 2. Treatment of OSCC lines with RA and bexarotene changes the transcript levels of downstream targets of FOX transcription factors. We used

QRT-PCR to measure the transcript levels of Aurora kinase B (A, E), vascular endothelial growth factor A (VEGFA) (B, F), TNF-related apoptosis-inducing

ligand (TRAIL) receptor 1 (C, G), and TRAIL receptor 2 (D, H) in the SCC-25 (A-D) and SCC-4 (E-H) lines treated with drugs as in Fig 1. Bars represent the

means of four independent experiments ± SEM. Post-hoc test analyses show that ��, ���, and ���� represent p<0.01, p<0.001, and p<0.0001, respectively.

https://doi.org/10.1371/journal.pone.0215234.g002
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short-hairpin RNAs (shRNA) into SCC-25 cells (S1B Fig). We conducted cell proliferation

assays of the SCC-25 parental line, SCC-25 cells that stably express the empty vector pLKO,

SCC-25 cells that express a scrambled FOXM1 shRNA construct (shFOXM1 SCR), and SCC-

25 cells that express a shRNA construct targeting FOXM1 (shFOXM1 #3) (Fig 4B). We found

that the reduction in FOXM1 levels by shRNA silencing technology resulted in a reduction in

cell proliferation (p<0.05) in an OSCC-derived cell line (Fig 4B).

To determine if FOXO3A overexpression and/or if the reduction in FOXM1 expression

changed target transcript levels, we measured the transcript levels of VEGFA (Fig 4C) and

TRAIL receptor 1 (Fig 4D). We detected a reduction in VEGFA mRNA in both SCC-25 cells

that overexpress FOXO3A (clone SCC-25 FOXO3A #3), and in SCC-25 cells in which FOXM1

is silenced (clone SCC-25 shFOXM1 #3), compared to the parental SCC-25 cells, the cells sta-

bly transfected with empty vectors (pcDNA and pLKO), and cells transfected with the scram-

bled shRNA (SCC-25 shFOXM1 SCR). We detected increased transcript levels of the TRAIL

receptor 1 (~3.0 fold, FOXO3A #3; ~4.8 fold, shFOXM1 #3) (Fig 4D). The overexpression of

FOXO3A and the reduction in expression of FOXM1 both reduced Aurora kinase B transcript

levels and increased TRAIL receptor 2 transcript levels (S1C and S1D Fig). These results con-

firm that ectopic over-expression of FOXO3A can reduce the proliferation of SCC-25 cells

(Fig 4A), lower the expression of FOXM1 downstream effectors involved in cellular transfor-

mation (Fig 4C and S1C Fig), and induce expression of pro-apoptotic genes (Fig 4D and S1D

Fig 3. Bexarotene with RA reduces cell proliferation in OSCC-derived cell lines. Cell proliferation assays were conducted on SCC-25 (A) and SCC-4 (B) cell

lines by seeding 5x103 cells at Day 0. SCC-25 and SCC-4 cell lines were treated with 0.1% DMSO4 (vehicle control), RA, Bex, RA+Bex and counted at days 1, 3,

4, 7 and 10 (A, B). Statistical analysis was performed, using two-way ANOVA, followed by Bonferroni’s post-hoc test, on three independent experiments. Post-

hoc test analysis show that � and �� represent p<0.05, p<0.01, respectively.

https://doi.org/10.1371/journal.pone.0215234.g003
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Fig). Likewise, the silencing of FOXM1 (a putative oncogene in OSCC) by shRNA technology

mimics effects on transcript levels seen by overexpressing FOXO3A in SCC-25 cells (Fig 4B–

4D). Conversely, overexpression of FOXM1 (SCC-25 FOXM1 #2) in SCC-25 cells increased tar-

get gene transcripts involved in tumorigenesis (VEGFA and AURKB; Fig 4C and S1C Fig) and

decreased those related to tumor suppression (TRAIL Receptor 1 and 2; Fig 4D and S1D Fig).

RA and bexarotene induce changes in the binding of FOXM1 and FOXO3A

at target gene promoters

We carried out chromatin immunoprecipitation (ChIP) assays in the parental SCC-25 line to

determine if FOXO3A competes with FOXM1 at specific promoters (Fig 5), similar to previous

studies demonstrating FOXO1/FOXM1 binding [7]. We assayed the presence of FOXO3A

and FOXM1 on the promoters of FOXM1, Aurora kinase B, CDC25, and baculoviral IAP

Repeat containing 5 (BIRC5; also known as apoptosis inhibitor 4) +/- Bex and RA (Fig 5). On

the FOXM1 promoter we detected increases in FOXO3A (measured by the ratio of bound

DNA to input DNA) of 4–6 fold in SCC-25 cells treated with RA (p<0.01), Bex (p<0.001), and

RA+Bex (p<0.01) (Fig 5A, left panel). We also observed approximately a 1.5-fold increase in

the binding of FOXO3A at the Aurora kinase B promoter in RA (p<0.01) and RA+Bex

(p<0.01) treated cells relative to untreated or DMSO4 (vehicle) treated cells (Fig 5B, left

panel). Treatment with RA (p<0.01) and RA+Bex (p<0.05) increased the levels of bound

FOXO3A on the mitotic regulator CDC25 promoter by ~1.5 fold (Fig 5C, left panel). We

detected more FOXO3A at the BIRC5 promoter in the Bex (~0.035 bound DNA/Input;

p<0.01) and the RA+Bex (~0.2 bound DNA/Input; p<0.05) treatment groups compared to

the untreated and DMSO vehicle treated cells (~0.1 bound DNA/Input) (Fig 5D, left panel).

The IgG levels (negative controls) in the samples were much lower than any of the FOXO3A

antibody precipitated samples (Fig 5).

Conversely, the RA, Bex, and RA+Bex treatment groups exhibited lower FOXM1 binding

at the FOXM1 promoter compared to the untreated and DMSO4 vehicle treated groups

(~0.004); the ratios of bound DNA to the input DNA for these three treatment groups were

~0.001 (RA, p<0.01; Bex, p<0.01), and ~0.0001 (RA+Bex; p<0.001) (Fig 5A, right panel). We

detected reductions in the binding of FOXM1 at the AURKB promoter in SCC-25 cells treated

with either RA (p<0.01) or with RA+Bex (p<0.01), but not with Bex (Fig 5B, right panel). We

detected a two-fold decrease in FOXM1 protein (~0.35 bound DNA/Input; p<0.05) at the

CDC25 promoter in RA and RA+Bex treated as compared to the untreated or DMSO4 treated

SCC-25 cells (~0.7 bound DNA/Input) (Fig 5C, right panel). The bound DNA/Input of

FOXM1 at the BIRC5 promoter was ~0.002 for both the RA and the RA+Bex treatment groups

(p<0.05; Fig 5D, right panel) compared to ~0.004 for the untreated cells.

Thus, these ChIP assays demonstrate that treatment with RA+Bex modified the binding of

both FOXO3A and FOXM1 at the promoters of the FOXM1, Aurora kinase B, CDC25, and

BIRC5 genes (Fig 5). In addition, the increased binding of FOXO3A and the decreased binding

of FOXM1 at these target gene promoters after RA+Bex addition may result from the changes

in FOXO3A and FOXM1 transcript levels induced by RA and/or bexarotene (Fig 1).

Fig 4. The overexpression of FOXO3A and the silencing of FOXM1 reduce cell proliferation and change expression of downstream

FOX targets. Cell proliferation assays for SCC-25 cells (parental line) expressing exogenous FOXO3A (A) or shRNA constructs targeting

FOXM1 (B) were conducted as described in Fig 3 with the quantitation of cell proliferation at days 1, 4, 7, and 10. Two-way ANOVA and

Bonferroni’s post-hoc test were conducted to determine statistical significance on three independent experiments. The changes in the

transcripts of VEGFA (C), and TRAIL receptor 1 (D) in SCC-25 cells expressing exogenous FOXO3A, exogenous FOXM1, and shRNA

constructs targeting FOXM1 were determined by QRT-PCR analysis. The QRT-PCR data show the results of three independent

experiments ± SEM (C, D). Post-hoc analyses show �, p<0.05 and ��, p<0.01.

https://doi.org/10.1371/journal.pone.0215234.g004
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The overexpression of exogenous FOXO3A induces recruitment of histone

deacetylase (HDACs)

The activity of HDACs has been implicated in the tumor suppressive properties of FOXO3A

with respect to modulating target gene expression [44, 45]. Also, FOXO3A and other FOX

transcription factors, such as FOXA1, FOXA2, FOXA3, FOXO1, and FOXE, are considered

“pioneer” factors because they coordinate the recruitment of other transcription factors, co-

activators, co-repressors, and histone modifying enzymes such as HDACs [7, 27, 46]. We next

assessed the binding patterns of HDAC1 and HDAC2 on the promoters of FOXM1 (Fig 6A),

Aurora kinase B (Fig 6B), and VEGFA (Fig 6C) in the SCC-25 cell lines that stably overexpress

FOXO3A. We found increased recruitment of HDAC1 (p<0.001; Fig 6A, left panel) and

HDAC2 (p<0.01; Fig 6A, right panel) at the FOXM1 promoter in SCC-25 cells that overex-

press FOXO3A (FOXO3A-HA), compared to parental SCC-25 cells. The DNA Bound/Input

ratios of HDAC1 in the parental SCC-25 cells versus SCC-25 cells that stably overexpress FOX-

O3A-HA were ~0.018 and ~0.06 (Aurora kinase B, p<0.001); and ~0.02 and ~0.05 (VEGFA,

p<0.01) (Fig 6B and 6C; left panels). The DNA Bound/Input ratios of HDAC2 in the parental

Fig 5. Administration of RA and/or bexarotene modifies promoter association of FOXO3A and FOXM1 transcription factors in SCC-25 cells. ChIP

assays were performed to determine changes in the recruitment of FOXO3A and FOXM1 to target promoters in SCC-25 cells treated with vehicle (DMSO4),

RA, Bex, and RA+Bex for 72 hours. Antibodies directed against FOXO3A, FOXM1, and IgG (negative control) were used to immunoprecipate soluble protein/

chromatin complexes. Then, QRT-PCR was performed to amplify promoters of FOXM1 (A), Aurora kinase B (B), CDC25 (C), and BIRC (D). The bars signify

the ratio of the PCR signal of the FOXO3A antibody, FOXM1 antibody, or IgG-bound DNA to that of the DNA input. These data represent the means of five

independent experiments (biological repeats) ± SEM (�, p<0.05, ��, p<0.01, and ���, p<0.001).

https://doi.org/10.1371/journal.pone.0215234.g005
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SCC-25 cells versus SCC-25 cells that stably overexpress FOXO3A were ~0.01 and ~0.035

(Aurora kinase B, p<0.01); and ~0.02 and ~0.05 (VEGFA, p<0.01; Fig 6B and 6C, right pan-

els). Taken together, these ChIP results (Fig 6) show that FOXO3A reduces the transcription

of target promoters in part by recruiting HDAC1 and HDAC2 to promoter regions of

FOXM1, AURKB, and VEGFA.

Discussion

Retinoic acid and/or bexarotene can regulate expression of FOX

transcription factors and their downstream target genes

We investigated the effects of RA and bexarotene on the transcript levels of members of the

FOX transcription factor family (FOXO1, FOXO3A, and FOXM1) and selected targets of

Fig 6. FOXO3A overexpression induces the recruitment of HDAC1 and HDAC2 to the promoters of FOXM1, Aurora kinase B, and VEGFA. The

recruitment of HDAC1 (left panels) and HDAC2 (right panels) was determined by ChIP analysis in parental SCC-25 cells and FOXO3A overexpressing SCC-

25 cells of the promoters of FOXM1 (A), Aurora kinase B (B), and VEGFA (C). These data are from four independent experiments ± SEM, as described in Fig

5. Statistical significance was determined by the Student’s t-test, which compared HDAC1 and HDAC2 recruitment patterns in the parental SCC-25 cell line to

FOXO3A overexpressing SCC-25 cells (��, p<0.01, and ���, p<0.001).

https://doi.org/10.1371/journal.pone.0215234.g006
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these FOX family transcription factors (AURKB, VEGFA, and TRAIL receptors 1 and 2) [7,

8]. RA, bexarotene, and the combination increased the transcript levels of FOXO1 and

FOXO3A in SCC-4 and SCC-25 cells (Fig 1). A previous study demonstrated that RA reduces

the phosphorylation of FOXO3A and induces its nuclear translocation to initiate TRAIL-

mediated apoptosis in acute promyelocytic leukemia (APL) [47]. By microarray analysis Seo

et al. found that bexarotene increased the transcript (and protein) levels of FOXO3A in

human breast cancer cells [48]. Also, RA has been shown to increase FOXO1 expression, in a

time-dependent manner, in human breast cancer [49]. Because all FOXO isoforms have an

LxxLL motif, which is involved in interactions with nuclear hormone receptors, FOXO tran-

scription factor-binding partners include several nuclear hormone receptors, such as retinoic

acid receptor (RAR) and retinoid X receptor (RXR) [50]. RA, bexarotene, and the combination

also reduced the transcript levels of FOXM1 (Fig 1). Consistent with the data obtained in this

study, other groups have determined that RA can reduce the expression of FOXM1 in neuro-

blastoma [51] and in ovarian cancer [52] cells. We conclude that the FOXO1, FOXO3A, and

FOXM1 transcription factors are likely targets of retinoids (retinoic acid) and rexinoids (bex-

arotene) in OSCC.

Since we found significant changes in the FOXO1, FOXO3A, and FOXM1 transcript levels

induced by RA and/or bexarotene (Fig 1), we next wanted to determine if the expression of

downstream target genes is altered by these drugs. Aurora kinase B, a gene involved in the reg-

ulation of cell proliferation [7] whose transcript levels are induced by FOXM1 [53], exhibited

reduced transcript levels when OSCC-derived cells were treated with RA and RA+Bex (Fig 2A

and 2E). Since VEGFA is a well-established oncogene that induces angiogenesis and is a direct

target of both FOXO3A [54] and FOXM1 [55], the reduction of VEGFA transcript levels is

likely to be the result of antagonism of FOXO3A and FOXM1 on the VEGFA promoter. Since

RA reduces VEGFA transcript levels (Fig 2B and 2F), these data suggest that RA can reduce

activators involved in oncogenesis partially by increasing and reducing the expression of

FOXO3A and FOXM1, respectively.

The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors have been

implicated in inducing apoptosis in cancer cells [56]. Clinical studies in which these receptors

were activated by monoclonal antibodies or small molecule compounds have demonstrated

the importance of TRAIL receptors in various malignancies such as OSCC, non-small cell lung

cancer, and metastatic colorectal cancer [57]. FOXO3A has been implicated in the regulation

of other pro-apoptotic genes, such as Bim, PUMA, and FasL in multiple cancer-derived and

neoplastically transformed cell lines [58]. Similar to FOXO3A’s role in pro-apoptotic mecha-

nisms, recent studies have established that retinoic acid [59, 60], and bexarotene [61] can

induce the expression of TRAIL receptors, and we detected increases in the transcript levels of

these receptors with the overexpression of ectopic FOXO3A and with the co-administration of

RA and bexarotene (Fig 2).

Since retinoic acid response elements (RAREs, e.g. [GGTTCA(N5)AGTTCA]) have not

been identified within the promoter regions of FOX family members, it can be inferred that

retinoids regulate FOXM1 (and other FOX protein) expression through indirect responses

[32]. Thus, indirect regulation of FOXM1 by retinoids would occur because some FOXM1

transcriptional activators are directly suppressed by RA and other retinoids. Transcription fac-

tors that both bind to FOXM1 promoter regions and activate FOXM1 include but are not lim-

ited to GLI1, SOX2, STAT3, CTCF, HIF1 alpha, and E2F [62]. Retinoid-induced repression of

the Hedgehog-Gli signaling pathway is an example of how a secondary retinoid response can

affect the expression of FOXM1. Increased expression of GLI1 has been associated with poor

prognosis of carcinomas stemming from the oral cavity [63, 64], the esophagus [65], the lung

[66], and the skin [67]. While information is limited about retinoid regulation of GLI1 in
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OSCC, RA has been shown to reduce GLI1 activity in murine keratinocytes [68] and basal cell

carcinoma [69].

Additionally, retinoids have long been implicated in regulating cell cycle events, specifically

by inducing the degradation of various cyclins and cyclin dependent kinases (CDKs) (reviewed

in [33]). Previous studies have reported overexpression of CDK4/6 in multiple tumor types

including OSCC [70–72]. An in vitro systematic substrate screen in several cancer-derived

cells lines concluded that CDK4/6 can phosphorylate and stabilize FOXM1 to promote entry

into the S phase of the cell cycle [73]. These two findings suggest that RA has the potential to

destabilize FOXM1 activity in OSCC by degrading CDK4/6. In the current study, we demon-

strated that RA can modulate transcript levels and downstream activities of FOXM1; however,

further investigation in OSCC-derived cell lines are necessary to determine potential retinoid-

specific effects on FOXM1 expression and activity.

Retinoic acid and bexarotene induce FOXO3A binding on FOXM1 target

promoters

To gain a greater understanding of the transcriptional roles of FOXO3A and FOXM1 in

OSCC, we generated SCC-25 cells that either stably overexpress exogenous FOXO3A and

FOXM1 or that express almost no FOXM1 (S1A and S1B Fig). OSCC-derived cells expressing

exogenous FOXO3A and shRNA constructs against FOXM1 had similar target gene expres-

sion patterns to parental cells treated with RA and/or Bex (Figs 2 and 4; S1 Fig). Additionally,

opposing transcriptional patterns were observed in SCC-25 cells that overexpressed FOXM1,

compared to cells stably expressing FOXO3A and shRNA-FOXM1 constructs (Figs 2 and 4; S1

Fig). We also examined the binding of FOXO3A and FOXM1 at promoters of target genes

(Fig 5). Changes in target gene expression by either FOXO3A or FOXM1 can be accomplished

through the binding of these transcription factors to target promoters. Since FOXO3A and

FOXM1 bind to the same DNA motifs (5’-GTAAA(C/T)A-3’) found in forkhead response ele-

ments (FHREs), the binding of a specific FOX transcription factor (FOXO3A or FOXM1)

could produce opposing transcriptional outputs based on the recruitment of activators or

repressors associated with FOXO3A or FOXM1 [27, 74]. Previous studies using ChIP and

other promoter analyses have confirmed direct binding of FOXM1 and/or FOXO proteins to

the promoter regions of FOXM1, Aurora kinase B, CDC25, VEGFA, BIRC5, TRAIL receptor 1

and 2 [7]–target promoters that were included in this study. Sole somatic deletion of FOXO3

in murine endothelial cell homeostasis [75] and hematopoiesis [76] models did not yield severe

phenotypic effects, indicating that functional redundancy exists among FOXO transcription

factors (FOXO1, FOXO3A, and FOXO4). When CRISPR/Cas9 technology was used to knock

out FOXO3A in UM-SCC-1 cells (another OSCC-derived cell line), FOXM1 transcript levels

were significantly increased [28] confirming an inhibitory role of FOXO3A for FOXM1.

Although we did not investigate the effects of RA and/or bexarotene in FOXO3A-deficient

SCC25 cells, we speculate that FOXM1 and its target genes would still be suppressed in the

absence of FOXO3A. Taken together, in the absence of FOXO3A expression, RA- and/or Bex-

induced expression of FOXO1 (Fig 1) could reduce and antagonize FOXM1 promoter binding

to downstream targets.

Competition for the same DNA motif-binding sites between members of the same gene

family has been observed for other transcription factors, such as TCF7 and TCF7l1 (formerly

known as TCF1 and TCF3, respectively) [77, 78]. Another study concluded that FOXO and

FOXM1 promoter binding has antagonistic effects on the cell cycle inhibitors p21 and p27;

FOXM1 promotes the degradation and FOXOs promote the activation of these inhibitors [79].

Additionally, the antagonistic relationship between FOXO and FOXM1 transcription factors
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has been shown by their competitive binding to insulin-like growth factor 1 (IGF1) regulatory

sequences in developing cardiomyocytes [80]. Here we report a similar, antagonistic effect

with respect to the binding of FOXO3A and FOXM1 on the promoters of FOXM1, Aurora

kinase B, CDC25, and BIRC5 (Fig 5). On the FOXM1 and Aurora kinase B promoters, we

found inverse binding of FOX3A and FOXM1 in the RA and/or bexarotene treatment versus

untreated groups (Fig 5). Based on the changes in transcript levels of FOXO3A and FOXM1

induced by RA and/or bexarotene (Fig 1), increased FOXO3A binding on target promoters

could result from the reduction of FOXM1 expression. Also, changes in transcriptional activity

caused by FOXO3A could be induced, in part, by the recruitment of other transcriptional fac-

tors and epigenetic modifiers by FOXO3A [81].

The overexpression of FOXO3A stimulates the recruitment of histone

deacetylase (HDAC) 1 and HDAC2 to target promoters

Over 18 human histone deacetylases (HDACs) have been identified and grouped into four clas-

ses based on their yeast homologs. By deacetylating lysines on core histones and other proteins,

HDACs play critical roles in epigenetic regulation and in the control of cellular functions, such

as cell-cycle progression, cell differentiation, cell migration and invasion, apoptosis, and angio-

genesis [82]. Briefly, HDAC1 and HDAC2 are members of Class I HDACs, which also includes

HDAC3 and HDAC8 [82]. Retinoic acid has been implicated in the process of deacetylation

and acetylation of histones induced by histone acetyltransferases (HATs) [83–85]. Similar to

RA’s ability to recruit multiple HDACs, Li et al. found that bexarotene can modulate cyclin D1

transcription through the recruitment of HDAC1 in mammary epithelial cells [86].

It has been proposed that there is a dual plasticity by which FOX proteins can direct tran-

scription. In addition to being conventional activators or repressors of gene expression, many

FOX subtypes can function as pioneer transcription factors. Pioneer transcription factors,

through initial binding to regulatory sequences, serve as building blocks for inducing tran-

scription by opening condensed DNA and allowing the association of other factors involved in

transcription [87]. Of the FOX family, FOXA proteins (specifically, FOXA1 and FOXA2) have

been established as true pioneer factors by their ability to induce histone 3 lysine 4 (H3K4)

methylation and DNA demethylation in certain cellular contexts [88]. Furthermore, FOXA1

has been shown to be a pioneer factor in steroid hormone signaling in breast cancer- and pros-

tate cancer-derived cell lines [89, 90]. NMR studies have confirmed significant structural simi-

larities between FOXA and FOXO transcription factors within the forkhead domain,

suggesting potential similar pioneering functions for FOXO proteins [91]. Although there are

a few studies confirming the pioneer nature of FOXO1 [92], information concerning FOX-

O3A’s role as a pioneer transcription factor is very limited. Even though FOXO3A has not

been found to possess direct methylating or demethylating properties, FOXO3A binding has

been linked to the recruitment of HDAC1 to the VEGFA promoter in MDA-MB-231 cells, a

metastatic breast cancer cell line [27], similar to our findings in SCC-25 cells. In the SCC-25

FOXO3A #3 line, compared to the parental SCC-25 cell line, we detected increased recruit-

ment of both HDAC1 and HDAC2 to FOXM1, Aurora kinase B, and VEGFA promoters (Fig

6). These ChIP analyses suggest that FOXO3A is a mediator of RA- and/or bexarotene-

induced HDAC1 and HDAC2 recruitment to the FOXM1, Aurora kinase B, and VEGFA pro-

moters. This could occur because more FOXO3A mRNA is present in the cells after RA and/

or Bex addition (Fig 1). Further analyses of both FOXO1 and FOXO3A must be conducted to

determine their capabilities as authentic pioneer transcription factors in OSCC.

We found that RA and/or bexarotene increase the transcript levels of FOXO1, FOXO3A,

and TRAIL Receptor 1, and 2, and conversely reduce the transcript levels of FOXM1, Aurora
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kinase B, and VEGFA. Additionally, RA and/or bexarotene reduce proliferation of SCC-25

cells and alter the binding of FOXO3A and FOXM1 to the FOXM1, Aurora kinase B, CDC25,

and BIRC5 promoters. Overexpression of FOXO3A reduces cell proliferation; reduces the

transcript levels of oncogenic and pro-apoptotic genes; and induces the recruitment of

HDAC1 and HDAC2 to the promoters of FOXM1, Aurora kinase B, and VEGFA. Also,

shRNA-induced silencing of FOXM1 mimics cell proliferative properties and target gene

expression found in cells that overexpress FOXO3A. Collectively, the results from this study

demonstrate: the opposing effects that the FOXO3A and FOXM1 transcription factors have on

each other; the regulation of these two transcription factors by RA and bexarotene; and the

potential role of FOXO3A as a pioneer transcription factor in OSCC.

Materials and methods

Cell culture, chemicals, and antibodies

Human oral squamous cell carcinoma-derived cell lines SCC-4 (Cat. #CRL-1624, ATCC,

Manassas, VA) and SCC-25 (Cat. #CRL-1628, ATCC) were cultured as described [93]. HPLC

grade all-trans retinoic acid (RA; Cat. #R2625, Sigma, St. Louis, MO) and/or bexarotene (Bex;

Cat. #SML0282, Sigma), dissolved in 100% dimethyl sulfoxide (DMSO4; Cat. #472301, Sigma),

were added to media to a final concentration of 1 μM and 10 μM, respectively (final concentra-

tion of DMSO4, 0.1%).

For Western blotting (WB) and/or Chromatin immunoprecipitation (ChIP) the following

antibodies were used: mouse monoclonal anti-Actin (C4) (WB; 1:40,000; Cat. #MAB1501, Lot

#2145928, EMD Millipore, Billerica, MA), rabbit polyclonal anti-FOXM1 (K-19) (WB and

ChIP; 1:500; Cat. #sc-500, Lot #12115, Santa Cruz Biotechnology, Inc., Dallas, TX), rabbit

monoclonal anti-FOXO3A (75D8) (WB; 1:1000; Cat. #2497, Lot #6, Cell Signaling Technology,

Inc., Danvers, MA), rabbit polyclonal anti-HA (ChIP; Cat. #ab9100, Lot #GR203089-1, Abcam,

Cambridge, MA), rabbit polyclonal anti-HDAC1 (ChIP; Cat. #06–720, Lot #DAM1821113,

EMD Millipore), and rabbit polyclonal anti-HDAC2 (ChIP; Cat. #ab7029, Lot #904782,

Abcam). The following contains the validation references for the described antibodies: anti-

Actin [60, 94], anti-FOXM1 [95], anti-FOXO3A [96], anti-HA [77], anti-HDAC1 [84], and

anti-HDAC2 [84].

Cell proliferation assays

SCC-4 and SCC-25 human cell lines were plated in 6-well plates at a density of 5x103 cells/well

in media supplemented with nothing, DMSO4, RA (all-trans retinoic acid), Bex (bexarotene),

and RA+Bex. Cells were counted over a period of nine days using a Coulter Z1 electronic par-

ticle counter (Beckman Coulter, Inc., Fullerton, CA). For these assays, Day 0 represented the

plating day and Day 1 represented the first count and the administration of the drugs

described above. The medium was changed every two days and the cells were counted at days

1, 4, 7, and 10.

Generation of FOXO3A overexpressing, FOXM1 overexpressing, and

FOXM1 knockdown SCC-25 cells

The stable SCC-25-FOXO3A cell line was generated by co-transfecting HA-tagged human

FOXO3A, which was previously cloned into pSG5 vector with expression driven by the SV40

promoter (FOXO3A-HA; Addgene Cat. #1787, Cambridge, MA) and the pLKO.1 vector (to

induce puromycin resistance) at a 9:1 ratio (construct to empty vector). Human FOXM1

cDNA (Cat. #MHS6278-202756621, Clone id# 3881055, GE Healthcare Dharmacon, Lafayette,
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CO) was cloned into the pSG5 vector and overexpressed in SCC-25 cells as described above.

The FOXM1 overexpressing shRNA constructs (Cat. #SHCLNG-NM_008021, Sigma) that tar-

get FOXM1 were cloned into the pLKO.1 vector and transduced into SCC-25 by lentiviral

infection as described [77].

Chromatin immunoprecipitation (ChIP) assays

SCC-25 cells (2x106) were plated in 15 cm2 plates and on the following day the cells were

treated for 72 hours. The culture medium was changed at 48 hours and the vehicle control and

drugs were added for another 24 hours. Briefly, 20 μg of extracted DNA was subjected to the

one-step ChIP protocol in which DNA/protein complexes were incubated with either 2 μg of

antibody or an IgG (negative control) as in [97]. The primer pairs used for the ChIP assays are

shown in S1 Table.

RNA isolation, reverse transcription, and qRT-PCR

SCC cells (5x104) were plated in 60 mm plates; 24 hours later the cells were treated as described

above for 72 hours. Then, the cells were harvested in TRIzol (Cat. #15596–026, Life Technolo-

gies, Norwalk, CT) and total RNA was extracted, as described by the manufacturer. From total

extracted RNA (1 μg), the qScript cDNA Synthesis Kit (Cat. #95048, Quanta Biosciences, Inc.,

Gaithersburg, MD) was used to generate cDNA. For quantitation, target gene fold changes

were normalized to HPRT1 and to untreated cells. Primer pairs that span one intronic region

can be found in S2 Table.

Western blot analysis

We performed Western blotting of protein lysates (20 μg) extracted from SCC cell lines as

described in [98]. The dilutions of the anti-HA, the anti-FOXM1, and the anti-beta Actin anti-

bodies were 1:1000, 1:250, and 1:10000, respectively. We performed densitometry to normalize

target protein levels to the levels of beta actin.

Statistical analyses

All experiments included at least four independent biological assays (n� 4) and the results are

presented as mean ± SEM; the statistical analyses were performed using Prism 6.0 (GraphPad

Software, Inc., La Jolla, CA). For gene expression and ChIP assays statistical differences

between the various treated groups by using analysis of variance (ANOVA); and multiple com-

parisons between groups were determined by the Bonferroni post-hoc test. To assess the statis-

tical significance of the recruitment of HDAC1 and HDAC2 in parental SCC-25 and SCC-

25-FOXO3A-HA lines, the Student’s t-test was performed.

Supporting information

S1 Fig. The overexpression of FOXO3A and the silencing of FOXM1 induce changes cellu-

lar proliferation and changes in gene expression of downstream FOX targets. Representa-

tive Western blots confirm the protein levels of FOX transcription factors in SCC-25 cells

expressing HA-tagged FOXO3A constructs (A) or shRNA constructs targeting FOXM1 (B).

The changes in the gene expression of Aurora kinase B (C) and TRAIL receptor 2 (D) in the

SCC-25 line containing constructs that drive the overexpression of FOXO3A, the overexpres-

sion of FOXM1, and the silencing of FOXM1 were determined by QRT-PCR analysis. The

QRT-PCR data show the results of three independent experiments ± SEM. Post-hoc analyses
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show �, p<0.05 and ��, p<0.01.

(TIFF)

S1 Table. Primers used for chromatin immunoprecipitation (ChIP) assays.

(XLSX)

S2 Table. Primers used for QRT-PCR.

(XLSX)
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