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Abstract: The propane steam reforming (PSR) reaction was investigated over catalysts derived
from LaNiO3 (LN), La0.8Sr0.2NiO3 (LSN), and noble metal-substituted LNMx and LSNMx (M = Ru,
Rh; x = 0.01, 0.1) perovskites. The incorporation of foreign cations in the A and/or B sites of the
perovskite structure resulted in an increase in the specific surface area, a shift of XRD lines toward
lower diffraction angles, and a decrease of the mean primary crystallite size of the parent material.
Exposure of the as-prepared samples to reaction conditions resulted in the in situ development of
new phases including metallic Ni and La2O2CO3, which participate actively in the PSR reaction.
The LN-derived catalyst exhibited higher activity compared to LSN, and its performance for the
title reaction did not change appreciably following partial substitution of Ru for Ni. In contrast,
incorporation of Ru and, especially, Rh in the LSN perovskite matrix resulted in the development of
catalysts with significantly enhanced catalytic performance, which improved by increasing the noble
metal content. The best results were obtained for the LSNRh0.1-derived sample, which exhibited
excellent long-term stability for 40 hours on stream as well as high propane conversion (XC3H8 = 92%)
and H2 selectivity (SH2 = 97%) at 600 ◦C.

Keywords: propane; steam reforming; hydrogen production; perovskite; ruthenium; rhodium;
La2O2CO3; stability

1. Introduction

The continuously increasing energy demand associated with global population growth
and the rapid evolution of the industrial sectors has led to the search for alternative energy
systems that are affordable, reliable, and sustainable, with low environmental impact [1,2].
Hydrogen (H2) appears to be the most promising future energy carrier since, when com-
bined with fuel cells, it makes it possible to produce electricity for mobile, stationary,
and industrial applications with minimal pollutant emissions [3–5]. Hydrogen is mainly
produced via hydrocarbon conversion employing steam reforming (SR), dry reforming
(DR), autothermal reforming (ATR), and partial oxidation (POX) reactions [6]. Currently,
the most common industrial process for hydrogen production is the steam reforming of
natural gas, which accounts for ca. 85% of the total H2 produced worldwide [3,4,7]. Other
fuels that can be used for this purpose include ethanol, methanol, gasoline, ammonia, and
dimethyl ether [8,9] as well as light alkanes such as propane and butane [10–12]. The use
of propane as a source of hydrogen has attracted significant attention in recent years be-
cause of its favorable physical properties (liquefaction at room temperature and ca. 9 bar),
which facilitate its safe handling, storage, and transportation as well as its relatively low
cost, abundance, and availability through the existing distribution network of liquefied
petroleum gas (LPG) [13–17].
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Propane steam reforming (PSR) is a strongly endothermic reaction (1) requiring high
temperatures (>700 ◦C) to succeed high H2 yields, and proceeds in parallel with the
moderately exothermic water-gas shift (WGS) reaction (2):

C3H8 + 3 H2O↔ 3 CO + 7 H2 ∆H◦ = 499 kJ mol−1 (1)

CO + H2O↔ CO2 + H2 ∆H◦ = −41 kJ mol−1 (2)

By-products such as methane and ethylene may also be produced under reaction
conditions via the CO/CO2 methanation [18] and propane decomposition reactions [19],
respectively. The PSR reaction can be carried out by employing Ni-based catalysts, which
have been extensively studied because of the good activity and low cost of nickel, compared
to precious metals [19]. However, the application of high temperatures results in the
sintering of Ni particles and the concomitant deterioration of catalytic performance [20,21].
In addition, exposure of Ni-based catalysts to reforming reaction conditions results in
carbon deposition on their surface via the Boudouard reaction or/and the decomposition
of propane and by-product hydrocarbons such as methane and ethylene, which further
accelerate the catalyst deactivation [11,15,22–25]. Consequently, research efforts currently
focus on the development of novel catalytic systems, with improved resistance against
coke deposition and metal particle agglomeration [21]. In this respect, noble metals such
as Rh, Ru, Pt, and Ir have been studied either alone or in combination with Ni because
of their lower tendency to form coke [14,26–30]. The addition of promoters such as alkali
metals in the form of oxides has also been shown to suppress coke deposition, but results
in generally inferior catalytic activity [10,22].

Recently, perovskite-derived catalysts have attracted significant attention for the
production of H2 or syngas via reforming reactions [3] because of their high activity, carbon
tolerance, thermal stability, and low cost [23,31]. Perovskites are a class of crystalline oxides
described by the general formula ABO3, where the A-site (12-fold coordination) is generally
occupied by an alkaline-earth or alkali metal cation with a larger size, and the B-site (6-
fold coordination) is occupied by a transition metal ion with a smaller radius [3,32,33].
Generally, the A-sites provide the basicity and high thermal stability of the whole structure.
When perovskites are exposed to a reductive environment, the B-site cations migrate
(exsolve) spontaneously from the bulk to the surface, forming highly dispersed metal
nanoparticles. The exsolved metal particles, which are confined on the catalyst surface,
exhibit superior reactivity and stability due to their enhanced resistance to coking and
metal sintering [32,33]. Removal of the active metal from the host lattice results in the
rearrangement of the nonreducible metals and the formation of oxygen vacancies [32]. The
physicochemical and catalytic properties of perovskite-derived catalysts can be greatly
influenced by the partial substitution of the A- and/or B-sites by other metal cations,
which results in the formation of solids described by the formula A1−xA′xB1−yB′yO3 [31,34].
As a general trend, A-site substitution enhances the oxygen mobility in the perovskite
structure by generating oxygen vacancies, which suppress the carbon deposition, while
B-site substitution tends to increase the activity and stability of the derived catalysts due to
bimetallic synergy effects [3,33].

The performance of perovskite-derived catalysts for hydrogen production has been
studied by several authors. The majority of these studies focused on the dry reforming
of methane [3,35–43] and to a lesser extent on the reformation of other feedstocks such as
acetic acid [44,45], biomass tar [46], bio-oil [47], diesel [48–50], ethane [51], ethanol [52–54],
glycerol [55,56], phenol [57], and toluene [58,59]. The propane reforming over perovskite-
derived catalysts has rarely been reported in the literature [60–62]. For example, Lim
et al. [60] investigated the autothermal reforming of propane over Ce-modified Ni/LaAlO3
catalysts and reported the increased thermal stability and low carbon deposition over
the Ce-doped sample. Yeyongchaiwat et al. [62] studied the oxidative reforming of C3H8
over Pr2Ni0.75Cu0.25Ga0.05O4 perovskite whereas Sudhakaran et al. [61] investigated the
dry reforming of propane over the SrNiO3 catalyst. The observed enhancement of CO
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selectivity and minimal carbon formation was attributed to the strong basicity of the
perovskite [61].

In the present work, the propane steam reforming reaction was investigated over cata-
lysts derived from LaNiO3-based perovskites promoted with Sr and/or noble metals (Ru,
Rh). The LaNiO3 perovskite was chosen as the parent material because of its well-known
activity and stability for reforming reactions [3,63] originating from its transformation into
metallic nickel (Ni0) and lanthanum oxide (La2O3) when exposed to reductive conditions
at high temperatures [31]. The effects of partial substitution of La by Sr in the A-sites
and/or of Ni by Ru or Rh in the B-sites of LaNiO3 have been investigated in an attempt
to systematically study the effects of the nature and composition of the A- and B-sites
on the catalytic performance for the title reaction. Strontium was chosen because of its
ability to increase the number of vacancies that facilitates the mobility of oxygen toward
the surface of the solid, to improve the adsorption and desorption of CO2, and to enhance
the resistance of the derived catalysts against carbon deposition [64–66]. On the other hand,
partial substitution of Ni by small amounts of Ru or Rh aimed at further improving the
catalytic activity and resistance against deactivation, because of the excellent affinity of
these metals for the rupture of C–C and C–H bonds and their ability to minimize coke
accumulation [32,52,67,68]. Results obtained show that catalysts derived from LSNRux and,
especially, LSNRhx perovskites are characterized by high activity and selectivity toward H2
as well as by long-term stability for the PSR reaction. It is anticipated that the present work
may contribute toward understanding the effects of the nature and composition of the A
and B sites on the catalytic performance of perovskite-derived catalysts, thereby facilitating
the design of efficient catalytic materials for the steam reforming of propane and other
similar reactions.

2. Materials and Methods
2.1. Synthesis of Perovskite-Type Oxides

A series of perovskites including LaNiO3 (LN), La0.8Sr0.2NiO3 (LSN), and noble metal-
substituted oxides denoted in the following as LNMx and LSNMx (M = Rh or Rh; x = 0.01
or 0.1) were prepared with the combustion synthesis method [69]. Citric acid monohydrate
(Merck, Darmstadt, Germany) was used as a fuel whereas Sr(NO3)2 (Sigma-Aldrich, St.
Louis, MO, USA), La(NO3)3·6H2O (Alfa Aesar, Karlsruhe, Germany), Ni(NO3)2·6H2O
(Alfa Aesar, Karlsruhe, Germany), Ru(NO)(NO3)3 (Alfa Aesar, Karlsruhe, Germany), and
N3O9Rh (Alfa Aesar, Karlsruhe, Germany) were used as metal precursor salts. In a typical
synthesis, stoichiometric quantities of the respective metal nitrates were dissolved in triple-
distilled water followed by the addition of citric acid, NH4NO3 (extra-oxidant), and, finally,
ammonia solution for the neutralization of the excess citric acid. The resulting solution was
heated until ignition at ca. 400 ◦C and the powder obtained was calcined at 900 ◦C for 5 h
and then ground in a mortar. The notations and nominal formulas of the materials thus
prepared are listed in Table 1.

2.2. Physicochemical Characterization

The specific surface areas (SSAs) of the freshly prepared and the used materials were
determined with the BET method using a Micromeritics (Gemini III 2375) instrument (Nor-
cross, GA, USA). X-ray diffraction (XRD) patterns were obtained on a Bruker D8 instrument
(Bruker, Karlsruhe, Germany) and were analyzed by employing JCPDS data files. The
average crystallite size of the resulting phases was estimated by applying the Scherrer
equation. Details on the above methods and procedures can be found elsewhere [70]. Scan-
ning electron microscopy (SEM) images were obtained on the JEOL JSM 6300 instrument
(JEOL, Akishima, Tokyo, Japan), equipped with X-ray Energy Dispersive Spectrometer,
EDS (ISIS Link 300, Oxford Instruments, Oxford, UK).
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Table 1. Notation, nominal composition, BET specific surface area, and main phases detected with XRD for the as-prepared
(fresh) perovskites and the used catalysts.

Notation Nominal Formula Specific Surface Area
(m2 g−1) Phases Detected with XRD

Fresh Used Fresh Used

LN LaNiO3 3 42 LaNiO3
(rhombohedral, rh)

La2O2CO3
Ni

LSN La0.8Sr0.2NiO3 5 18 Sr0.5La1.5NiO4
NiO

La2SrOx
La2O2CO3

Ni

LNRu0.01 LaNi0.99Ru0.01O3 4 56 LaNiO3 (rh) La2O2CO3
Ni

LNRu0.1 LaNi0.9Ru0.1O3 6 71 LaNiO3 (cubic)
La2O2CO3

La2O3
Ni

LSNRu0.01 La0.8Sr0.2Ni0.99Ru0.01O3 6 55

Sr0.5La1.5NiO4
LaNiO3 (rh)

SrNiO3
NiO

La2O2CO3
SrCO3
SrC2
Ni

LSNRu0.1 La0.8Sr0.2Ni0.9Ru0.1O3 8 59
Sr0.5La1.5NiO4

LaNiO3 (rh)
NiO

La2O2CO3
SrCO3
La2O3

Ni

LSNRh0.01 La0.8Sr0.2Ni0.99Rh0.01O3 6 66 Sr0.5La1.5NiO4
NiO

La2O2CO3
SrCO3

Ni

LSNRh0.1 La0.8Sr0.2Ni0.9Rh0.1O3 6 29 Sr0.5La1.5NiO4
NiO

La2O2CO3
SrCO3
La2O3

Ni

2.3. Catalytic Performance Tests

The catalytic performance of the synthesized materials for the propane steam reform-
ing reaction was evaluated using a fixed bed reactor operating at near atmospheric pressure.
The reactor consists of a 35-cm long quartz tube (6 mm O.D.) with an expanded 6-cm long
section in the middle (12 mm O.D.) where the catalyst was placed. The flow of the inlet
gases is controlled by employing mass-flow controllers (MKS Instruments, Andover, MA,
USA). An HPLC pump (type Marathon; Spark-Holland, Emmen, The Netherlands) was
used to feed water into a vaporizer with a set temperature of 200 ◦C and the steam pro-
duced was mixed with the gas stream coming from the mass-flow controllers. The reaction
temperature was measured in the middle of the catalyst bed using a K-type thermocouple
placed within a quartz capillary well running through the cell. The reactor is placed in
an electric furnace, the temperature of which is controlled using a second K-type thermo-
couple placed between the reactor and the walls of the furnace. A pressure indicator was
used to measure the pressure drop in the catalyst bed. A cold trap was placed at the exit of
the reactor to condense water before the introduction of the sample to the analysis system.
Separation and analysis of hydrocarbons such as C3H8, C3H6, C2H6, C2H4, and CH4 was
accomplished with a gas chromatograph (GC-14A, Shimadzu, Kyoto, Japan) equipped with
a Carbosieve column and an FID detector, whereas analysis of Ar, CO, CO2, and CH4 was
made using a Carboxen column and a TCD detector using He as the carrier gas. A separate
GC-TCD system (GC-8A, Shimadzu, Kyoto, Japan), operated with N2 as the carrier gas,
was used to measure the amount of produced H2. Determination of the response factors of
the GC detectors was performed using gas streams of known composition.
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In a typical experiment, 100 mg of a fresh perovskite sample (particle size: 0.18 mm <
d < 0.25 mm) was placed in the reactor and heated at 750 ◦C under He flow. The flow was
then switched to the reaction mixture (200 cm3 min−1) consisting of 2.3% C3H8, 22.9% H2O,
and 0.7% Ar, which was used as an internal standard (He balance). The reactor effluent
was analyzed using the gas chromatographs described above. The reaction temperature
was then stepwise decreased down to 450 ◦C and similar measurements were obtained.
The propane conversion was calculated using the following equation

XC3H8 =
[C3H8]in − [C3H8]out

[C3H8]in
× 100 (3)

where [C3H8]in and [C3H8]out are the inlet and outlet concentrations of C3H8, respectively.
The selectivities toward carbon-containing products (e.g., CO, CO2, CH4, C2H4, C2H6)

were evaluated according to:

Si =
[Ci]× n

∑[Ci]× n
× 100 (4)

where n is the number of carbon atoms in product i and Ci is its concentration at the reactor
effluent. Hydrogen selectivity is defined as the concentration of H2 in the effluent gas over
the sum of the concentrations of all reaction products containing hydrogen, multiplied by
the number of hydrogen atoms (y) in each product:

SH2 =
[H2]

[H2] + ∑
( y

2 ×
[
CxHy

]
i

) × 100 (5)

2.4. Temperature-Programmed Oxidation Experiments

The amount of carbon deposits accumulated on the catalyst surface following exposure
to reaction conditions was estimated with temperature-programmed oxidation (TPO) ex-
periments employing the apparatus and following the procedure described elsewhere [71].
Briefly, the “used” catalyst sample was placed in a quartz microreactor, exposed to a 3%
O2/He mixture at room temperature for 10 min, and then heated linearly (β = 10 ◦C min−1)
up to 750 ◦C under the same flow. Analysis of gases at the reactor effluent was accom-
plished by employing an online mass spectrometer (Omnistar/Pfeiffer Vacuum). The
transient-MS signals at m/z = 2 (H2), 18 (H2O), 28 (CO), 32 (O2), and 44 (CO2) were contin-
uously recorded. Responses of the mass spectrometer were calibrated against self-prepared
mixtures of accurately known composition.

3. Results and Discussion
3.1. Physicochemical Characteristics of the as-Prepared Perovskite Samples

The specific surface areas of the as-prepared (fresh) perovskite samples were measured
with the BET method and the results obtained are listed in Table 1. It was observed that
the SSA of LaNiO3 (LN) was very low (3 m2 g−1). This is typical for perovskite-type oxide
structures where SSA corresponds mainly to the external area of non-porous particles [72].
Partial substitution of La by Sr resulted in an increase of the SSA to 5 m2 g−1 for the
La0.8Sr0.2NiO3 (LSN) sample. This is in agreement with the results of previous studies,
which showed that partial substitution of the A-sites of a perovskite generally results
in an increase of the SSA induced by structural disorder and delay in the crystallite
growth [52,73,74]. A further increase of the SSA up to 8 m2 g−1 was observed upon partial
substitution of Ni by Ru or Rh in the B-sites of the LN and LSN perovskites, which is more
significant for the samples containing larger amounts of noble metals (Table 1).

The XRD patterns of the freshly prepared samples are shown in Figure 1, and the
various phases detected in each case are listed in Table 1. It was observed that the diffrac-
togram obtained for LN (Figure 1A, trace a) contained only reflections attributable to the
rhombohedral LaNiO3 perovskite structure (JCPDS Card No. 34-1028). Substitution of
1% at. of Ni by Ru in the B-sites of LN (LNRu0.01 sample) resulted in a shift of the XRD
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peaks toward lower angles (trace b). This shift, which becomes more pronounced upon
further increase of the Ru content (LNRu0.1 sample, trace c), indicates the preservation of
the LaNiO3 perovskite structure but in the cubic system (JCPDS Card No. 33-710).
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Figure 1. X-ray diffraction patterns of the as-prepared perovskite samples: (A) LNRux, (B) LSNRux,
and (C) LSNRhx. In the magnified pattern on the right of each graph is shown the peak attributed to
the (200) reflection.
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The sample obtained following partial substitution of 1% at. Ni by Ru in the LSN
structure (LSNRu0.01 sample) was also characterized by the presence of Sr0.5La1.5NiO4 and
NiO phases, whereas smaller peaks due to LaNiO3 (cubic) and SrNiO3 (hexagonal) could
also be observed (trace b). Increasing the Ru content resulted in the formation of the same
phases except for SrNiO3, which did not appear in the XRD pattern of the LSNRu0.1 sample
(trace c). The presence of the NiO phase in the diffraction patterns of all LSNRux samples
(Figure 1B) indicates that a portion of nickel is located outside the perovskite structure.
Regarding the LSNRhx samples, the XRD patterns presented in Figure 1C show that the
partial substitution of Ni by Rh in the B-sites of the perovskite resulted in the formation of
the same main phases observed for LSN (Sr0.5La1.5NiO4 and NiO). The peaks attributed
to Sr0.5La1.5NiO4 were much broader for the LSNRh0.1 sample (trace c), compared to
LSNRh0.01 (trace b), indicating the development of smaller crystallites. The calculated
cell parameters of the crystalline phases detected by XRD for the as-prepared perovskite
samples are presented in Table S1. It was observed that the incorporation of Ru or Rh in
the LSN samples resulted in an increase in the a cell parameter and a decrease in the c cell
parameter of the Sr0.5La1.5NiO4 tetragonal structure.

It is of interest to note that the XRD patterns presented in Figure 1 do not contain any
peaks attributable to Ru or Rh species, indicating that noble metals are incorporated in
the perovskite structure. It is known that the formation of perovskites may be restricted
depending on the size of the cations present in the A and/or B sites of the material. In
general, the radius of cation A should be larger than 0.09 nm, whereas the radius of cation
B should be larger than 0.051 nm [75]. The partial substitution of A by an alkaline earth
metal A′ and/or the partial substitution of B by another transition metal B′ may result in
the destruction of the perovskite matrix [75,76]. This can be avoided if the radii of A (rA),
B (rB), and oxygen (rO) ions in the perovskite structure obey the restriction 0.75 < t < 1.0,
where t is the tolerance factor expressed by [75]:

t =
(rA + rO)√
2(rB + rO)

(6)

Based on the above, and considering the sizes of the Ru and Rh cations, it may be
concluded that the noble metals used as promoters in this work can only be incorporated
in the B-sites of the LN and LSN perovskite structures.

As already mentioned, the partial substitution of Ni by Ru or Rh resulted in a shift
in the XRD reflections of the LN and LSN perovskites toward lower angles (2θ), which is
accompanied by a decrease in the mean primary size of the perovskite crystallites, estimated
by the Scherrer equation. This was the case, for example, for the (200) reflection which can
be clearly discerned in the XRD patterns of all samples investigated (see expanded sections
of the XRD patterns in Figure 1). The dependence of the (200) diffraction angle (2θ) and
the mean crystallite size on the type (Ru or Rh) and content (x = 0, 0.01, 0.1) of the noble
metal in the LNRux, LSNRux, and LSNRhx samples are shown in Figure 2. It was observed
that in all cases, partial substitution of Ni by Ru or Rh resulted in a progressive shift of
the diffraction peak toward lower angles and in the development of smaller crystallites.
Qualitatively similar results have been reported by other authors [48,69,77]. For example,
Mota et al. [48] found that substitution of Ru for Co in LaCo1−xRuxO3 resulted in a shift
of XRD peaks toward lower 2θ values accompanied by an alteration in the perovskite
structure from rhombohedral to orthorhombic. This has been attributed to the larger ionic
radius of Ru3+ (0.68 Å) compared to Co3+ (0.61 Å) and the concomitant decrease of the
tolerance factor. Similar results were obtained by Ivanova et al. [77] over LaNixCo1−xO3
and LaFexCo1−xO3 perovskites as well as by Safakas et al. [69], who also observed a change
in the perovskite structure from orthorhombic to rhombohedral upon partial substitution
of Fe by Co in La0.8Sr0.2CoxFe1−xO3−δ. In the present work, a change in the LaNiO3
structure from rhombohedral to cubic was observed following partial substitution of Ni by
Ru (Figure 1A). The shift toward lower 2θ angles observed for the LNRux, LSNRux, and
LSNRhx samples (Figure 2) indicates a high degree of incorporation of the noble metals in
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the B-sites of the perovskite structure [49] and can be explained considering that the ionic
radii of Ru3+ (0.68 Å) and Rh3+ (0.67 Å) are larger than that of Ni3+ (0.60 Å).
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Figure 2. Dependence of the mean primary size of the perovskite crystallites, and of the angle
corresponding to the (200) reflection on the type (Ru or Rh) and content (x = 0, 0.01, 0.1) of the B-site
cation in LNRux, LSNRux, and LSNRhx samples (data extracted from the XRD patterns shown in
Figure 1).

Regarding the decrease in the primary crystallite size of the perovskites following
substitution of Ni by Ru or Rh (Figure 2), it can be attributed to structural disorder and
delay in the crystallite growth above-mentioned, and is reflected to the higher SSA of the
noble metal-containing samples (Table 1). Qualitatively similar results have been reported
by Mota et al. [48,49] for LaCo1−xRuxO3 perovskites.

A representative SEM image obtained for the fresh LSNRh0.1 perovskite sample is
shown in Figure S1, together with elemental mapping results, which confirm the presence
and uniform distribution of La, Sr, Ni, and Rh in the material. Moreover, the elemental
analysis showed that the wt.% content of La (47.42%), Sr (7.34%), Ni (22.04%), and Rh
(4.16%) is in agreement with the nominal composition of this sample.

3.2. Catalytic Performance Tests

Results of catalytic performance tests performed under PSR reaction conditions using
the noble metal-free LN and LSN perovskite samples are shown in Figure 3, where the
conversion of propane (XC3H8) and the selectivities to reaction products (Si) are plotted as
functions of reaction temperature. It was observed that the LN sample exhibited consider-
able activity for the title reaction, with XC3H8 increasing progressively from 26% at 450 ◦C
to ca. 100% at 750 ◦C (Figure 3A). The selectivity toward CO2 decreased with increasing
temperature while SCO followed the opposite trend, indicating the occurrence of the reverse
water gas shift (RWGS) reaction (reverse of Equation (2)), which is thermodynamically
favored at higher temperatures [78].
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Figure 3. Conversion of propane (XC3H8) and selectivities to the indicated reaction products obtained over (A) the LaNiO3

(LN) and (B) the La0.8Sr0.2NiO3 (LSN) samples. Experimental conditions: mass of catalyst: 100 mg; particle diameter:
0.18 < d < 0.25 mm; feed composition: 2.3% C3H8, 22.9% H2O, 0.7% Ar (balance He); total flow rate: 200 cm3 min−1.

Production of H2 exceeds 95% at temperatures higher than 550 ◦C. However, at lower
temperatures, SH2 is decreased due to the production of methane. Selectivity to methane
passes through a maximum of ca. 20% at around 500 ◦C and progressively decreases with
increasing temperature due to the onset of the CH4 steam reforming reaction. In addition to
the above-mentioned products, negligible amounts of C2H4 and C2H6 were also detected at
the reactor effluent (not shown for clarity). The propane conversion curve obtained for the
LSN sample (Figure 3B) shifted toward higher temperatures, compared to LN, indicating
that the partial substitution of La with Sr in the A-sites of the perovskite negatively affects
the catalytic activity. This is in general agreement with results of previous studies showing
that substitution of Sr into the A-sites of LaNiO3 [64,79] or LaCoO3 [80] perovskites usually
decreases the CH4 reforming activity. On the other hand, LSN is highly selective toward
H2, with SH2 exceeding 97% over the entire temperature range investigated (Figure 3B).

Results of similar catalytic performance tests obtained for the Ru-substituted LaNiO3
perovskites (LNRu0.01 and LNRu0.1 samples) are shown in Figure 4. It was observed that
partial substitution of Ni by Ru resulted in slightly lower propane conversions compared
to unpromoted LN (Figure 4A). This can be attributed, at least in part, to the different
crystal structures obtained following the addition of Ru (i.e., cubic for LNRu0.1 vs. rhom-
bohedral for LN (see Figure 1A)). Regarding selectivities to reaction products, the results
presented in Figure 4B,C show that the presence of Ru does not appreciably affect the
product distribution.

Results obtained following the substitution of Ni by Ru or Rh in the B-sites of LSN
are presented in Figure 5. Regarding the sample with the lower Ru content (LSNRu0.01),
it was observed that the propane conversion curve was slightly improved compared to
pristine LSN (Figure 5A). An increase in the Ru content (LSNRu0.1 sample) resulted in a
moderate increase in propane conversion in the whole temperature range investigated.
Regarding selectivities to reaction products, both the LSNRu0.01 and LSNRu0.1 catalysts
yielded higher amounts of methane compared to LSN (Figure 5B), whereas SCO and SCO2
were not significantly affected (Figure 5C). On the other hand, the substitution of Ni by
a small amount of Rh (1% at.) in the B-sites of the LSN perovskite (LSNRh0.01 sample)
resulted in a significant increase of propane conversion in the whole temperature range
investigated, compared to the pristine LSN (Figure 5A). For example, XC3H8 increased
from ca. 4% to 38% at 450 ◦C and from 70 to 86% at 620 ◦C. This was accompanied by
a decrease in the selectivity toward H2 and the production of larger amounts of CH4,
which was maximized at ca. 550 ◦C (Figure 5B). The selectivity toward CO2 followed the
opposite trend than that of CH4, whereas SCO was not appreciably affected by the presence
of Rh (Figure 5C). Further increase in the Rh content (LSNRh0.1 sample) resulted in an
even higher propane conversion, which exceeded 90% at temperatures above ca. 550 ◦C
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(Figure 5A). Regarding selectivity to reaction products, the LSNRh0.1 sample exhibited
superior selectivity toward H2, with SH2 being higher than 91% over the entire temperature
range investigated and close to 100% above ca. 620 ◦C (Figure 5B). The selectivity toward
CO2 was also very high and comparable to that of LSN (Figure 5C).
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Figure 4. (A) Conversion of propane, (B) selectivities to H2 and CH4, and (C) selectivities to CO2 and CO obtained over the
LNRux catalysts. Experimental conditions: same as in Figure 3.

3.3. Physicochemical Characteristics of the Used Catalyst Samples

The “used” catalyst samples obtained following the catalytic performance tests pre-
sented in Figure 5 were characterized with the use of BET and XRD techniques in order
to investigate the effects of exposure to the reaction conditions on the physicochemical
properties of the materials.

As shown in Table 1, the SSAs of the used samples were considerably larger than
those of the fresh perovskites. For example, the SSA of the LNRu0.1 sample increased from
6 m2 g−1 to 71 m2 g−1. As discussed below, this increase in SSA was due to the destruction
of the perovskite structures and the formation of new phases under reaction conditions.
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Figure 5. (A) Conversion of propane, (B) selectivities to H2 and CH4, and (C) selectivities to CO2 and CO obtained over the
LSNRhx and LSNRux catalysts. Experimental conditions: same as in Figure 3.

The XRD profiles of the used catalysts are presented in Figure 6 and the various phases
identified for each sample are listed in Table 1. It was observed that the XRD pattern of
LN (Figure 6A, trace a) consisted of peaks attributed to hexagonal La2O2CO3 (JCPDS Card
No. 37-804) and cubic Ni (JCPDS Card No. 1-1260). Qualitatively similar results were
obtained for the used LNRu0.01 (trace b) and LNRu0.1 (trace c) catalysts. In the latter case,
reflections attributable to hexagonal La2O3 (JCPDS Card No. 5-602) could also be discerned.
This implies that, under the reducing atmosphere existing under reaction conditions, the
parent LaNiO3 perovskite is in situ transformed into metallic Ni and La2O3. Because of
the high affinity between La2O3 and CO2, lanthanum oxycarbonate (La2O2CO3) is formed
according to [66]:

La2O3 + CO2 → La2O2CO3 (7)
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Figure 6. X-ray diffraction patterns obtained for the (A) LNRux, (B) LSNRux, and (C) LSNRhx

catalyst samples following exposure to reaction conditions.

The Ni0 crystallites, which provide the active sites for propane reforming, were well
dispersed and interacted strongly with the La2O3/La2O2CO3 support, thereby inhibiting
metal sintering [3]. The absence of peaks attributable to Ru provides evidence that the
exsolved noble metal was also well dispersed on the catalyst surface. As shown in Figure 6B,
the XRD pattern of the used LSN sample (trace a) was dominated by reflections attributed
to the La2SrOx structure (JCPDS Card No. 42-343) as well as hexagonal La2O3 and cubic Ni.
Interestingly, the La2SrOx phase was absent in the diffraction profiles of the used LSNRu0.01
(trace b) and LSNRu0.1 (trace c) catalysts that consisted mainly of La2O2CO3, Ni as well
as orthorhombic SrCO3 (JCPDS Card No. 5-418), La2O3, and cubic SrC2 (JCPDS Card No.
1-1022). This indicates that the presence of Ru in the perovskite structure facilitates the
conversion of La2SrOx to La2O3 and SrO, which may interact with CO2 to form La2O2CO3
(Equation (7)) and SrCO3:

SrO + CO2 → SrCO3 (8)

Qualitatively similar results were obtained for the used LSNRhx catalyst samples
(Figure 6C). In particular, the presence of Rh leads in the development of the La2O2CO3,
Ni0, SrCO3, and La2O3 phases under reaction conditions. As a general trend, the presence
of carbonate phases in the used LSNRux and LSNRhx catalyst samples seems to be related to
improved catalytic performance for the title reaction. For example, LSN, which is the least
active among the samples investigated, was the only one that contained small amounts
of La2O2CO3 after exposure to the reaction conditions (Figure 6). The cell parameters
estimated for the La2O2CO3 structure detected in the used samples are presented in
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Table S1. It was observed that in the case of the LSNRux and LSNRhx catalysts, the
a cell parameter of La2O2CO3 decreased and the c cell parameter increased, compared
to the used LSN sample. The EDS mapping analysis performed for the used LSNRh0.1
sample (Figure S2) showed intense signals for the carbon and La elements originating
from La2O2CO3. It is important to note that no XRD peaks attributable to graphite were
detected over the used catalyst samples, indicating that the amount of accumulated carbon
deposited was relatively small.

3.4. Long-Term Stability Tests

The stability of representative catalyst samples derived from LN, LSN, and LSNRh0.1
was studied at 600 ◦C for 40 h. The results obtained are presented in Figure 7, where
the conversion of propane (XC3H8) and the selectivities toward H2, CO, CO2, and CH4
are plotted as functions of time-on-stream. Dashed vertical lines indicate shutting down
of the system overnight, where the catalysts were kept at room temperature under He
flow. It was observed that the conversion of propane over the LN sample increased
substantially during the first three hours-on-stream from an initial value of 38% to ca. 70%
(Figure 7A). Prolonged exposure to the reaction mixture resulted in a further increase of
XC3H8, which stabilized at ca. 77% after about 25 hours. This behavior can be attributed
to the progressive reduction of the as-prepared LaNiO3 perovskite (Figure 1A) to the
catalytically active Ni0 and La2O2CO3 species (Figure 6A), in agreement with the results of
previous studies [31,33,63]. Selectivities to reaction products also varied during the first
few hours-on-stream and then remained practically stable. Selectivity toward H2 exceeded
97%, whereas SCO and SCO2 had values around 50% (Figure 7A).
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Figure 7. Long-term stability tests obtained at T = 600 ◦C over the (A) LN, (B) LSN, and (C) LSNRh0.1

catalysts. Experimental conditions: same as in Figure 3. Vertical lines indicate shutting down of the
system overnight, where the catalyst was kept at room temperature under He flow.

The performance of the LSN catalyst (Figure 7B) was qualitatively similar to that of
LN (i.e., XC3H8 increased during the first few hours-on-stream and then remained stable
at ca. 80% throughout the run). The selectivity toward H2 remained practically constant
at ca. 96%. It is of interest to note that the in situ activation of the LSN sample and the
stabilization of catalytic performance (Figure 7B) occurred after a shorter time of exposure
to the reaction mixture compared to the LN sample (Figure 7A). This can be attributed to
the ability of the Sr dopant to decrease the reduction temperature of the parent material [81]
and to facilitate the formation of La2O2CO3 according to:

La2O3 + SrCO3 → La2O2CO3 + SrO (9)

Finally, the LSNRh0.1 catalyst (Figure 7C) exhibited excellent stability and was char-
acterized by the highest values of both propane conversion (XC3H8 = 92%) and selectivity
toward H2 (SH2 = 97%) compared to the LN and LSN samples. The fact that XC3H8 and Si
acquired stable values at relatively very short time periods indicates that the presence of
Rh in the structure of the parent material has a beneficial effect on the reduction processes
that lead to the in situ formation of the catalytically active Ni0 and La2O2CO3 phases.
Regarding the higher activity and H2 selectivity of the LSNRh0.1 catalyst compared to LN
and LSN, these can be attributed to the presence of well-dispersed Rh crystallites on the
catalyst surface, which act synergistically with Ni0 species [72].

The excellent stability of the LN, LSN, and LSNRh0.1 catalysts (Figure 7) can be related
to the formation of La2O2CO3 under reaction conditions. It is well known that this species
can prevent catalyst deactivation by reacting with carbon deposits according to [82,83]:

La2O2CO3 + C
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Similar results have been reported for conventionally prepared Ni/La2O3 catalysts,
which transform into Ni/La2O3/La2O2CO3 under reduction conditions [84]. It may also be
noted that pre-synthesized La2O2CO3 either alone [85,86] or in combination with Al2O3 [87]
has also been used as catalyst supports for reforming reactions. Compared to these materi-
als, the perovskite-derived catalysts have the advantage of comprising very well dispersed
and strongly bound metal crystallites on the support, rendering them more active and
resistant against carbon deposition.

3.5. Carbon Accumulation on the Catalyst Surface

After the completion of the stability tests presented in Figure 7, TPO experiments were
carried out to quantify the amount of reactive carbon-containing species that accumulated
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on the catalyst surfaces. The results obtained are presented in Figure 8, where the CO2
concentration at the reactor effluent is plotted as a function of temperature. It was observed
that the TPO profile of the LN-derived catalyst is characterized by an intense peak centered
at 530 ◦C and two shoulders at ca. 560 and 600 ◦C (trace a). The features appearing at
temperatures lower than ca. 550 ◦C can be attributed to carbon species with amorphous
filamentous morphology (Cα) characterized by a higher reactivity due to structural disor-
der [88]. The high-temperature shoulder at ca. 600 ◦C can be assigned to the oxidation of
graphite-like carbonaceous species, Cβ, which are produced from Cα and are more difficult
to remove from the catalyst surface ([88] and refs. therein). The amount of accumulated
carbon on the LN catalyst was calculated from the area below the TPO curve and was
found to be 57 mg C gcat

−1.
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Figure 8. Temperature-programmed oxidation (TPO) profiles obtained for the indicated catalysts
following exposure to the long-term stability tests shown in Figure 7.

The TPO profile of the LSN catalyst consists of a peak with a broad maximum located
above ca. 600 ◦C (trace b). The amount of the accumulated carbon (35 mg C gcat

−1) was
much lower than that obtained for the LN sample, indicating that the co-existence of La and
Sr at the A-sites of the parent perovskite material decreased the tendency of the derived
catalyst toward carbon deposition. As discussed above, this can be related to the ability
of SrCO3 to facilitate the formation of La2O2CO3 under reaction conditions. Finally, the
LSNRh0.1 catalyst presented a TPO peak with a broad maximum located at ca. 500–650 ◦C
(trace c), which corresponded to 42.6 mg C gcat

−1. Although the amount of CO2 produced
was higher than that obtained for LSN (35 mg C gcat

−1), the conversion of propane was also
considerably higher (i.e., 92% for LSNRh0.1 vs. 80% for LSN (Figure 7)). In addition, the
CO2 peak started evolving at lower temperatures for the LSNRh0.1 sample, indicating that
the presence of Rh resulted in the accumulation of filamentous carbonate species, which
can be more easily oxidized. This can be attributed to the Rh-induced enhancement of the
reducibility of Ni, the inhibition of the sintering of the metallic particles, and the promotion
of the gasification rate of carbon deposits due to Ni–Rh interactions [89–91].

After the TPO measurements, the used samples were characterized with XRD, and
the results obtained are shown in Figure 9. It was observed that the dominant phase in
the XRD patterns of all three samples, namely LN (trace a), LSN (trace b), and LSNRh0.1
(trace c), was La2O2CO3. Nickel was clearly oxidized toward NiO only in the case of
LSN, whereas it mainly existed in its metallic phase in the cases of the LN and LSNRh0.1
samples. The TPO did not result in the reappearance of the initial perovskite structures.
In addition, the La2O2CO3 phase did not decompose, implying that the CO2 that evolved
during TPO should be mainly attributed to the oxidation of accumulated carbon and not to
the decomposition of carbonate phases such as La2O2CO3. This is rather expected since
temperatures higher than ca. 900 ◦C are typically necessary for the decomposition of the
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La2O2CO3 phase [81]. However, the possibility that the TPO peaks presented in Figure 8
are, at least in part, due to the elimination of CO2 from surface oxycarbonates and/or
strongly adsorbed CO2 cannot be excluded [66,92]. Further investigation of this issue is
beyond the scope of the present work and will be the subject of our future studies.
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TPO experiments presented in Figure 8.

4. Conclusions

The effects of partial substitution of La by Sr and of Ni by Ru or Rh in the LaNiO3
structure were investigated in an attempt to systematically study the effects of the nature
and composition of the A- and B-sites of the perovskite-derived catalysts for the propane
steam reforming (PSR) reaction. The physicochemical characteristics of the as-prepared
LaNiO3 (LN), La0.8Sr0.2NiO3 (LSN), and noble metal-substituted LNMx and LSNMx per-
ovskites (M = Ru or Rh; x = 0.01 or 0.1) as well as the used catalysts obtained following
exposure to reaction conditions were studied by employing the BET method and the XRD
technique. Results obtained can be summarized as follows:

1. Incorporation of noble metals in the matrix of LN and LSN perovskites resulted in
an increase in the specific surface area (SSA), a shift of the XRD lines toward lower
angles, and a decrease in the mean primary crystallite size of the materials. These
modifications of the physicochemical characteristics of the perovskites, which are
more pronounced for samples with higher noble metal content, have been attributed
to the distortion of the perovskite structure induced by the incorporation of Ru or Rh
in the matrix;

2. Exposure of the perovskite samples to PSR reaction conditions resulted in the destruc-
tion of the perovskite structure and the development of new phases, accompanied by
a considerable increase in the specific surface areas of the materials. Specifically, the
in situ reduction of the parent perovskites resulted in the exsolution of Ni (as well
as Rh or Ru) and the formation of well-dispersed metal nanoparticles on the result-
ing support, which consisted mainly of La2O2CO3 produced from the interaction of
La2O3 with CO2. The main phases detected with XRD for the LNRux-derived sam-
ples included metallic Ni and La2O2CO3 whereas the LNSRux and LNSRhx-derived
catalysts also contained La2SrOx, La2O3, and SrCO3. The presence of noble metals in
the derived catalysts was confirmed by SEM/EDS measurements;

3. The LN-derived catalyst exhibited higher activity compared to LSN, and its perfor-
mance for the title reaction did not change appreciably following partial substitution
of Ru in the B-sites of the perovskite. In contrast, incorporation of Ru and, especially,
Rh in the perovskite matrix resulted in the development of catalysts with signifi-
cantly improved catalytic performance, which increased with an increase in the noble
metal content;
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4. Results of long-term stability test obtained at 600 ◦C using the LN, LSN, and LSNRh0.1
samples showed that all catalysts were characterized by high stability for 40 hours-on-
stream, which was reflected in the accumulation of relatively small amounts of carbon
deposits on the catalyst surfaces. This has been attributed to the in situ formation of
La2O2CO3 under reaction conditions, which facilitates the oxidation of accumulated
carbon, thereby preventing catalyst deactivation; and

5. Best results were obtained for the LSNRh0.1-derived catalyst, which was characterized
by high activity (XC3H8 = 92%) and selectivity toward H2 (SH2 = 97%) at 600 ◦C as well
as excellent stability for 40 hours-on-stream. This has been attributed to the presence
of well dispersed Rh crystallites on the catalyst surface, which act synergistically with
Ni0 species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11081931/s1. Figure S1. SEM image (A), EDS mapping results showing the distribution of
(B) La, (C) Sr, (D) Ni, (E) Rh and (F) La (green spots), Ni (blue spots) and Rh (red spots) elements and
corresponding EDS spectrum (G) over the as-prepared LSNRh0.1 perovskite sample; Figure S2. SEM
image (A), EDS mapping results showing the distribution of (B) Carbon, (C) La, (D) Sr, (E) Ni and (F)
Rh elements and corresponding EDS spectrum (G) over the “used” LSNRh0.1 perovskite sample;
Table S1: Cell parameters of the crystalline phases detected by XRD for the as-prepared perovskite
samples and the derived (used) catalysts.
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