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Introduction
Lung cancer is one of the most lethal cancers and the most 
frequently diagnosed cancers worldwide.1–3 The age-standard-
ized 5-year net survival of lung cancers is in the range of 10% 
to 20% in most countries.4 Cancer diagnosis and prognosis 
have been the 2 major challenges in lung cancer management.5 
The precise classification of human lung cancers may help phy-
sicians to make treatment based on the specific characteristics 
of patients.6,7 Current classification of human lung cancers is 
based on tissue histological discrimination. However, the tissue 
is not available for defining final histological result in 15% to 
20% of cases, while 7.2% of cases are poorly differentiated by 
histology.8 To overcome above limitations, gene expression sig-
natures in lung cancer tissues have been intensively applied to 
classify lung cancer subtypes and predict the clinical outcome 
of lung cancers.9 Several gene expression signatures have been 
developed for lung cancer diagnosis and prognosis.10–19 Using 
either a data-driven approach in clinical trials or a biological 
mechanism-driven approach prior to the clinical trials, these 
studies have provided foundations for lung cancer diagnosis 
and prognosis, which were proved to be able to guide a better 
treatment for lung cancers.7

Although many gene signatures have been developed, the 
listed genes in different signatures have little overlaps.20 This 
has raised the questions about biological relevance, signifi-
cance, and clinical implication of these signatures.20 Two major 
factors may account for this discrepancy. First, the development 
of lung cancer is heterogeneous among individuals,21 involving 

multiple genetic and epigenetic alterations.22 Second, the dis-
covered biomarkers were normally derived from a relatively 
small cohort size, which may cause substantial population 
bias.7 To increase the robustness of gene signature,23 a meta-
analysis of gene expression data in different cohorts24 was per-
formed to identify prognostic signature of lung adenocarcinoma 
(ADC). However, multi-cohort studies still cannot solve the 
problem of low reproducibility among cohorts.25 One possible 
explanation is that different genes are merely the separate 
aspects of the same groups of molecular pathways or mecha-
nisms that cause the disease.26 This hypothesis has been exam-
ined using the Kyoto Encyclopedia of Genes and Genomes 
(KEGG)27 and Gene Ontology (GO)28 to derive functionally 
related gene sets as mechanism-anchored signatures from 
genome-wide expression data.29,30 Currently, the commonly 
used methods in multi-cohort studies are all focusing on dif-
ferential expressions at the single-gene level,25 including com-
bined P value methods,31,32 combined effective size methods,33 
rank-based methods,34 and raw data integration-based meth-
ods.25 In particular, Haynes et al have described a multi-cohort 
analysis framework by leveraging the biological and technical 
heterogeneity in multiple heterogeneous datasets.35 To bridge 
the gaps between deterministic biological mechanisms of single- 
gene biomarkers and the statistical predictive power of multi-
gene signatures that are disconnected from mechanisms, 
Chang et al36 performed a pathway-based analysis to identify 
gene signatures for ADC prognosis. However, they only con-
sidered differentially expressed genes in lung cancer-related 
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pathways. As cancer biomarker genes do not have to be located 
in cancer-related pathways,37 this strategy may miss some 
important biomarker genes. Here, we developed a pathway-
based strategy, which is independent of the knowledge of dis-
ease-related pathways, to identify robust biomarkers from 
multi-cohort gene expression data. We constructed a meta-
dataset of gene expression profiles in lung tissues from pub-
lished studies and applied our pathway-based analysis method 
to identify significant pathways that are related to lung cancer 
prognosis or diagnosis. We further selected significant genes in 
these pathways and used them as the biomarker signatures for 
lung cancer prognosis and diagnosis. We also tested the relia-
bility and accuracy of the discovered gene signatures in inde-
pendent validation cohorts.

Materials and Methods
Data sets

We compiled a multi-cohort lung cancer gene expression data-
set of 1916 lung tissue samples from 13 published studies 
(Supplementary Table S1). Among them, there are 827 human 
lung ADC samples, 357 squamous-cell carcinoma (SCC) sam-
ples, 76 large-cell carcinoma (LCC) samples, 21 small-cell lung 
carcinoma (SCLC) samples, 2 adeno-squamous carcinoma 
samples, 39 basaloid carcinoma samples, 24 carcinoid tumor 
samples, 56 large-cell neuroendocrine carcinoma samples, 290 
lung cancer samples without clear pathological classification, 
and 224 healthy control samples. The expression values in these 
samples were all measured using Affymetrix Human Genome 
U133 Plus 2.0 Array. We downloaded gene expression data of 
these samples from National Center for Biotechnology 
Information (NCBI) Gene Expression Omnibus (GEO) data-
base38 and integrated into a matrix of gene expression values 
using simple concatenation. We applied the “mas5calls” method 
in “affy” package39 to assess the status of each probeset and 
excluded the probe sets that were missed in one-third or more 
of the samples. We used the “gcrma” algorithm40 to normalize 
the expression level of each probe set and removed batch effects 
among expression data from multiple studies using ComBat.41 
Finally, a matrix of normalized gene expression data (1916 
samples by 54 675 probe sets) was constructed. We used this 
dataset as the training set to discover the gene signatures for 
lung cancer diagnosis and prognosis. The clinical histology 
(Supplementary Table S1A) and survival information 
(Supplementary Table S1B) for each sample in this dataset 
were also retrieved from the GEO database.38

To validate the performance of the discovered signatures, we 
collected 3 additional gene expression datasets and used these 
3 datasets separately as the independent validation datasets. 
The first dataset, ACC-1 cohort, was collected from Aichi 
Cancer Center (ACC), Japan.42 Gene expression values of 
samples in this cohort were measured by Agilent Homo sapiens 
21.6K custom array. The raw values of gene expression in this 
dataset were normalized using Feature Extraction 7.5 software 

(Agilent Technologies, Palo Alto, CA, USA),42 which was 
downloaded from GEO38 under the accession GSE11969 
(Supplementary Table S1). The second, MCC cohort, was col-
lected from Moffitt Cancer Center (MCC), USA.43 Gene 
expression values of samples in MCC cohort was measured by 
Rosetta/Merck Human RSTA Custom Affymetrix 2.0 microar-
ray. The raw gene expression values were further normalized 
against their median sample using IRON,43 which was down-
loaded from GEO38 under the accession GSE72094 
(Supplementary Table S1). The third cohort, ACC-2 cohort, 
was from ACC, Japan as well.44 Gene expression values of 
samples in this cohort were measured by Agilent-014850 
Whole Human Genome Microarray, and the raw gene expres-
sion values were further normalized using Feature Extraction 
7.5 software.44 We downloaded the normalized gene expres-
sion data from GEO38 under the accession GSE13213 
(Supplementary Table S1). For genes with multiple probes/
probe sets in these 3 datasets, the gene expression value was 
measured as the geometric mean of all the original probes/
probe sets mapping to that gene. The clinical histology 
(Supplementary Table S1A) and survival (Supplementary 
Table S1B) information for each sample in these datasets were 
also retrieved from GEO.38

Finally, we compiled a RNA-seq dataset of lung tissue sam-
ples to test the performance of the discovered prognostic signa-
ture on samples that were measured by high-throughput 
sequencing platform. This dataset included 576 samples in The 
Cancer Genome Atlas (TCGA) lung adenocarcinoma cohort 
(LUAD)45 and 553 samples in TCGA lung squamous-cell car-
cinoma cohort (LUSC).46 The normalized gene expression val-
ues and the overall survival information (Supplementary Figure 
S1) of all these samples were downloaded from UCSC Xena 
platform.47

The pathway-based strategy to identify biomarkers 
from multi-cohort dataset

We proposed a pathway-based strategy to identify robust gene 
expression signatures from the multi-cohort dataset of various 
sources. This strategy contains 2 major steps, which was out-
lined in Figure 1.

In the first step, gene expression values at the transcriptome 
level were transformed to KEGG pathway scores27 for each 
sample in the training dataset. Here, we used the FAIME 
method48 to compute the pathway scores of all KEGG path-
ways in the KEGG database (release 52) using gene expression 
values in each single sample. The FAIME method48 ranks the 
genes of each sample in the descending order of their expres-
sion values and assigns an exponentially decreasing weight for 
each gene. A normalized centroid is then defined as the unidi-
mensional average of the weighted expression values of a gene 
set, such as the genes in a KEGG pathway. Finally, the FAIME 
Score of each gene set is calculated in every sample as the dif-
ference between the normalized centroid of its gene set and 
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that of its complement gene set. A positive pathway score 
means the expression of genes in that pathway is upregulated as 
a functional group, while a negative pathway score means the 
downregulation. The larger the absolute value of the pathway 
score, the higher the expression dysregulation for genes in that 
pathway. After transformation, each sample in the original 
dataset is represented by a vector of functional scores of 229 
KEGG pathways.

In the second step, we constructed the prognostic and diag-
nostic gene signatures using the KEGG pathway scores of 
each sample in the training dataset. To construct the prognos-
tic signature, we performed univariate Cox proportional haz-
ards regression analysis on KEGG pathway scores and the 
survival outcome and selected significant pathways based on 
the adjusted P value (Bonferroni-Holm method, adjusted P 
value <1 × 10−3) in Cox regression. The pathways that are 
strongly associated with both overall and recurrence-free sur-
vival were chosen for further analysis. After significant path-
way identification, we dissected the corresponding microarray 
probes of each significant pathway and calculated the geomet-
ric mean values for genes in the significant pathways. We also 
applied univariate Cox proportional hazards regression to 
select significant genes in the significant pathways. Using 
adjusted P value (Bonferroni-Holm method, adjusted P value 
<1 × 10−7) as the cutoff, we chose all genes that were strongly 

associated with both overall and recurrence-free survival and 
used this set of significant genes as the prognostic gene signa-
ture. Similarly, we constructed a diagnostic biomarker for 
ADC patients using KEGG pathway scores of each sample in 
the training cohort. The ADC diagnostic biomarker is impor-
tant in clinical application, as ADC is the most common form 
of lung cancers2 and the precise classification of ADC is help-
ful to guide its treatment.7 We performed a 2-sided unpaired 
t-test on each KEGG pathway to test its performance in dif-
ferentiating the ADC patients from non-ADC patients and 
healthy controls. We chose the significant pathways that can 
strongly distinguish the ADC patients from non-ADC sam-
ples using the adjusted P value (Bonferroni-Holm method, 
adjusted P value <10−45) as the cutoff. For each gene in the 
significant pathways, we calculated the geometric mean value 
of all corresponding probes. Using adjusted P value (Bonferroni-
Holm method, adjusted P value <10−45) as a cutoff, we chose a 
set of genes that can distinguish the ADC patients from non-
ADC samples and used this set of genes as the diagnostic bio-
marker for lung cancer.

The risk score and ADC score

To test the performance of the discovered signature in lung 
cancer prognosis, we calculated a risk score for each sample in 

Figure 1. The pipeline of pathway-based strategy to identify the molecular signature.
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the training cohort and validation cohort, respectively, using 
the gene expression values of the signature genes.49-51 We used 
a scoring formula below to calculate a risk score from weighted 
gene expression for each sample.

S W ei i i i
i

n

i= −∑ ( ) / ,
( =10)

µ τ

here, Si is the calculated risk score; n is the number of genes; Wi 
is the weight of gene i; ei  is the expression level of gene i; µi is 
the mean value of the expression values for gene i across all 
samples; and τ i  is the standard deviation of the expression val-
ues for gene i across all samples. In this formula, the weight is 
determined by Cox survival analysis for the signature genes in 
prognosis biomarker. The weight of genes with a positive Z 
score in survival analysis was set to 1, and the weight of genes 
with a negative Z score was set to −1. For signature genes in 
diagnosis biomarker, the weight is determined by t-test. While 
the weight for genes with a positive t value was set to 1, the 
weight for genes with a negative t value was set to −1. A higher 
risk score represents a worse outcome of that sample.

Similarly, an ADC score for each sample in the training and 
validation cohort was calculated to test the power of the dis-
covered diagnostic signature in differentiating ADC patients 
from non-ADC samples, using the same formula above. A 
higher ADC score represents a larger probability of that sample 

as an ADC patient. To test the prediction robustness in valida-
tion cohort, we computed the area under the receiver operating 
characteristic (ROC) curve (AUC) value for diagnostic 
analysis.

Statistical analyses

All statistical analyses were performed using the R platform.52 
Cox regression, log-rank test, and Kaplan-Meier survival analy-
sis were performed by the “coxph,” “survdiff,” and “survfit” func-
tions in the “survival” library, respectively. The R scripts are 
freely available in GitHub (https://github.com/unbvb 
/pathway-based-strategy).

Results
The construction of lung cancer prognostic gene 
signature

Using our pathway-based strategy (Figure 1), we constructed a 
prognostic gene signature that can predict lung cancer outcome 
using the integrated multi-cohort training dataset. First, we 
obtained 16 significant KEGG pathways that are related to 
lung cancer survival and determined their weights using their Z 
score in survival analysis (Table 1). Among them, 8 KEGG 
pathways were positively correlated to lung cancer survival, 
while another 8 KEGG pathways were negatively correlated to 
survival. The Kaplan-Meier survival curves demonstrated that 

Table 1. The KEGG pathways that are significantly related to lung cancer survival.

KEGG PaThWay ID PaThWay DESCRIPTIoN WEIGhT

hsa00071 Fatty acid metabolism −1

hsa00350 Tyrosine metabolism −1

hsa00640 Propionate metabolism −1

hsa02010 aBC transporters −1

hsa04270 Vascular smooth muscle contraction −1

hsa04710 Circadian rhythm—mammal −1

hsa04960 aldosterone-regulated sodium reabsorption −1

hsa04964 Proximal tubule bicarbonate reclamation −1

hsa00400 Phenylalanine, tyrosine, and tryptophan biosynthesis 1

hsa00670 one carbon pool by folate 1

hsa03030 DNa replication 1

hsa03410 Base excision repair 1

hsa03440 homologous recombination 1

hsa04110 Cell cycle 1

hsa04114 oocyte meiosis 1

hsa04914 Progesterone-mediated oocyte maturation 1

abbreviations: aBC, aTP-binding cassette; KEGG, Kyoto Encyclopedia of Genes and Genomes.

https://github.com/unbvb/pathway-based-strategy
https://github.com/unbvb/pathway-based-strategy


Sheng et al 5

all these KEGG pathways can statistically differentiate lung 
cancer samples into groups with different survival outcome for 
both recurrence-free survival (Figure 2) and overall survival 
(Supplementary Figure S2). The differentiation power was sub-
stantially increased when 8 positive pathways, 8 negative path-
ways, or all 16 significant pathways were combined together 
(Supplementary Figure S3A and B for recurrence-free survival 
and overall survival, respectively). Then, we identified signifi-
cant genes that can predict lung cancer survival in these 16 sig-
nificant pathways (Figure 1). We discovered 43 significant genes 
(Table 2) that were strongly associated with both overall and 
recurrence-free survival. Similarly, the weight of each gene was 
determined by their Z scores (Table 2). Finally, we used these 43 
genes as a gene signature for lung cancer prognosis.

The prognostic performance of the 43-gene 
signature

After identification, we tested the performance of the discov-
ered 43-gene signature in predicting the survival outcome of 
lung cancer samples in the training cohort and several inde-
pendent validation datasets.

We calculated the risk score of each sample in the training 
cohort using the expression values of genes in the 43-gene 
prognostic signature. We confirmed that the risk score can pre-
dict the survival of lung cancer patients in the training cohort 
(Figure 3). Univariate Cox proportional hazard regression of 
survival indicates that the risk score is negatively associated 
with the survival outcome of lung cancer patients (log-rank 
test: overall survival, P value <2 × 10−16; recurrence-free 
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Figure 2. The curves of the Kaplan-Meier KEGG pathway score of each significant pathway against the recurrence-free survival of lung cancer patients 

in the training cohort. KEGG indicates Kyoto Encyclopedia of Genes and Genomes.
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Table 2. The 43-gene prognostic signature.

GENE SyMBoL GENE DESCRIPTIoN WEIGhT

ALDH2 aldehyde dehydrogenase 2 family (mitochondrial) −1

ADH1B alcohol dehydrogenase 1B (class I), beta polypeptide −1

MAOA ✓ Monoamine oxidase a −1

MAOB ✓ Monoamine oxidase B −1

ABCA8 aTP-binding cassette, subfamily a (aBC1), member 8 −1

NR3C2 Nuclear receptor subfamily 3, group C, member 2 −1

MTHFD2 Methylenetetrahydrofolate dehydrogenase (NaDP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase 1

TYMS Thymidylate synthase 1

FEN1 Flap structure-specific endonuclease 1 1

MCM4 Minichromosome maintenance complex component 4 1

MCM6 Minichromosome maintenance complex component 6 1

UNG Uracil-DNa glycosylase 1

EME1 Essential meiotic structure-specific endonuclease 1 1

BLM Bloom syndrome, RecQ helicase-like 1

RAD51 RaD51 recombinase 1

RAD54L RaD54-like (Saccharomyces cerevisiae) 1

CCNA2 ✓ Cyclin a2 1

CCNB1 ✓ Cyclin B1 1

ORC6 origin recognition complex, subunit 6 1

CDC25C Cell division cycle 25 C 1

MAD2L1 MaD2 mitotic arrest deficient-like 1 (yeast) 1

CCNE2 ✓ Cyclin E2 1

CHEK1 Checkpoint kinase 1 1

CDC45 Cell division cycle 45 1

PTTG1 Pituitary tumor-transforming 1 1

CDC20 Cell division cycle 20 1

E2F2 E2F transcription factor 2 1

CCNB2 ✓ Cyclin B2 1

PLK1 ✓ Polo-like kinase 1 1

ORC1 origin recognition complex, subunit 1 1

BUB1 BUB1 mitotic checkpoint serine/threonine kinase 1

TTK TTK protein kinase 1

CDK1 Cyclin-dependent kinase 1 1

ESPL1 Extra spindle pole bodies like 1, separase 1

PKMYT1 Protein kinase, membrane-associated tyrosine/threonine 1 1

CDC25A ✓ Cell division cycle 25a 1

CDC6 ✓ Cell division cycle 6 1
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Figure 3. The 43-gene prognostic signature predicts the clinical outcome of lung cancers in the discovery and validation cohorts. (a) Kaplan-Meier 

curves for lung cancer patients in the discovery cohort. (B) Kaplan-Meier curves for lung cancer patients in 3 validation cohorts. In each cohort, patients 

were stratified into 2 categories according to the 43-gene-based risk score. Red curves represent the patients with higher risk score, while blue curves 

represent the patients with lower risk score. P values indicate the significance of survival differences between the patients with high risk score and low 

risk score. aCC indicates aichi Cancer Center; MCC, Moffitt Cancer Center.

GENE SyMBoL GENE DESCRIPTIoN WEIGhT

CDK2 Cyclin-dependent kinase 2 1

CCNE1 ✓ Cyclin E1 1

BUB1B BUB1 mitotic checkpoint serine/threonine kinase B 1

E2F1 E2F transcription factor 1 1

AURKA aurora kinase a 1

SGOL1 Shugoshin-like 1 (Schizosaccharomyces pombe) 1

Table 2. (Continued)
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survival, P value <2 × 10−16). Using the median risk score as a 
cutoff, we further classified the lung cancer patients into 2 
groups with either high- or low-risk scores. Kaplan-Meier sur-
vival curves (Figure 3A) demonstrated a significant difference 
in clinical outcome between those 2 patient groups (log-rank 
test: overall survival, P value <2 × 10−16; recurrence-free sur-
vival, P value = 3.07 × 10−13).

Furthermore, we investigated the prognostic performance of 
the 43-gene signature in 3 independent validation cohorts 
(Supplementary Table S1). We calculated the risk score for 
each sample in the validation datasets and observed similar 
prediction performance of risk score. Univariate Cox propor-
tional hazard regression of survival indicates that the risk score 
is negatively associated with the survival of lung cancer  
patients (log-rank test: ACC-1 cohort, P value = 4.36 × 10−3; 
MCC cohort, P value = 8.20 × 10−4; ACC-2 cohort, P 
value = 1.73 × 10−4). Using the median risk score as a cutoff, we 
classified the lung cancer patients into 2 groups for each valida-
tion cohort. Kaplan-Meier survival curves (Figure 3B) demon-
strated a significant difference in survival outcome between 
these 2 patient groups in the validation cohorts (log-rank test: 
ACC-1 cohort, P value = 2.81 × 10−2; MCC cohort,  
P value = 2.31 × 10−4; ACC-2 cohort, P value = 4.98 × 10−4). To 
explore whether the 43-gene expression signature is an inde-
pendent prognostic factor, we applied a multivariate Cox model 
to compare its prognostic power with several traditional prog-
nostic variables in lung cancer, including age, sex, smoking his-
tory, stage, and mutation status of cancer genes. Multivariate 
Cox proportional hazards regression of overall survival indi-
cates that the 43-gene expression signature remains a signifi-
cant independent covariate, although the clinical stage is a 
more significant prognostic factor (Table 3). Interestingly, the 

mutational status of one cancer gene, STKII, is also correlated 
to the overall survival in MCC cohort, which is independent of 
the 43-gene risk score. This suggests that the 43-gene expres-
sion signature is an independent prognostic factor from several 
known factors, such as the mutational status of cancer genes 
and clinical variables.

Finally, we tested the prognostic performance of the 43-gene 
signature in TCGA lung cancer dataset, which measured gene 
expression in lung tissues using RNA-seq. Univariate Cox pro-
portional hazard regression of survival indicates that the risk 
score is weakly associated with the survival of TCGA lung can-
cer patients (log-rank test: LUAD cohort, P value = 1.64 × 10−2; 
LUSC cohort, P value = 6.38 × 10−2). Using the median risk 
score as a cutoff to classify the lung cancer patients into 2 
groups, Kaplan-Meier survival curves (Supplementary Figure 
S4) demonstrated a slightly significant difference in survival 
outcome in the TCGA LUAD cohort (log-rank test: P 
value = 3.01 × 10−2). However, there is no significant difference 
in survival outcomes in the TCGA LUSC cohort (log-rank 
test: P value = .402).

The construction of lung cancer diagnostic 
biomarker

In addition to a prognostic biomarker, we also constructed a set 
of genes that can differentiate ADC patients from non-ADC 
patients and healthy controls. We performed the 2-sided 
unpaired t-test to compare each KEGG pathway score between 
ADC patients and non-ADC samples in the training dataset. 
In all, 18 significant KEGG pathways (2-sided unpaired t-test, 
P value <2 × 10−16; Table 4) were identified. Their weights were 
determined using the t score in the 2-sided unpaired t-test 
(Table 4). For each gene in those 18 pathways, we calculated the 

Table 3. Multivariate Cox proportional hazards regression of the overall survival in lung cancer patients.

CoVaRIaTE aCC-1 MCC aCC-2

hR 95% CI oF 
hR

P VaLUE hR 95% CI oF hR P VaLUE hR 95% CI oF 
hR

P VaLUE

43-gene-based 
risk score

1.02 (1.00, 1.03) .022* 1.01 (1.01, 1.02) 3.06 × 10−4** 1.02 (1.01, 1.03) 1.22 × 10−3**

age 1.03 (1.00, 1.06) .051 1.00 (0.98, 1.02) .99 1.01 (0.98, 1.04) .64

Sex 0.95 (0.42, 2.16) .904 0.37 (0.23, 0.58) 2.08 × 10−5** 0.60 (0.27, 1.34) .21

Smoking history 0.87 (0.39, 1.93) .729 1.42 (0.60, 3.37) .43 1.00 (1.00, 1.00) .20

Stage 1.95 (1.49, 2.55) 9.93 × 10−7** 1.92 (1.55, 2.38) 2.74 × 10−9** 1.31 (1.10, 1.56) 2.04 × 10−3**

STKII mutation Na Na Na 2.00 (1.02, 3.90) .04* Na Na Na

EGFR mutation 0.74 (0.39, 1.40) .348 3.24 (0.98, 10.73) .05 0.64 (0.33, 1.25) .19

KRAS mutation 0.54 (0.24, 1.23) .142 0.76 (0.48, 1.21) .25 0.59 (0.25, 1.41) .24

TP53 mutation 0.92 (0.55, 1.53) .750 1.51 (0.89, 2.58) .13 1.07 (0.56, 2.03) .84

abbreviations: aCC, aichi Cancer Center; CI, confidence interval; hR, hazard ratio; MCC, Moffitt Cancer Center; Na, not applicable.
*P value <.05; **P value <<.05.

https://journals.sagepub.com/doi/suppl/10.1177/1176934319838494
https://journals.sagepub.com/doi/suppl/10.1177/1176934319838494
https://journals.sagepub.com/doi/suppl/10.1177/1176934319838494
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geometric mean of expression values of all corresponding probes 
of that gene and used this as the gene’s expression value. Among 
these genes, we selected 32 genes (Table 5) that can distinguish 
the ADC patients from non-ADCs (2-sided unpaired t-test, P 
value <2 × 10−16). We used this gene set as a 32-gene diagnostic 
signature for lung ADCs and determined the weight of each 
gene using its t score (Table 5).

The diagnostic performance of 32-gene diagnostic 
signature

To explore the diagnostic power of the 32-gene signature in 
differentiating ADC patients from non-ADC patients and 
healthy controls, we calculated the ADC score for each sample 
in both the training and ACC-1 validation cohorts using the 
gene expression values of those 32 genes in the diagnostic sig-
nature. In the training cohort, principal component analysis 
(PCA) indicates that expression values of those 32 signature 
genes can differentiate ADC patients from non-ADC samples 

(Figure 4A). At the same time, the ADC score was significantly 
higher (t-test: P value <2 × 10−16) in ADC patients than that 
of non-ADC samples (Figure 4B). The AUC value was 0.831 
(Figure 4C). In the ACC-1 cohort, there are 90 ADC patients 
and 48 non-ADC samples, including 5 healthy controls, 35 
SCC patients and 18 LCC patients. Principal component 
analysis of expression values of those 32 signature genes shows 
ADC patients can be well separated from non-ADCs in  
the ACC-1 cohort (Figure 4D). The ADC score was also sig-
nificantly higher in ADC patients than that of SCC patients 
(t-test: P value = 1.57 × 10−11), LCC patients (t-test: P value =  
2.75 × 10−3), and healthy controls (t-test: P value <2 × 10−16; 
Figure 4E). The AUC values were 0.873, 0.723, and 0.909 
when differentiating ADC patients from SCC patients, LCC 
patients, and healthy controls, respectively (Figure 4F). These 
results suggest that the 32-gene-based ADC score is a good 
signature for ADC diagnosis.

Discussion
In this study, we proposed a pathway-based strategy to extract 
important features in genome-wide expression data and suc-
cessfully applied it to a large-scale multi-cohort dataset to 
identify gene expression signatures for lung cancer prognosis 
and diagnosis. This strategy is different from those commonly 
used methods in selecting gene signatures related to clinical 
phenotypes.25 Those methods, such as combined P value meth-
ods,31,32 combined effective size methods,33 and rank-based 
methods,34 all focus on dysregulated expression at the single-
gene level.25 In our methods, we used a pathway-based strategy 
to extract significant pathways using genome-wide expression 
data. We computed the pathway score of each KEGG pathway 
for each single sample using the FAIME algorithm.48 Unlike 
the method proposed by Drier et  al,5 which estimates the 
extent to which the behavior of a pathway deviates in each 
sample from normal, FAIME algorithm48 can quantify the 
activation or suppression of each pathway in a sample using the 
gene expression data of that sample only. Then, we found sig-
nificant genes in those significant pathways and used those 
genes as the biomarker signature (Figure 1). In contrast to a 
single gene, a KEGG pathway is a set of genes acting together 
to perform a specific biological function. Therefore, a signifi-
cant pathway could explain the inner connection of genes and 
molecular features, such as prognosis and diagnosis, at a higher 
level. Given this feature of biological pathways, the identified 
significant pathways are less likely to be false positives, which is 
especially important for meta-analysis. In our results, we 
observed 16 significant pathways (Table 1) that are related to 
prognosis and 18 significant pathways (Table 4) that are related 
to ADC diagnosis. Based on these significantly dysregulated 
pathways, we further identified a 43-gene prognostic signature 
(Table 2) and a 32-gene diagnostic signature (Table 5). Using 3 
independent cohorts, we tested the prediction power of the 
43-gene prognostic signature and the classification power of 

Table 4. The significant pathways that can significantly differentiate 
aDC patients from non-aDC patients.

KEGG PaThWay ID PaThWay DESCRIPTIoN WEIGhT

hsa00072 Synthesis and degradation of 
ketone bodies

−1

hsa04010 MaPK signaling pathway −1

hsa04720 Long-term potentiation −1

hsa04722 Neurotrophin signaling pathway −1

hsa04740 olfactory transduction −1

hsa04912 GnRh signaling pathway −1

hsa04914 Progesterone-mediated oocyte 
maturation

−1

hsa04971 Gastric acid secretion −1

hsa05014 amyotrophic lateral sclerosis 
(aLS)

−1

hsa05020 Prion diseases −1

hsa05200 Pathways in cancer −1

hsa05210 Colorectal cancer −1

hsa05211 Renal cell carcinoma −1

hsa05212 Pancreatic cancer −1

hsa05214 Glioma −1

hsa05220 Chronic myeloid leukemia −1

hsa05222 Small-cell lung cancer −1

hsa00512 Mucin type o-Glycan 
biosynthesis

1

abbreviations: aDC, adenocarcinoma; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; MaPK, mitogen-activated protein kinase.
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the 32-gene diagnostic signature. We confirmed that our 
43-gene prognostic signature can successfully predict the out-
come of lung cancer patients in the discovery cohorts (Figure 
3A) and all 3 independent validation cohorts (Figure 3B), 
which is independent of several other clinical factors, such as 

cancer stage (Table 3). Besides, the 32-gene diagnostic signa-
ture can significantly distinguish the lung ADC patients from 
other patients and healthy controls (Figure 4). The superior 
performance of the identified gene signatures suggests that our 
pathway-based strategy is able to extract meaningful features 

Table 5. The 32-gene diagnostic signature.

GENE SyMBoL GENE DESCRIPTIoN WEIGhT

HMGCS1 3-hydroxy-3-methylglutaryl-Coa synthase 1 (soluble) −1

BDNF Brain-derived neurotrophic factor −1

MAPK1 ✓ Mitogen-activated protein kinase 1 −1

FGFR2 Fibroblast growth factor receptor 2 −1

HRAS harvey rat sarcoma viral oncogene homolog −1

NTRK2 Neurotrophic tyrosine kinase, receptor, type 2 −1

DDIT3 DNa-damage-inducible transcript 3 −1

JUND Jun D proto-oncogene −1

PAK2 p21 protein (Cdc42/Rac)-activated kinase 2 −1

MAP2K2 Mitogen-activated protein kinase kinase 2 −1

CALM3 ✓ Calmodulin 3 (phosphorylase kinase, delta) −1

CALML3 ✓ Calmodulin-like 3 −1

YWHAE Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon −1

CLCA2 Chloride channel accessory 2 −1

PLD1 ✓ Phospholipase D1, phosphatidylcholine-specific −1

CDK2 Cyclin-dependent kinase 2 −1

ATP1B3 aTPase, Na+/K+ transporting, beta 3 polypeptide −1

CHRM3 Cholinergic receptor, muscarinic 3 −1

PRNP Prion protein −1

DAPK3 Death-associated protein kinase 3 −1

COL4A6 Collagen, type IV, alpha 6 −1

CDK6 Cyclin-dependent kinase 6 −1

RALGDS Ral guanine nucleotide dissociation stimulator −1

JUP Junction plakoglobin −1

WNT2B Wingless-type MMTV integration site family, member 2B −1

ITGA6 Integrin, alpha 6 −1

MSH6 MutS homolog 6 −1

SKP2 S-phase kinase-associated protein 2, E3 ubiquitin protein ligase −1

PAK7 p21 protein (Cdc42/Rac)-activated kinase 7 −1

ST6GALNAC1 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 1 1

GCNT3 Glucosaminyl (N-acetyl) transferase 3, mucin type 1

GALNT10 Polypeptide N-acetylgalactosaminyltransferase 10 1
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in the large-scale gene expression data from various public 
resources, which is evitable to have substantial background 
noises.

We used a multi-cohort lung cancer study as the example to 
show the feasibility of our pathway-based strategy in identify-
ing meaningful biomarker signatures. In a previous study, 
Chang et al36 also used a pathway-based algorithm to identify 
the prognostic signatures for lung cancers. Unlike the pathway-
based algorithm proposed by Chang et al,36 we did not use any 
prior knowledge specific to lung cancers in our pathway-based 
strategy (Figure 1). We tested the prediction power of their 
published prognostic signature36 in our validation cohorts 
(Supplementary Figure S5). In comparison, we observed a 
higher or comparable predictive power of our 43-gene prog-
nostic signature (Figure 3B) in predicting the survival out-
comes of lung cancer patients. The independence of prior 
knowledge of our pathway-based strategy may explain the 
superior performance of our signature in lung cancer prognosis 
(Figure 3B and Supplementary Figure S5). Comparing the 
performance of prognostic biomarkers identified by our path-
way-based strategy and several published single-gene methods 
(Supplementary Table S2), we observed that biomarkers iden-
tified by single-gene level, in general, had low replicability in 

predicting patients’ outcomes in 3 validation cohorts 
(Supplementary Figure S6). However, our pathway-based 
strategy is not ideal for identifying signatures in gene expres-
sion datasets across platforms. The 43-gene prognostic signa-
ture was identified in a multi-cohort gene expression dataset 
using Affymetrix Human Genome U133 Plus 2.0 Array. When 
testing its performance in TCGA RNA-seq dataset, we 
observed insignificant prediction power in TCGA LUAD and 
LUSC cohorts (Supplementary Figure S4), which is much 
smaller than that in ACC-1, MCC, and ACC-2 cohorts 
(Figure 3B). Although the distribution of survival data in these 
datasets (Supplementary Figure S1) may partially explain this 
difference, more attention should be paid when gene expres-
sions are measured by different platforms.

Many studies have identified several prognostic signatures to 
predict lung cancer outcome using datasets with relatively small 
sample size and traditional gene-level methods.10–19,36,53 In 
these 19 published prognostic signatures, there are 627 genes in 
total (Supplementary Table S2), including 24 biomarker genes 
in our 43-gene prognosis signature (Supplementary Table S2). 
This suggests that the signature genes identified by our path-
way-based method and the integrated multi-cohort dataset can 
identify several known prognosis-related genes, while a set of 

Figure 4. The 32-gene diagnostic signature distinguishes aDC patients from non-aDC subjects in both the discovery and the validation cohorts.  

(a) Principal component analysis on the expressions of the 32-gene signature in the discovery cohort. (B) The box plot of the ADC scores of the aDC 

patients and other non-aDC patients in the discovery cohort. (C) The RoC curves of using the 32-gene-based ADC score to distinguish the aDC patients 

from non-aDC patients in the discovery cohort. (D) Principal component analysis on the expressions of the 32-gene signature in the aCC-1 cohort. (E) 

The box plot of the ADC scores of the aDC patients, SCC patients, LCC patients, and the healthy controls in the aCC-1 cohort. (F) The RoC curves of 

using the ADC score to distinguish the aDC patients from SCC patients, LCC patients, and the healthy controls in the aCC-1 cohorts. aDC indicates 

adenocarcinoma; PC1, the first principal component; PC2, the second principal component; RoC, receiver operating characteristic; SCC, squamous-cell 

carcinoma; LCC, large-cell carcinoma.

https://journals.sagepub.com/doi/suppl/10.1177/1176934319838494
https://journals.sagepub.com/doi/suppl/10.1177/1176934319838494
https://journals.sagepub.com/doi/suppl/10.1177/1176934319838494
https://journals.sagepub.com/doi/suppl/10.1177/1176934319838494
https://journals.sagepub.com/doi/suppl/10.1177/1176934319838494
https://journals.sagepub.com/doi/suppl/10.1177/1176934319838494
https://journals.sagepub.com/doi/suppl/10.1177/1176934319838494
https://journals.sagepub.com/doi/suppl/10.1177/1176934319838494
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novel signature genes may present some unique information 
from multi-cohort study. Among the prognostic genes in our 
signature, many have been suggested to be closely related to 
lung cancers. For example, E2F1 is an existed biomarker gene 
for lung cancer prognosis in 2 previous studies.10,53 E2F1 
expression is significantly increased in lung cancers than normal 
tissues.54 Moreover, E2F1 is a transcription factor, which con-
trols the transcription of cyclin E and cyclin D1.55 Therefore, 
the increased expression of E2F1 will promote the transcription 
of cyclin E and cyclin D1, which is correlated to tumorigenesis 
of lung cancers.56 Besides, E2F2 is a novel prognostic signature 
gene in our prognostic signature, which was exclusively identi-
fied in our study. In a previous study, Feliciano et al suggested 
that the suppression of E2F2 can inhibit the function of miR-
99a, which will support the proliferation and tumor-promoting 
action of relative proteins.57 In addition, several other novel 
prognostic signature genes were also related to human lung can-
cers, such as ALDH2,58 ADH1B,58 RAD51,59 PLK1,60 and 
CDK1.61 Notably, 2 well-known oncogenes, EGFR and KRAS, 
were not identified by our pathway-based strategy, although 
they have been extensively documented to be involved in lung 
cancer pathogenesis.62 Further investigations found that these 2 
genes were included in several significant pathways, including 5 
diagnosis-related pathways for EGFR, 11 diagnosis-related 
pathways, and 2 prognosis-related pathways for KRAS. 
Therefore, these 2 genes were not identified as the biomarker 
genes as they are not unique in predicting lung cancer outcomes 
and classifying subtypes. This may prove the rationality of  
our pathway-based strategy in constructing disease-related 
signatures.

Furthermore, we found that the signatures for lung cancer 
diagnosis and prognosis were totally different. At the path-
way level, only one KEGG pathway, progesterone-mediated 
oocyte maturation, was observed to correlate with both lung 
cancer clinical outcome and subtype classification (Tables 1 
and 4). The lung cancer prognosis-related pathways are 
mostly involved in metabolism, cell division, and reproduc-
tion, such as tyrosine metabolism and DNA replication 
(Table 1, Figure 2 and Supplementary Figure S1). Meanwhile, 
the diagnosis-related pathways are involved in cancer-related 
signaling, including MAPK signaling pathway and GnRH 
signaling pathway (Table 4). For the significant gene, many 
prognosis-related genes were cell cycle genes, while diagno-
sis-related genes were some kinases (Tables 2 and 5). 
Interestingly, there is no overlap gene between the identified 
diagnostic gene signature and prognostic gene signature. This 
suggests that the underlying mechanisms that drive cancer 
metastasis and differentiate different cancer subtypes are 
more likely to be different. Therefore, the separate identifica-
tion of lung cancer prognosis and diagnosis biomarkers may 
be more reasonable, although some studies have proposed a 
set of signature genes for lung cancer prognosis and diagnosis 
at the same time.18

Conclusions
We proposed a pathway-based strategy to analyze large-scale 
gene expression data that were collected from multiple sources. 
Our results suggest that the pathway-based strategy is useful to 
identify significant transcriptomic biomarkers from such noisy 
dataset, which is especially important in the era of precision 
medicine.
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